Volume 19, Issue 2 (9-2024)                   IJMSI 2024, 19(2): 1-12 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vukelić A. On Lah-Ribarič Inequality Involving Averages of Convex Functions. IJMSI 2024; 19 (2) :1-12
URL: http://ijmsi.ir/article-1-1522-en.html
Abstract:  
By using the integral arithmetic mean and the Lah-Ribarič inequality we give the extension of Wulbert’s result from [15]. Also, we obtain inequalities with divided differences using the Lah-Ribarič inequality. As a consequence, the convexity of higher order for function defined by divided difference is proved. Further, we construct a new family of exponentially convex functions and Cauchy-type means by exploring at linear functionals with the obtained inequalities.
Type of Study: Research paper | Subject: General

References
1. K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., Wiley, New York, 1989.
2. V. Čuljak, I. Franjić, R. Ghulam, J. Pečarić, Schur-convexity of Averages of Convex Function, J. Ineq. Appl., 2011(2011), Article ID 581918. [DOI:10.1155/2011/581918]
3. R. Farwig, D. Zwick, Some Divided Difference Inequalities for n-convex Functions, J. Math. Anal. Appl., 108, (1985), 430-437. [DOI:10.1016/0022-247X(85)90036-8]
4. J. Jakšetić, J. Pečarić, G. Roqia, On Jensen's Inequality Involving Averages of Convex Functions, Sarajevo J. Math., 8(20)(1), (2012), 53-68. [DOI:10.5644/SJM.08.1.04]
5. S. Karlin, Total Positivity, Stanford Univ. Press, Stanford, 1968.
6. S. Karlin, W. J. Studden, Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966.
7. P. Lah, M. Ribarič, Converse of Jensen's Inequality for Convex Functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 412-460, (1973), 201-205.
8. Z. Pavić, J. Pečarić, A. Vukelić, Exponential Convexity and Jensen Inequality for Divided Differences, J. Math. Inequal., 5(2), (2011), 157-168. [DOI:10.7153/jmi-05-14]
9. Z. Pavić, J. Pečarić, A. Vukelić, Means for Divided Differences and Exponential Convexity, Mediterr. J. Math., 9(1), (2012), 187-198. [DOI:10.1007/s00009-011-0122-z]
10. J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in science and engineering, vol. 187, Academic Press, 1992.
11. J. Pečarić, J. Perić, Improvements of the Giaccardi and the Petrović Inequality and Related Stolarsky Type Means, An. Univ. Craiova Ser. Mat. Inform., 39, (2012), 65-75.
12. T. Popoviciu, Sur l'approximation Des Fonctions Convexes D'ordre Superieur, Mathematica, 10, (1934), 49-54.
13. T. Popoviciu, Les Functions Convexes, Herman and Cie, Éditeurs, Paris (1944).
14. G. Roqia, J. Pečarić, A. Vukelić, n--exponential Convexity of Divided Differences and Related Stolarsky Type Menas, Math. Ineq. Appl., 16(4), (2013), 1043-1063. [DOI:10.7153/mia-16-82]
15. D. E. Wulbert, Favard's Inequality on Average Values of Convex Functions, Math. Comput. Model., 37(2003), 1383-1391. [DOI:10.1016/S0895-7177(03)90048-3]
16. X. M. Zhang, Y. M. Chu, Convexity of the Integral Arithmetic Mean of a Convex Function, Rocky Mt. J. Math., 40(3), (2010), 1061-1068. [DOI:10.1216/RMJ-2010-40-3-1061]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb