Volume 19, Issue 2 (9-2024)                   IJMSI 2024, 19(2): 77-93 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehdi-Nezhad E, Rahimi A M. A Class of Commutative Semirings with Stable Range 2 II. IJMSI 2024; 19 (2) :77-93
URL: http://ijmsi.ir/article-1-1770-en.html
Abstract:  

The notion and some properties of (strongly) B-rings, in a natural way, are extended to (strongly) B- and (strongly) BJ-semirings which is somewhat similar to the notion of rings having stable range 2. Results are given showing the connection between several types of semirings whose finite sequences satisfy some stability condition, some involving the Jacobson k-radical of the semiring R. Besides some examples and other results, it is shown that R[x], the semiring of polynomials over a semiring R, is not a B-semiring (consequently, not a strongly B-semiring) when R is a zerosumfree semiring. We also study some algebraic properties of the S-relative B- and BJ-semirings with respect to a nonempty subset S of R.

Type of Study: Research paper | Subject: Special

References
1. M. S. Abdolyousefi, H. Chen, Elementary Matrix Reduction over J-stable Rings, Comm. Algebra, 45(5), (2017), 1983-1995. [DOI:10.1080/00927872.2016.1226874]
2. H. Bass, K-theory and Stable Algebra, Publ. IHES, 22, (1964), 5-60. [DOI:10.1007/BF02684689]
3. R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991. [DOI:10.1017/CBO9781107325708]
4. D. Estes, J. Ohm, Stable Range in Commutative Rings, Jour. of Alg., 7, (1967), 343-362. [DOI:10.1016/0021-8693(67)90075-0]
5. J. S. Golan, The theory of Semirings (with Applications in Mathematics and Theoretical Computer Science), Pitman Monographs & Surveys in Pure and Appl. Math., 54, Longman Scientific & Tech., Essex, (1992).
6. W. H. Gustafson, M. E. Moore, I. Reiner, Matrix Completions over Dedekind Rings, Linear Multilinear Algebra, 10, (1981), 141-144. [DOI:10.1080/03081088108817404]
7. W. H. Gustafson, R. B. Richter, D. W. Robinson, W. P. Wardlaw, Matrix Completions Over Principal Ideal Rings, Algebra Discrete Math., Hackensack, NJ: World Scientific Publishing, 1, (2008), 151-158. [DOI:10.1142/9789812793416_0011]
8. J. R. Juett, J. L. Williams, Strongly Stable Rank and Applications to Matrix Completion, Comm. Algebra, (2017), 45(9), 3967-3985. [DOI:10.1080/00927872.2016.1251939]
9. T. Y. Lam, Serre's Problem on Projective Modules, Springer Monogr. Math. Berlin: Springer-Verlag, 2006.
10. M. Moore, A. Steger, Some Results on Completability in Commutative Rings, Pacific Journal of Mathematics, 37, (1971), 453-460. [DOI:10.2140/pjm.1971.37.453]
11. A. M. Rahimi, Some Results on Stable Range in Commutative Rings, PhD dissertation, University of Texas at Arlington, 1993.
12. A. M. Rahimi, A Class of Commutative Semirings with Stable Range 2, Quaestiones Mathematicae, 41(8), (2018), 1061-1071. [DOI:10.2989/16073606.2017.1419389]
13. A. M. Rahimi, Some Improved Results on B-rings, Missouri J. Math. Sci., 9(3), (1997), 167-169. [DOI:10.35834/1997/0903167]
14. A. M. Rahimi, Some Results on n-stable Rings, Missouri J. Math. Sci., 15(2), (2003), 129-139. [DOI:10.35834/2003/1502129]
15. M. K. Sen, M. R. Adhikari, On Maximal k-ideals of Semirings, Proc. Amer. Math. Soc, 118, (1993), 699-703. [DOI:10.1090/S0002-9939-1993-1132423-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb