Volume 19, Issue 2 (9-2024)                   IJMSI 2024, 19(2): 195-206 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamshidi M, Saeedi F. Pointwise Inner and Center Actors of a Lie Crossed Module. IJMSI 2024; 19 (2) :195-206
URL: http://ijmsi.ir/article-1-1811-en.html
Abstract:  

Let L be a Lie crossed module and Actpi(L) and Actz(L) be the pointwise inner actor and center actor of L, respectively. We will give a necessary and sufficient condition under which Actpi(L) and Actz(L) are equal.

Type of Study: Research paper | Subject: General

References
1. A. Allahyari, F. Saeedi, Some Properties of Isoclinism of Lie Algebra Crossed Module, Asian-Eur. J. Math., 13(3), (2020), 2050055 (14 pages). [DOI:10.1142/S1793557120500552]
2. A. Allahyari, F. Saeedi, On Nilpotency of Outer Pointwise Inner Actor of the Lie Algebra Crossed Modules, Journal of Mathematical Extension, 14(1), (2020), 19-40.
3. J. M. Casas, Invariants de Modulos Cruzados en Algebras de Lie, Ph.D. Thesis, Universty of Santiago, 1991.
4. J. M. Casas, M. Ladra, Perfect Crossed Modules in Lie Algebras, Comm. Algebra, 23, (1995), 1625-1644. [DOI:10.1080/00927879508825300]
5. J. M. Casas, M. Ladra, The Actor of a Crossed Module in Lie Algebra, Comm. Algebra, 26, (1998), 2065-2089. [DOI:10.1080/00927879808826262]
6. J. M.Casas, R. Fernandez-Casado, X. Garcia-Martinez, E. Khmaladze, Actor of a Crossed Module of Leibniz Algebras, Theory Appl. Categ., 33, (2018), 23-42.
7. B. Edalatzadeh, Capability of Crossed Modules of Lie Algebras, Comm. Algebra, 42, (2014), 3366-3380. [DOI:10.1080/00927872.2013.783042]
8. R. Lavendhomme, J. R. Roisin, Cohomologie Non Abelienne de Structures Algebriques, J. Algebra, 67, (1980), 385-414. [DOI:10.1016/0021-8693(80)90168-4]
9. K. Norrie, Actions and Automorphisms of Crossed Modules, Bull. Soc. Math. France, 118(2), (1990), 129-146. [DOI:10.24033/bsmf.2140]
10. S. Sheikh-Mohseni, F. Saeedi, M. Badrkhani-Asl, On Special Subalgebras of Derivations of Lie Algebras, Asian-European J. Math., 8(2), (2015), 1550032 (12 pages). [DOI:10.1142/S1793557115500321]
11. J. H. C. Whitehead, Combinatorial Homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453-496. [DOI:10.1090/S0002-9904-1949-09213-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb