Volume 19, Issue 2 (9-2024)                   IJMSI 2024, 19(2): 169-188 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Basheer A B M, Moori J, Prins A L, Seretlo T T. On a Group of the Form $2^{4+5}:GL(4,2)$. IJMSI 2024; 19 (2) :169-188
URL: http://ijmsi.ir/article-1-1950-en.html
Abstract:  
The affine general linear group 25:GL(5, 2) of GL(6, 2) has 6 conjugacy classes of maximal subgroups. The largest two maximal subgroups are of the forms 21+8:GL(4, 2) and 24+5:GL(4, 2). In this article we consider the group 24+5:GL(4, 2), which we denote by ${bar G}$. Firstly we determine its conjugacy classes using the coset analysis technique. The structures of the inertia factor groups are also determined. We then compute all the Fischer matrices and apply the Clifford-Fischer theory to compute the ordinary character table of ${bar G}$. Using information on conjugacy classes, Fischer matrices and both ordinary and projective character tables of the inertia factor groups, we concluded that we need to use the ordinary character tables of all the inertia factor groups to construct the character table of ${bar G}$. The character table of ${bar G}$ is a 75×75 complex valued matrix and we supply it (in the format of Clifford-Fischer theory) at the end of this paper as Table 6.
Type of Study: Research paper | Subject: General

References
1. A. B. M. Basheer, Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, 2012.
2. A. B. M. Basheer, On a Group Extension Involving the Sporadic Janko Group J2, Ural Mathematical Journal, 10(1), (2024), 28-43. [DOI:10.15826/umj.2024.1.003]
3. A. B. M. Basheer, On a Group Involving the Automorphism of the Janko Group J2, Journal of the Indonesian Mathematical Society, 29(2), (2023), 197-216. [DOI:10.22342/jims.29.2.1371.197-216]
4. A. B. M. Basheer, On a Group Extension Involving the Suzuki Group Sz(8), Afrika Matematika, 34(4), (2023), https://doi.org/10.1007/s13370-023-01130-z [DOI:10.1007/s13370-023-01130-z.]
5. A. B. M. Basheer, J. Moori, Fischer Matrices of Dempwolff Group 25·GL(5, 2), International Journal of Group Theory, 1(4), (2012), 43-63.
6. A. B. M. Basheer, J. Moori, On the Non-split Extension Group 26·Sp(6, 2), Bulletin of the Iranian Mathematical Society, 39(6), (2013), 1189-1212.
7. A. B. M. Basheer, J. Moori, On the Non-split Extension 22n·Sp(2n, 2), Bulletin of the Iranian Mathematical Society, 41(2), (2015), 499-518.
8. A. B. M. Basheer, J. Moori, On a Maximal Subgroup of the Thompson Simple Group, Mathematical Communications, 20, (2015), 201-218.
9. A. B. M. Basheer, J. Moori, A Survey on Clifford-Fischer Theory, London Mathematical Society Lecture Notes Series, 422, published by Cambridge University Press, (2015), 160-172. [DOI:10.1017/CBO9781316227343.009]
10. A. B. M. Basheer, J. Moori, On a Group of the Form 37:Sp(6, 2), International Journal of Group Theory, 5(2), (2016), 41-59.
11. A. B. M. Basheer, J. Moori, On a Group of the Form 210:(U5(2):2), Italian Journal of Pure and Applied Mathematics, 37, (2017), 645-658.
12. A. B. M. Basheer, J. Moori, On Two Groups of the Form 28:A9, Afrika Matematika, 28, (2017), 1011 - 1032. [DOI:10.1007/s13370-017-0500-1]
13. A. B. M. Basheer, J. Moori, Clifford-Fischer Theory Applied to a Group of the Form 21+6 − :((31+2:8):2), Bulletin of the Iranian Mathematical Society, 43(1), (2017), 41 - 52.
14. A. B. M. Basheer, F. Ali, M. Alotaibi, On a Maximal Subgroup of the Conway Simple Group Co3, Italian Journal of Pure and Applied Mathematics, 44, (2020), 357-372.
15. A. B. M. Basheer and J. Moori, On a Maximal Subgroup of the Affine General Linear Group AGL(6, 2), Advances in Group Theory and Applications, 11, (2021), 1-30
16. W. Bosma, J. J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydeny, November 1994.
17. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
18. The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10 ; 2007. (http://www.gap-system.org)
19. G. Karpilovsky, Projective Representations of Finite Groups, Marcel Dekker, New York and Basel, 1985.
20. Maxima, a Computer Algebra System. Version 5.18.1; 2009. (http://maxima.sourceforge.net)
21. J. Moori, On the Groups G+ and G of the Form 210:M22 and 210:M22, PhD Thesis, University of Birmingham, 1975.
22. J. Moori, On Certain Groups Associated with the Smallest Fischer Group, J. London Math. Soc., 2, (1981), 61 - 67. [DOI:10.1112/jlms/s2-23.1.61]
23. A. L. Prins, Fischer-Clifford Applied to a Non-split Extension 25·GL4(2), Palestine Journal of Mathematics, 5 (2016), 71-82.
24. A. L. Prins, The Projective Character Tables of a Solvable Group 26:(6×2), International Journal of Mathematics and Mathematical Sciences, 2019, (2019), Article ID 8684742, 15 pages. [DOI:10.1155/2019/8684742]
25. J. Schmidt, Projective Characters with Corresponding Factor Set, URL (version: 2017-04-13): https://mathoverflow.net/q/165226, (https://mathoverflow.net/users/3710/jack-schmidt).

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb