This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for functors on Artin local rings. In the second part, we use a version of Schlessinger criteria for functors on the Artinian category of nilpotent Lie algebras which is formulated by Pridham, and explore arithmetic applications.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |