Volume 15, Issue 2 (10-2020)                   IJMSI 2020, 15(2): 13-20 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sedghi S, Lee D, Shobe N. Characteristics of Common Neighborhood Graph under Graph Operations and on Cayley Graphs. IJMSI 2020; 15 (2) :13-20
URL: http://ijmsi.ir/article-1-859-en.html

Let G(V;E) be a graph. The common neighborhood graph (congraph) of G is a
graph with vertex set V , in which two vertices are adjacent if and only if they have a
common neighbor in G. In this paper, we obtain characteristics of congraphs under
graph operations; Graph :::::union:::::, Graph cartesian product, Graph tensor product,
and Graph join, and relations between Cayley graphs and its congraphs.

Type of Study: Research paper | Subject: General

1. [1] A. Alwardi, B. Arsic, I. Gutman, N. D. Soner, The common neighborhood graph and its energy, Iran. J. Math. Sci. Inf. 7(2), (2012) 1-8.
2. [2] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012. [DOI:10.1007/978-1-4614-4220-2]
3. [3] A. S. Bonifacio, R. R. Rosa, I. Gutman, N. M. M. de Abreu, Complete common neighborhood graphs, Proceedings of Congreso Latino-Iberoamericano de Investigaci on Operativa and Simposio Brasileiro de Pesquisa Operacional (2012) 4026-4032.
4. [4] M. Knor, B. Luˇ zar, R.ˇSkrekovski, I. Gutman, On Wiener Index of Common Neighborhood Graphs, MATCH Commun. Math. Comput. Chem. 72, (2014), 321-332.
5. [5] J. A. Bondy, U. S. R. Murty, Graph Theory. Graduate Texts in Mathematics. Springer, (2008). [DOI:10.1007/978-1-84628-970-5]
6. [6] F. Harary, Graph Theory, Addison-Wesley, Reading, (1971).
7. [7] A. N. Whitehead, B. Russell. Principia Mathematica. Cambridge University Press, (1912).
8. [8] J. Friedman, On Cayley graphs on the symmetric group generated by transpositions, Combinatorica, 20(4), (2000), 505-519. [DOI:10.1007/s004930070004]
9. [9] A. Cayley. On the theory of groups. Proceedings of the London Mathematical Society 9(1), 126-133, 1878. [DOI:10.1112/plms/s1-9.1.126]
10. [10] M. Dehn. Uber die Toplogie des dreidimensionalen Raumes. Mathematische Annalen, 69(1), 137-168, 1910. In German. [DOI:10.1007/BF01455155]
11. [11] W. Dicks and M. J. Dunwoody. Groups Acting on Graphs. Cambridge University Press, 1989.
12. [12] R. C. Lyndon. On Dehn's algorithm. Mathematical Annales, 166(3), 208-228, 1966. [DOI:10.1007/BF01361168]
13. [13] J.P. Serre. Trees. Springer, 1980. [DOI:10.1007/978-3-642-61856-7]
14. [14] J. R. Stallings. Group Theory and Three-Dimensional Manifolds. Number 4 in Yale Mathematical Monographs. Yale University Press, 1971.
15. [15] M.H. Shahzamanian, M. Shirmohammadi, B. Davvaz. Roughness in Cayley graphs. Information Sciences 180 (2010) 3362-3372. [DOI:10.1016/j.ins.2010.05.011]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb