1. 1. A. Ashikhim, E. Knill, Non-binary quantum stabilizer codes, IEEE Trans. Inf. Theory, 47, (2001), 3065-3072. [
DOI:10.1109/18.959288]
2. D. Bartoli, L. Quoos, G. Zini, Algebraic Geometric Codes on Many Points from Kummer Extensions, arXiv, 1606.04143, (2016).
3. A.R. Calderbank, P.W. Shor, Good quantum error-correcting codes exist, Physical Review, A 54, (1996), 1098-1105. [
DOI:10.1103/PhysRevA.54.1098]
4. A.S. Castellanos, A.M. Masuda, L. Quoos, One- and Two-Point Codes Over Kummer Extensions, IEEE Trans. Inf. Theory, 62, (2016), 4867-4872. [
DOI:10.1109/TIT.2016.2583437]
5. H. Chen, Some good quantum error-correcting codes from algebraic geometry codes, IEEE Trans. Inf.Theory, 47, (2001), 2059-2061. [
DOI:10.1109/18.930942]
6. Y. Edel, Some good quantum twisted codes, http://www.mathi.uni-heidelberg.de/~yves/Matrizen/QTBCH/QTBCHindex.html.
7. C. Galindo, F. Hernando, Quantum codes from affine variety codes and their subfield subcodes, Designs, Codes and Cryptography, 76 (1), (2015), 89-100. [
DOI:10.1007/s10623-014-0016-8]
8. O. Geil, C. Munuera, D. Ruano, F. Torres, On the order bound for one-point codes, Advances in Mathematics of Communication, 5, (2011), 489-504. [
DOI:10.3934/amc.2011.5.489]
9. V.D. Goppa, Codes on algebraic curves, Dokl. Akad. NAUK, SSSR, 259, (1981), 1289-1290.
10. V.D. Goppa, Algebraic geometric codes, Izv. Akad. NAUK, SSSR, 46, (1982), 75-91.
11. D.Hankerson, A.Menezes, S.Vanstone, Guide to Elliptic Curve Cryptography, Springer Professional Computing, Springer-Verlag, (2004).
12. T. Hasegawa, Some remarks on superspecial and ordinary curves of low genus, Math. Nachr, 286, (2013), 17-33. [
DOI:10.1002/mana.201010024]
13. C. Hu, S.Yang, Multi-point codes over Kummer extensions, Designs, Codes and Cryptography, 86 (1), (2018), 211-230. [
DOI:10.1007/s10623-017-0335-7]
14. L. Jin, Quantum stabilizer codes from maximal curves, IEEE Trans. Inf. Theory, 60 (1), (2014), 313-316. [
DOI:10.1109/TIT.2013.2287694]
15. L. Jin, C.P. Xing, Euclidean and Hermitian self-orthogonal Algebraic Geometry codes and their application to Quantum codes, IEEE Trans. Inf. Theory, 58 (8), (2012), 5484-5489. [
DOI:10.1109/TIT.2011.2177066]
16. A. Kazemifard, S. Tafazolian, A note on some Picard curves over finite fields, Finite Fields and Their Applications, 34, (2015), 107-122. [
DOI:10.1016/j.ffa.2014.12.002]
17. J. Kim, J. Walker, Non-binary quantum error-correcting codes from algebraic curves, Discrete Mathematics, 308, (2008), 3115-3124. [
DOI:10.1016/j.disc.2007.08.038]
18. Magma Computational Algebra System, http://magma.maths.usyd.edu.au/magma/.
19. G.L. Matthews, Weierstrass semigroups and codes from a quotient of the Hermitian curve, Designs, Codes and Cryptography, 37, (2005), 473-492. [
DOI:10.1007/s10623-004-4038-5]
20. MinT, Tables of optimal parameters for linear codes, Univ. Salzburg, Salzburg. Austria, (2009), http://mint.sbg.ac.at/.
21. C. Munuera, R. Pellikaan, Equality of geometric Goppa codes and equivalence of divisors, J. Pure Appl. Algebra, 90 (1993), 229-252. [
DOI:10.1016/0022-4049(93)90043-S]
22. C. Munuera, W. Tenrio, F. Torres, Quantum error-correcting codes from algebraic geometry codes of Castle type, Quantum Information Processing, 16 (10), (2016), 4071-4088. [
DOI:10.1007/s11128-016-1378-9]
23. E.M. Rains, Non-binary quantum codes, IEEE Trans. Inform. Theory, 45, (1999), 18271832. [
DOI:10.1109/18.746807]
24. P.K. Sarpevalli, A. Klappenecker, Non-binary quantum codes from Hermitian curves, Applied algebra, algebraic algorithms and error-correcting codes, Lecture Notes in Computer Science 3857, Springer, Berlin, (2006), 136-143. [
DOI:10.1007/11617983_13]
25. H. Stichtenoth, A note on Hermitian codes over GF(q2), IEEE Trans. Inf. Theory, 34, (1988), 1345-1348. [
DOI:10.1109/18.21267]
26. H. Stichtenoth, Algebraic Function Fields and Codes. Second edition. Graduate Texts in Mathematics, Springer-Verlag, Berlin, 254, (2009).
27. S. Tafazolian, F. Torres, On the curve yn = xm +x over finite fields, J. Number Theory, 45, (2014), 51-66. [
DOI:10.1016/j.jnt.2014.05.019]
28. Y. Takizawa, Some remarks on the Picard curves over a finite field, Math. Nachr, 280, (2007), 802-811. [
DOI:10.1002/mana.200410515]