Volume 19, Issue 1 (4-2024)                   IJMSI 2024, 19(1): 175-192 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Patle P R, Patel D K. Darbo Type Best Proximity Point Results via R-function using Measure of Noncompactness with an Application. IJMSI 2024; 19 (1) :175-192
URL: http://ijmsi.ir/article-1-1750-en.html
The concept of measure of noncompactness (MNC) allows us to select an important class of mappings which are more general than compact operators. The proposed work exploits the axiomatic definitio of MNC and introduces the notion of relatively nonexpansive cyclic (noncyclic) SR-condensing operators along with the aid of SR-functions. The first phase of the paper concentrates on establishing the best proximity point (pair) theorems for such operators. The main results in this manuscript extend and generalize several state of art literature on Darbo type fixed point results. In the second phase, proposed results are applied to show the actuality of optimum solutions for system of second order differential equations with two initial conditions.
Type of Study: Research paper | Subject: General

1. A. Aghajani, M. Mursaleen, A. S. Haghighi, Fixed Point Theorems for Meir-Keeler Condensing Operators via Measure of Noncompactness, Acta Mathematica Scientia, 35(3), (2015), 552-566. [DOI:10.1016/S0252-9602(15)30003-5]
2. H. Argoubi, B. Samet, C. Vetro, Nonlinear Contractions Involving Simulation Functions in a Metric Space with a Partial Order, Journal of Nonlinear Science and Applications, 8(6), (2015), 1082-1094. [DOI:10.22436/jnsa.008.06.18]
3. J. Bana's, On Measures of Noncompactness in Banach Spaces, Commentationes Mathematicae Universitatis Carolinae, 21(1), (1980), 131-143.
4. J. Bana's, K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture notes in Pure and Appl Math., 60, New York, Dekker, 1980.
5. J. Bana's, M. Jleli, M. Mursaleen, B. Samet, C. Vetro (Editors), Advanaces in Nonlinear Analysis via the Concept of Measure of Noncompactness, Springer, Singapore, 2017. [DOI:10.1007/978-981-10-3722-1]
6. M. I. Berenguer, D. G'amez, A. J. L'opez Linares, Solution of Systems of Integrodifferential Equations Using Numerical Treatment of Fixed Point, Journal of Computational and Applied Mathematics, 315, (2017), 343-353. [DOI:10.1016/j.cam.2016.11.010]
7. J. Chen, X. Tang, Generalizations of Darbo's Fixed Point Theorem via Simulation Functions with Application to Functional Integral Equations, Journal of Computational and Applied Mathematics, 296, (2016), 564-575. [DOI:10.1016/j.cam.2015.10.012]
8. G. Darbo, Punti Uniti in Transformazioni a Codominio non Compatto (Italian), Rendiconti del Seminario Matematico della Universita di Padova, 24, (1955), 84-92.
9. A. A. Eldred, W. A. Kirk, P. Veeramani, Proximal Normal Strucuture and Relatively Nonexpansive Mappings, Studia Mathematica, 171, (2005), 283-293. [DOI:10.4064/sm171-3-5]
10. M. Gabeleh, A Characterization of Proximal Normal Structures via Proximal Diametral Sequences, Journal of Fixed Point Theory and Applications, 19(4), (2017), 2909-2925. [DOI:10.1007/s11784-017-0460-y]
11. M. Gabeleh, J. Markin, Optimum Solutions for a System of Differential Equations via Measure of Noncompactness, Indagationes Mathematicae, 29(3), (2018), 895-906. [DOI:10.1016/j.indag.2018.01.008]
12. M. Gabeleh, C. Vetro, A New Extension of Darbo's Fixed Point Theorem Using Relatively Meir-Keeler Condensing Operators, Bulletin of the Australian Mathematical Society, 98(2), (2018), 286-297. [DOI:10.1017/S000497271800045X]
13. L. Gavrutta, P. Gavrutta, F. Khojasteh, Two Classes of Meir-Keeler Contractions, arXiv:1405.5034 [math.FA].
14. F. Khojasteh, S. Shukla, S. Radenovic, A New Approach to the Study of Fixed Point Theorems via Simulation Functions, Filomat, 29(6), (2015), 1189-1194. [DOI:10.2298/FIL1506189K]
15. T. C. Lim, On Characterization of Meir-Keeler Contractive Maps, Nonlinear Analysis, 46, (2001), 113-120. [DOI:10.1016/S0362-546X(99)00448-4]
16. A. Meir, E. Keeler, A Theorem on Contraction Mappings, Journal of Mathematical Analysis and Applications, 28(2), (1969), 326-329. [DOI:10.1016/0022-247X(69)90031-6]
17. H. K. Nashine, R. Arab, P. R. Patle, D. K. Patel, Best Proximity Point Results via Measure of Noncompactness and Application, Numerical Functional Analysis and Optimization, 2021. DOI : 10.1080/01630563.2021.1884570. [DOI:10.1080/01630563.2021.1884570]
18. P. R. Patle, D. K. Patel, Existence of Solutions of Implicit Integral Equations via Zcontractions, Carpathian Journal of Mathematics, 34(2), (2018), 239-246. [DOI:10.37193/CJM.2018.02.12]
19. P. R. Patle, D. K. Patel, R. Arab, Darbo Type Best Proximity Point Results via Simulation Function with Application, Affrika Mathematika, 31, (2020), 833-845. [DOI:10.1007/s13370-020-00764-7]
20. A. F. Rold'an L'opez-de-Hierro, B. Samet, φ-admissibility Results via Extended Simulation Functions, Journal of Fixed Point Theory and Applications, 19(3), (2017), 1997-2015. [DOI:10.1007/s11784-016-0385-x]
21. A. F. Rold'an L'opez-de-Hierro, N. Sahzad, New Fixed Point Theorems under Rcontractions, Fixed Point Theory and Applications, 2015, (2015), Article ID 98. [DOI:10.1186/s13663-015-0345-y]
22. B. N. Sadovskii, Limit-compact and Condensing Operators, Russian Mathematical Surveys, 27(1), (1972), 85-155. [DOI:10.1070/RM1972v027n01ABEH001364]
23. F. Zarinfar, F. Khojasteh, M. Vazepour, Generalizations of Darbo Fixed Point Theorems via SRµ-contractions with Applications to Integral Equations, Filomat, 32(1), (2018), 55-69. [DOI:10.2298/FIL1801055Z]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb