Volume 18, Issue 2 (10-2023)                   IJMSI 2023, 18(2): 117-126 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alizadeh F, Maimani H R, Parsaei Majd L, Rajabi Parsa M. Roman {2}-domination in Graphs and Graph Products. IJMSI 2023; 18 (2) :117-126
URL: http://ijmsi.ir/article-1-1604-en.html
Abstract:  
For a graph G=(V, E) of order n, a Roman {2}-dominating function f: V→E has the property that for every vertex v in V with f(v)=0, either v is adjacent to a vertex assigned 2 under f, or v is adjacent to least two vertices assigned 1 under f. In this paper, we classify all graphs with Roman {2}-domination number belonging to the set {2, 3, 4, n-2, n-1, n}. Furthermore, we obtain some results about Roman {2}-domination number of some graph operations.
Type of Study: Research paper | Subject: Special

References
1. A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Universitext. Springer, New York, 2012. xiv+250 pp. ISBN: 978-1-4614-1938-9.
2. T. Y. Chang, W. E. Clark, The Domination Number of the 5×n and 6×n Grids Graphs, J. Graph Theory, 17(1), (1993), 81-107. [DOI:10.1002/jgt.3190170110]
3. M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. A. McRae, Roman {2}-domination, Discrete Appl. Math., 204, (2016), 22-28. [DOI:10.1016/j.dam.2015.11.013]
4. E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi, S. T. Hedetniemi, Roman Domination in Graphs, Discrete Math., 278(1-3), (2004), 11-22. [DOI:10.1016/j.disc.2003.06.004]
5. G. S. Domke, S. T. Hedetniemi, R. C. Laskar, G. Fricke, Relationships Between Integer and Fractional Parameters of Graphs, Graph theory, combinatorics, and applications, Vol. 1 (Kalamazoo, MI, 1988), 371-387, Wiley-Intersci. Publ., Wiley, New York, 1991.
6. J. Fink, M. S. Jacobson, n-domination in Graphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), 283-300, Wiley-Intersci. Publ., Wiley, New York, 1985.
7. D. Goncalves, A. Pinlon, M. Rao, S. Thomasse, The Domination Number of Grids, SIAM J. Discrete Math., 25(3), (2011), 1443-1453. [DOI:10.1137/11082574]
8. M. A. Henning, S. T. Hedetniemi, Defending the Roman Empire -A New Strategy, The 18th British Combinatorial Conference (Brighton, 2001), Discrete Math., 266(1-3), (2003), 239-251. [DOI:10.1016/S0012-365X(02)00811-7]
9. M. S. Jacobson, L. F. Kinch, On the Domination Number of Product of a Graph, I. Ars Combin., 18, (1984), 33-44.
10. I. Stewart, Defend the Roman Empire!, Sci. Amer., 281(6), (1999) 136-139. [DOI:10.1038/scientificamerican1299-136]
11. Y. Lu, J-M Xu, The 2-Domination and 2-Bondage Numbers of Grid Graphs, 2012, https://arxiv.org/abs/1204.4514.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb