Volume 16, Issue 1 (4-2021)                   IJMSI 2021, 16(1): 77-95 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Guo B -, Qi F. Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials. IJMSI. 2021; 16 (1) :77-95
URL: http://ijmsi.ir/article-1-1275-en.html
Abstract:  

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

Type of Study: Research paper | Subject: General

References
1. K. N. Boyadzhiev, A note on the higher derivatives of the function $1/(exp(x)-1)$, emph{Adv. Appl. Discrete Math.}, textbf{17}(4), (2016), 461nobreakdash--466. [DOI:10.17654/DM017040461]
2. K. N. Boyadzhiev, {Close encounters with the Stirling numbers of the second kind}, emph{Math. Mag.}, textbf{85}(4), (2012), 252nobreakdash--266; available online at url{ https://doi.org/10.4169/math.mag.85.4.252 [DOI:10.4169/math.mag.85.4.252}.]
3. K. N. Boyadzhiev, {Derivative polynomials for tanh, tan, sech and sec in explicit form}, emph{Fibonacci Quart.}, textbf{45}(4), (2007), 291nobreakdash--303.
4. K. N. Boyadzhiev, {Derivative Polynomials for tanh, tan, sech and sec in explicit form}, emph{arXiv}, (2010), available online at url{https://arxiv.org/abs/0903.0117}.
5. L. Comtet, emph{Advanced Combinatorics: The Art of Finite and Infinite Expansions}, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974; available online at url{ https://doi.org/10.1007/978-94-010-2196-8 [DOI:10.1007/978-94-010-2196-8}.]
6. D. Cvijovic, {Derivative polynomials and closed-form higher derivative formulae}, emph{Appl. Math. Comput.}, textbf{215}(8), (2009), 3002nobreakdash--3006; available online at url{ https://doi.org/10.1016/j.amc.2009.09.047 [DOI:10.1016/j.amc.2009.09.047}.]
7. D. V. Dolgy, D. S. Kim, T. Kim, J.-J. Seo, {Differential equations for Changhee polynomials and their applications}, emph{arXiv}, (2016), available online at url{http://arxiv.org/abs/1602.08659}.
8. B.-N. Guo, D. Lim, F. Qi, {Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions}, emph{AIMS Math.}, textbf{6}, (2021), in press.
9. B.-N. Guo, F. Qi, {Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind}, emph{J. Comput. Appl. Math.}, textbf{272}, (2014), 251nobreakdash--257; available online at url{ https://doi.org/10.1016/j.cam.2014.05.018 [DOI:10.1016/j.cam.2014.05.018}.]
10. B.-N. Guo, F. Qi, {Some identities and an explicit formula for Bernoulli and Stirling numbers}, emph{J. Comput. Appl. Math.}, textbf{255}, (2014), 568nobreakdash--579; available online at url{ https://doi.org/10.1016/j.cam.2013.06.020 [DOI:10.1016/j.cam.2013.06.020}.]
11. D. Kang, J. Jeong, S.-J. Lee, S.-H. Rim, {A note on the Bernoulli polynomials arising from a non-linear differential equation}, emph{Proc. Jangjeon Math. Soc.}, textbf{16}(1), (2013), 37nobreakdash--43.
12. D. S. Kim, T. Kim, {Some identities for Bernoulli numbers of the second kind arising from a non-linear differential equation}, emph{Bull. Korean Math. Soc.}, textbf{52}(6), (2015), 2001nobreakdash--2010; available online at url{ https://doi.org/10.4134/BKMS.2015.52.6.2001 [DOI:10.4134/BKMS.2015.52.6.2001}.]
13. T. Kim, {Corrigendum to ''Identities involving Frobenius-Euler polynomials arising from non-linear differential equations'' [J. Number Theory textbf{132} (12) (2012) 2854nobreakdash--2865]}, emph{J. Number Theory}, textbf{133}(2), (2013), 822nobreakdash--824; available online at url{ https://doi.org/10.1016/j.jnt.2012.08.002 [DOI:10.1016/j.jnt.2012.08.002}.]
14. T. Kim, {Identities involving Frobenius-Euler polynomials arising from non-linear differential equations}, emph{J. Number Theory}, textbf{132}(12), (2012), 2854nobreakdash--2865; available online at url{ https://doi.org/10.1016/j.jnt.2012.05.033 [DOI:10.1016/j.jnt.2012.05.033}.]
15. T. Kim, D. V. Dolgy, D. S. Kim, J. J. Seo, {Differential equations for Changhee polynomials and their applications}, emph{J. Nonlinear Sci. Appl.}, textbf{9}(5), (2016), 2857nobreakdash--2864; available online at url{ https://doi.org/10.22436/jnsa.009.05.80 [DOI:10.22436/jnsa.009.05.80}.]
16. T. Kim, D. S. Kim, {A note on nonlinear Changhee differential equations}, emph{Russ. J. Math. Phys.}, textbf{23}(1), (2016), 88nobreakdash--92; available online at url{ https://doi.org/10.1134/S1061920816010064 [DOI:10.1134/S1061920816010064}.]
17. T. Kim, D. S. Kim, {Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations}, emph{J. Nonlinear Sci. Appl.}, textbf{9}(5), (2016), 2086nobreakdash--2098; available online at url{ https://doi.org/10.22436/jnsa.009.05.14 [DOI:10.22436/jnsa.009.05.14}.]
18. S. Koumandos, {On Ruijsenaars' asymptotic expansion of the logarithm of the double gamma function}, emph{J. Math. Anal. Appl.}, textbf{341}, (2008), 1125nobreakdash--1132; available online at url{ https://doi.org/10.1016/j.jmaa.2007.11.021 [DOI:10.1016/j.jmaa.2007.11.021}.]
19. V. V. Kruchinin, {Derivation of Bell polynomials of the second kind}, emph{arXiv}, (2011), available online at url{http://arxiv.org/abs/1104.5065}.
20. D. V. Kruchinin, V. V. Kruchinin, {Application of a composition of generating functions for obtaining explicit formulas of polynomials}, emph{J. Math. Anal. Appl.}, textbf{404}(1), (2013), 161nobreakdash--171; available online at url{ https://doi.org/10.1016/j.jmaa.2013.03.009 [DOI:10.1016/j.jmaa.2013.03.009}.]
21. V. V. Kruchinin, D. V. Kruchinin, {Composita and its properties}, emph{J. Anal. Number Theory}, textbf{2}(2), (2014), 37nobreakdash--44.
22. H.-M. Liu, S.-H. Qi, S.-Y. Ding, {Some recurrence relations for Cauchy numbers of the first kind}, emph{J. Integer Seq.}, textbf{13}, (2010), Article~10.3.8, 7~pages.
23. F. Qi, {A simple form for coefficients in a family of nonlinear ordinary differential equations}, emph{Adv. Appl. Math. Sci.}, textbf{17}(8), (2018), 555nobreakdash--561.
24. F. Qi, {A simple form for coefficients in a family of ordinary differential equations related to the generating function of the Legendre polynomials}, emph{Adv. Appl. Math. Sci.}, textbf{17}(11), (2018), 693nobreakdash--700.
25. F. Qi, {Derivatives of tangent function and tangent numbers}, emph{Appl. Math. Comput.}, textbf{268}, (2015), 844nobreakdash--858; available online at url{ https://doi.org/10.1016/j.amc.2015.06.123 [DOI:10.1016/j.amc.2015.06.123}.]
26. F. Qi, {Diagonal recurrence relations for the Stirling numbers of the first kind}, emph{Contrib. Discrete Math.}, textbf{11}(1), (2016), 22nobreakdash--30; available online at url{ [DOI:10.11575/cdm.v11i1.62389}.]
27. F. Qi, {Eight interesting identities involving the exponential function, derivatives, and Stirling numbers of the second kind}, emph{arXiv}, (2012), available online at url{http://arxiv.org/abs/1202.2006}.
28. F. Qi, {Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind}, emph{Filomat}, textbf{28}(2), (2014), 319nobreakdash--327; available online at url{ https://doi.org/10.2298/FIL1402319O [DOI:10.2298/FIL1402319O}.]
29. F. Qi, {Three closed forms for convolved Fibonacci numbers}, emph{Results Nonlinear Anal.}, textbf{3}(4), (2020), 185nobreakdash--195. [DOI:10.31219/osf.io/9gqrb]
30. F. Qi, {Integral representations for multivariate logarithmic polynomials}, emph{J. Comput. Appl. Math.}, textbf{336}, (2018), 54nobreakdash--62; available online at url{ https://doi.org/10.1016/j.cam.2017.11.047 [DOI:10.1016/j.cam.2017.11.047}.]
31. F. Qi, {Notes on several families of differential equations related to the generating function for the Bernoulli numbers of the second kind}, emph{Turkish J. Anal. Number Theory}, textbf{6}(2), (2018), 40nobreakdash--42; available online at url{ https://doi.org/10.12691/tjant-6-2-1 [DOI:10.12691/tjant-6-2-1}.]
32. F. Qi, {On multivariate logarithmic polynomials and their properties}, emph{Indag. Math.}, textbf{29}(5), (2018), 1179nobreakdash--1192; available online at url{ https://doi.org/10.1016/j.indag.2018.04.002 [DOI:10.1016/j.indag.2018.04.002}.]
33. F. Qi, {Simple forms for coefficients in two families of ordinary differential equations}, emph{Glob. J. Math. Anal.}, textbf{6}(1), (2018), 7nobreakdash--9; available online at url{ https://doi.org/10.14419/gjma.v6i1.9778 [DOI:10.14419/gjma.v6i1.9778}.]
34. F. Qi, {Simplification of coefficients in two families of nonlinear ordinary differential equations}, emph{Turkish J. Anal. Number Theory}, textbf{6}(4), (2018), 116nobreakdash--119; available online at url{ https://doi.org/10.12691/tjant-6-4-2 [DOI:10.12691/tjant-6-4-2}.]
35. F. Qi, {Simplifying coefficients in a family of nonlinear ordinary differential equations}, emph{Acta Comment. Univ. Tartu. Math.}, textbf{22}(2), (2018), 293nobreakdash--297; available online at url{ https://doi.org/10.12697/ACUTM.2018.22.24 [DOI:10.12697/ACUTM.2018.22.24}.]
36. F. Qi, {Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Laguerre polynomials}, emph{Appl. Appl. Math.}, textbf{13}(2), (2018), 750nobreakdash--755.
37. F. Qi, {Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Mittag--Leffler polynomials}, emph{Korean J. Math.}, textbf{27}(2), (2019), 417nobreakdash--423; available online at url{ [DOI:10.11568/kjm.2019.27.2.417}.]
38. F. Qi, {Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials}, emph{Bol. Soc. Paran. Mat.}, textbf{39}(4), (2021), 73nobreakdash--82; available online at url{ https://doi.org/10.5269/bspm.41758 [DOI:10.5269/bspm.41758}.]
39. F. Qi, {Inverse of a triangular matrix and several identities of Catalan numbers}, emph{J. Hunan Instit. Sci. Techn. (Natur. Sci.)}, textbf{33}(2), (2020), 1nobreakdash--11 and~22; available online at url{ [DOI:10.16740/j.cnki.cn43-1421/n.2020.02.001}. (Chinese).]
40. F. Qi, V. v{C}erv{n}anov'a, Y. S. Semenov, {Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials}, emph{Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.}, textbf{81}(1), (2019), 123nobreakdash--136.
41. F. Qi, V. v{C}erv{n}anov'a, X.-T. Shi, B.-N. Guo, {Some properties of central Delannoy numbers}, emph{J. Comput. Appl. Math.}, textbf{328}, (2018), 101nobreakdash--115; available online at url{ https://doi.org/10.1016/j.cam.2017.07.013 [DOI:10.1016/j.cam.2017.07.013}.]
42. F. Qi, B.-N. Guo, {A diagonal recurrence relation for the Stirling numbers of the first kind}, emph{Appl. Anal. Discrete Math.}, textbf{12}(1), (2018), 153nobreakdash--165; available online at url{ https://doi.org/10.2298/AADM170405004Q [DOI:10.2298/AADM170405004Q}.]
43. F. Qi, B.-N. Guo, {An explicit formula for derivative polynomials of the tangent function}, emph{Acta Univ. Sapientiae Math.}, textbf{9}(2), (2017), 348nobreakdash--359; available online at url{ https://doi.org/10.1515/ausm-2017-0026 [DOI:10.1515/ausm-2017-0026}.]
44. F. Qi, B.-N. Guo, {Explicit formulas for derangement numbers and their generating function}, emph{J. Nonlinear Funct. Anal.}, textbf{2016}, Article ID~45, 10~pages.
45. F. Qi, B.-N. Guo, {Explicit formulas and recurrence relations for higher order Eulerian polynomials}, emph{Indag. Math.}, textbf{28}(4), (2017), 884nobreakdash--891; available online at url{ https://doi.org/10.1016/j.indag.2017.06.010 [DOI:10.1016/j.indag.2017.06.010}.]
46. F. Qi, B.-N. Guo, {Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials}, emph{Mediterr. J. Math.}, textbf{14}(3), (2017), Article~140, 14~pages; available online at url{ https://doi.org/10.1007/s00009-017-0939-1 [DOI:10.1007/s00009-017-0939-1}.]
47. F. Qi, B.-N. Guo, {Several explicit and recursive formulas for generalized Motzkin numbers}, emph{AIMS Math.}, textbf{5}(2), (2020), 1333nobreakdash--1345; available online at url{ https://doi.org/10.3934/math.2020091 [DOI:10.3934/math.2020091}.]
48. F. Qi, B.-N. Guo, {Some properties of the Hermite polynomials}, emph{Georgian Math. J.}, textbf{29}, (2022), in press; available online at url{ https://doi.org/10.1515/gmj-2020-2088 [DOI:10.1515/gmj-2020-2088}.]
49. F. Qi, B.-N. Guo, {Viewing some nonlinear ODEs and their solutions from the angle of derivative polynomials}, emph{ResearchGate Preprint}, (2016), available online at url{ https://doi.org/10.20944/preprints201610.0043.v1 [DOI:10.13140/RG.2.1.4593.1285}.]
50. F. Qi, B.-N. Guo, {Viewing some ordinary differential equations from the angle of derivative polynomials}, emph{MDPI Preprints}, textbf{2016}, 2016100043, 12~pages; available online at url{ https://doi.org/10.20944/preprints201610.0043.v1 [DOI:10.20944/preprints201610.0043.v1}.]
51. F. Qi, D. Lim, B.-N. Guo, {Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations}, emph{Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM}, textbf{113}(1), (2019), 1nobreakdash--9; available online at url{ https://doi.org/10.1007/s13398-017-0427-2 [DOI:10.1007/s13398-017-0427-2}.]
52. F. Qi, D. Lim, B.-N. Guo, {Some identities related to Eulerian polynomials and involving the Stirling numbers}, emph{Appl. Anal. Discrete Math.}, textbf{12}(2), (2018), 467nobreakdash--480; available online at url{ https://doi.org/10.2298/AADM171008014Q [DOI:10.2298/AADM171008014Q}.]
53. F. Qi, D. Lim, A.-Q. Liu, {Explicit expressions related to degenerate Cauchy numbers and their generating function}, In: Jagdev Singh, Devendra Kumar, Hemen Dutta, Dumitru Baleanu, and Sunil Dutt Purohit (eds), International workshop of Mathematical Modelling, Applied Analysis and Computation ICMMAAC 2018: emph{Mathematical Modelling, Applied Analysis and Computation} (Jaipur, India, July 6--8, 2018), Springer Proceedings in Mathematics & Statistics, vol.~272, Chapter~2, pp.~41nobreakdash--52, Springer, Singapore, September 2019; available online at url{ https://doi.org/10.1007/978-981-13-9608-3_2 [DOI:10.1007/978-981-13-9608-3_2}.]
54. F. Qi, D. Lim, Y.-H. Yao, {Notes on two kinds of special values for the Bell polynomials of the second kind}, emph{Miskolc Math. Notes}, textbf{20}(1), (2019), 465nobreakdash--474; available online at url{ https://doi.org/10.18514/MMN.2019.2635 [DOI:10.18514/MMN.2019.2635}.]
55. F. Qi, D.-W. Niu, B.-N. Guo, {Simplification of coefficients in differential equations associated with higher order Frobenius--Euler numbers}, emph{Tatra Mt. Math. Publ.}, textbf{72}, (2018), 67nobreakdash--76; available online at url{ https://doi.org/10.2478/tmmp-2018-0022 [DOI:10.2478/tmmp-2018-0022}.]
56. F. Qi, D.-W. Niu, B.-N. Guo, {Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind}, emph{AIMS Math.}, textbf{4}(2), (2019), 170nobreakdash--175; available online at url{ https://doi.org/10.3934/math.2019.2.170 [DOI:10.3934/Math.2019.2.170}.]
57. F. Qi, D.-W. Niu, B.-N. Guo, {Some identities for a sequence of unnamed polynomials connected with the Bell polynomials}, emph{Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Math. RACSAM}, textbf{113}(2), (2019), 557nobreakdash--567; available online at url{ https://doi.org/10.1007/s13398-018-0494-z [DOI:10.1007/s13398-018-0494-z}.]
58. F. Qi, D.-W. Niu, D. Lim, B.-N. Guo, {Closed formulas and identities for the Bell polynomials and falling factorials}, emph{Contrib. Discrete Math.}, textbf{15}(1), (2020), 163nobreakdash--174; available online at url{ [DOI:10.11575/cdm.v15i1.68111}.]
59. F. Qi, D.-W. Niu, D. Lim, B.-N. Guo, {Some properties and an application of multivariate exponential polynomials}, emph{Math. Methods Appl. Sci.}, textbf{43}(6), (2020), 2967nobreakdash--2983; available online at url{ https://doi.org/10.1002/mma.6095 [DOI:10.1002/mma.6095}.]
60. F. Qi, D.-W. Niu, D. Lim, Y.-H. Yao, {Special values of the Bell polynomials of the second kind for some sequences and functions}, emph{J. Math. Anal. Appl.}, textbf{491}(2), (2020), Article 124382, 31~pages; available online at url{ https://doi.org/10.1016/j.jmaa.2020.124382 [DOI:10.1016/j.jmaa.2020.124382}.]
61. F. Qi and Y.-H. Yao, {Simplifying coefficients in differential equations for generating function of Catalan numbers}, emph{J. Taibah Univ. Sci.}, textbf{13}(1), (2019), 947nobreakdash--950; available online at url{ https://doi.org/10.1080/16583655.2019.1663782 [DOI:10.1080/16583655.2019.1663782}.]
62. F. Qi, X.-T. Shi, F.-F. Liu, D. V. Kruchinin, {Several formulas for special values of the Bell polynomials of the second kind and applications}, emph{J. Appl. Anal. Comput.}, textbf{7}(3), (2017), 857nobreakdash--871; available online at url{ https://doi.org/10.11948/2017054 [DOI:10.11948/2017054}.]
63. F. Qi, A. Wan, {A closed-form expression of a remarkable sequence of polynomials originating from a family of entire functions connecting the Bessel and Lambert functions}, emph{S~ao Paulo J. Math. Sci.}, textbf{15}, (2021), in press.
64. F. Qi, J.-L. Wang, B.-N. Guo, {Notes on a family of inhomogeneous linear ordinary differential equations}, emph{Adv. Appl. Math. Sci.}, textbf{17}(4), (2018), 361nobreakdash--368.
65. F. Qi, J.-L. Wang, B.-N. Guo, {Simplifying and finding ordinary differential equations in terms of the Stirling numbers}, emph{Korean J. Math.}, textbf{26}(4), (2018), 675nobreakdash--681; available online at url{ [DOI:10.11568/kjm.2018.26.4.675}.]
66. F. Qi, J.-L. Wang, B.-N. Guo, {Simplifying differential equations concerning degenerate Bernoulli and Euler numbers}, emph{Trans. A. Razmadze Math. Inst.}, textbf{172}(1), (2018), 90nobreakdash--94; available online at url{ https://doi.org/10.1016/j.trmi.2017.08.001 [DOI:10.1016/j.trmi.2017.08.001}.]
67. F. Qi, J.-L. Zhao, {Some properties of the Bernoulli numbers of the second kind and their generating function}, emph{Bull. Korean Math. Soc.}, textbf{55}(6), (2018), 1909nobreakdash--1920; available online at url{ [DOI:10.4134/bkms.b180039}.]
68. F. Qi, M.-M. Zheng, {Explicit expressions for a family of the Bell polynomials and applications}, emph{Appl. Math. Comput.}, textbf{258}, (2015), 597nobreakdash--607; available online at url{ https://doi.org/10.1016/j.amc.2015.02.027 [DOI:10.1016/j.amc.2015.02.027}.]
69. F. Qi, Q. Zou, B.-N. Guo, {The inverse of a triangular matrix and several identities of the Catalan numbers}, emph{Appl. Anal. Discrete Math.}, textbf{13}(2), (2019), 518nobreakdash--541; available online at url{ https://doi.org/10.2298/AADM190118018Q [DOI:10.2298/AADM190118018Q}.]
70. S.-H. Rim, J. Jeong, J.-W. Park, {Some identities involving Euler polynomials arising from a non-linear differential equation}, emph{Kyungpook Math. J.}, textbf{53}(4), (2013), 553nobreakdash--563; available online at url{ https://doi.org/10.5666/KMJ.2013.53.4.553 [DOI:10.5666/KMJ.2013.53.4.553}.]
71. Y. Wang, M. C. Dau{g}l{i}, X.-M. Liu, F. Qi, {Explicit, determinantal, and recurrent formulas of generalized Eulerian polynomials}, emph{Axioms}, textbf{10}(1), (2021), Article~37, 9~pages; available online url{ https://doi.org/10.3390/axioms10010037 [DOI:10.3390/axioms10010037}.]
72. C.-F. Wei, B.-N. Guo, {Complete monotonicity of functions connected with the exponential function and derivatives}, emph{Abstr. Appl. Anal.}, textbf{2014}, (2014), Article ID~851213, 5~pages; available online at url{ https://doi.org/10.1155/2014/851213 [DOI:10.1155/2014/851213}.]
73. C. S. Withers, S. Nadarajah, {Moments and cumulants for the complex Wishart}, emph{J. Multivariate Anal.}, textbf{112}, (2012), 242nobreakdash--247. [DOI:10.1016/j.jmva.2012.05.002]
74. C. S. Withers, S. Nadarajah, {Multivariate Bell polynomials}, emph{Int. J. Comput. Math.}, textbf{87}(11), (2010), 2607nobreakdash--2611; available online at url{ https://doi.org/10.1080/00207160802702418 [DOI:10.1080/00207160802702418}.]
75. C. S. Withers, S. Nadarajah, {Multivariate Bell polynomials, series, chain rules, moments and inversion}, emph{Util. Math.}, textbf{83}, (2010), 133nobreakdash--140.
76. C. S. Withers, S. Nadarajah, {Multivariate Bell polynomials and their applications to powers and fractionary iterates of vector power series and to partial derivatives of composite vector functions}, emph{Appl. Math. Comput.}, textbf{206}(2), (2008), 997nobreakdash--1004; available online at url{ https://doi.org/10.1016/j.amc.2008.09.044 [DOI:10.1016/j.amc.2008.09.044}.]
77. A.-M. Xu, G.-D. Cen, {Closed formulas for computing higher-order derivatives of functions involving exponential functions}, emph{Appl. Math. Comput.}, textbf{270}, (2015), 136nobreakdash--141; available online at url{ https://doi.org/10.1016/j.amc.2015.08.051 [DOI:10.1016/j.amc.2015.08.051}.]
78. A.-M. Xu, Z.-D. Cen, {Some identities involving exponential functions and Stirling numbers and applications}, emph{J. Comput. Appl. Math.}, textbf{260}, (2014), 201nobreakdash--207; available online at url{ https://doi.org/10.1016/j.cam.2013.09.077 [DOI:10.1016/j.cam.2013.09.077}.]
79. J.-L. Zhao, J.-L. Wang, F. Qi, {Derivative polynomials of a function related to the Apostol--Euler and Frobenius--Euler numbers}, emph{J. Nonlinear Sci. Appl.}, textbf{10}(4), (2017), 1345nobreakdash--1349; available online at url{ https://doi.org/10.22436/jnsa.010.04.06 [DOI:10.22436/jnsa.010.04.06}.]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb