Volume 18, Issue 2 (10-2023)                   IJMSI 2023, 18(2): 139-151 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farshadifar F, Ansari-Toroghy H. 2-Irreducible and Strongly 2-Irreducible Submodules of a Module. IJMSI 2023; 18 (2) :139-151
URL: http://ijmsi.ir/article-1-1655-en.html
Let R be a commutative ring with identity and M be an R-module. In this paper, we will introduce the concept of 2-irreducible (resp., strongly 2-irreducible) submodules of M as a generalization of irreducible (resp., strongly irreducible) submodules of M and investigated some properties of these classes of modules.
Type of Study: Research paper | Subject: Special

1. W. Anderson, K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New YorkHeidelberg-Berlin, 1974. [DOI:10.1007/978-1-4684-9913-1]
2. H. Ansari-Toroghy, F. Farshadifar, The Dual Notion of Multiplication Modules, Taiwanese J. Math., 11(4), (2007), 1189-1201. [DOI:10.11650/twjm/1500404812]
3. H. Ansari-Toroghy, F. Farshadifar, Fully Idempotent and Coidempotent Modules, Bull. Iranian Math. Soc., 38(4), (2012), 987-1005.
4. H. Ansari-Toroghy, F. Farshadifar, Strong Comultiplication Modules, CMU. J. Nat. Sci., 8(1), (2009), 105-113.
5. A. Badawi, On 2-absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc., 75, (2007), 417-429. [DOI:10.1017/S0004972700039344]
6. A. Barnard, Multiplication Modules, J. Algebra, 71, (1981), 174-178. [DOI:10.1016/0021-8693(81)90112-5]
7. J. Dauns, Prime Modules, J. Reine Angew. Math., 298, (1978), 156-181. [DOI:10.1515/crll.1978.298.156]
8. Z. A. El-Bast, P. F. Smith, Multiplication Modules, Comm. Algebra, 16, (1988), 755-779. [DOI:10.1080/00927878808823601]
9. C. Faith, Rings Whose Modules Have Maximal Submodules, Publ. Mat., 39, (1995), 201-214. [DOI:10.5565/PUBLMAT_39195_12]
10. F. Farshadifar, H. Ansari-Toroghy, Strongly Sum 2-irreducible Submodules of a Module, São Paulo J. Math. Sci., (2021). https://doi.org/10.1007/s40863-021-00211-w [DOI:10.1007/s40863-021-00211-w.]
11. I. M. A. Hadi, G. A. Humod, Strongly (Completely) Hollow Sub-modules II, Ibn ALHaitham Journal For Pure and Applied Science, 26(1), (2013), 292-302.
12. W. J. Heinzer, L. J. Ratliff, D. E. Rush, Strongly Irreducible Ideals of a Commutative Ring, J. Pure Appl. Algebra, 166(3), (2002), 267-275. [DOI:10.1016/S0022-4049(01)00043-3]
13. C. P. Lu, M-Radicals of Submodules in Modules, Math. Japonica, 34(2), (1989), 211-219.
14. R. L. McCasland, M. E. Moore, On Radical of Submodules of Finitely Generated Modules, Canad. Math. Bull., 29(1), (1986), 37-39. [DOI:10.4153/CMB-1986-006-7]
15. H. Mostafanasab, E. Yetkin, U. Tekir, A. Yousefian Darani, On 2-absorbing Primary Submodules of Modules over Commutative Rings, An. St. Univ. Ovidius Constanta, 24(1), (2016), 335-351. [DOI:10.1515/auom-2016-0020]
16. Sh. Payrovi, S. Babaei, On 2-absorbing Submodules, Algebra Collq., 19, (2012), 913-920. [DOI:10.1142/S1005386712000776]
17. R. Y. Sharp, Step in Commutative Algebra, Cambridge University Press, 1990.
18. P. F. Smith, Some Remarks on Multiplication Modules, Arch. Math., 50, (1988), 223-235. [DOI:10.1007/BF01187738]
19. A. Yousefian Darani, F. Soheilnia, 2-absorbing and Weakly 2-absorbing Submoduels, Thai J. Math., 9(3), (2011), 577-584.
20. A. Yousefian Darani, F. Soheilnia, On n-absorning Submodules, Math. Commun., 17, (2012), 547-557.
21. A. Yousefian Darani, H. Mostafanasab, 2-irreducible and Strongly 2-irreducible Ideals of Commutative Rings, Miskolc Mathematical Notes, 17(1), (2016), 441-455. [DOI:10.18514/MMN.2016.1490]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb