1. J. Biazar, H. Ebrahimi, A Strong Method for Solving System of Integral Differential Equations, Applied Mathematics, 2(9), (2011), 1105-1113. [
DOI:10.4236/am.2011.29152]
2. A. Hosry, R. Nakad, S. Bhalekar, A Hybrid Function Approach to Solving a Class of Fredholm and Volterra Integro-Differential Equations, Math. Comput. Appl., 25(2), (2020), 30. [
DOI:10.3390/mca25020030]
3. C. Hsiao, Hybrid Function Method for Solving Fredholm and Volterra Integral Equations of the Second Kind, Journal of Computational and Applied Mathematics, 230(1), (2009), 59-68. [
DOI:10.1016/j.cam.2008.10.060]
4. R. Jafari, R. Ezzati, K. Maleknejad, Numerical Solution of Fredholm Integro-Differential Equations By Using Hybrid Function Operational Matrix of Differentiation, Int. J. Industrial Mathematics, 9(4), (2017), 349-358.
5. Z. H. Jiang, W. Schaufelberger, Block-Pulse Functions and Their Applications in Control Systems, Springer-Verlag, Berlin, Heidelberg, 1992. [
DOI:10.1007/BFb0009162]
6. K. Maleknejad, Y. Mahmoudi, Numerical Solution of Linear Fredholm Integral Equation by Using Hybrid Taylor and Block-Pulse Functions, Appl. Math. Comput., 149, (2004), 799-806. [
DOI:10.1016/S0096-3003(03)00180-2]
7. K. Maleknejad, M. Tavassoli Kajani, A Hybrid Collocation Method Based on Combining the Third Kind Chebyshev Polynomials and Block-Pulse Functions for Solving HigerOrder Initial Value Problems, Kuwait journal of Science, 43(4), (2016), 1-10.
8. J. Pour-Mahmoud, M. Y. Rahimi-Ardabili, S. Shahmorad, Numerical Solution of the System of Fredholm Integro-Differential Equations by the Tau Method, Applied Mathematics and Computation, 168(1), (2005), 465-478. [
DOI:10.1016/j.amc.2004.09.026]
9. G. P. Rao, L. Sivakumar, Analysis Analysis and Synthesis of Dynamic Systems Containing Time-Delays Via Block-Pulse Functions, Proc. IEE, 125, (1978), 1064-1068. [
DOI:10.1049/piee.1978.0243]
10. M. Razzaghi, Fourier Series Approach for the Solution of Linear Two-Point Boundary Value Problems with Time-Varying Coefficients, Int. J. Syst. Sci., 21(9), (1990), 1783-1794. [
DOI:10.1080/00207729008910498]
11. P. Sannuti, Analysis and Synthesis of Dynamic Systems Via Block-Pulse Functions, Proc. Inst. Elect. Eng., 124(6), (1977), 569-571. [
DOI:10.1049/piee.1977.0119]
12. M. Tavassoli Kajani, A. Hadi Vencheh, Solving Second Kind Integral Equations with Hybrid Chebyshev and Block-Pulse Functions, Appl. Math. Comput., 163(1), (2005), 71-77. [
DOI:10.1016/j.amc.2003.11.044]
13. X. T. Wang, Y. M. Li, Numerical Solutions of Integro-Differential Systems by Hybrid of General Block-Pulse Functions and the Second Chebyshev Polynomials, Appl. Math. Comput., 209(2), (2009), 266-272. [
DOI:10.1016/j.amc.2008.12.044]
14. X. T. Wang, Numerical Solutions of Optimal Control for Time Delay Systems by Hybrid of Block-Pulse Functions and Legendre Polynomials, Appl. Math. Comput., 184(2), (2007), 849-856. [
DOI:10.1016/j.amc.2006.06.075]
15. X. T. Wang, Numerical Solution of Time-Varying Systems with a Stretch by General Legendre Wavelets, Appl. Math.comput., 198(2), (2008), 613-620. [
DOI:10.1016/j.amc.2007.08.058]
16. A. Wazwaz, Linear and Nonlinear Integral Equations, Methods And Applications, Springer Berlin, Heidelberg, 2011. [
DOI:10.1007/978-3-642-21449-3]