Volume 19, Issue 1 (4-2024)                   IJMSI 2024, 19(1): 71-83 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tabassum S, Fatma R. A Study of Metric Spaces of Interval Numbers in n-Sequences Defined by Orlicz Function. IJMSI 2024; 19 (1) :71-83
URL: http://ijmsi.ir/article-1-1717-en.html
In recent years, a variety of work has been done in the field of single, double and triple sequences. Study on n-tuple sequence is new in this field. The main interest of this paper is to explore the idea of n-tuple sequences x = (xi_1,i_2,...,i_n) in metric spaces. We introduce the concept of n-sequence space of interval number and discussed its arithmetic properties. Furthermore, we combined the concept of Orlicz function, statistical convergence, interval number and n-sequence to construct some new nsequence spaces and discussed their properties. Some suitable examples for these spaces have been constructed.
Type of Study: Research paper | Subject: General

1. N. Ahmad, S. K. Sharma, S. A. Mohiuddine, Generalized Entire Sequence Spaces Defined by Fractional Difference Operator and Sequence of Modulus Functions, Journal of Applied And Engineering Mathematics, 3(2), (2017), 134-146.
2. Z. Birnbaum, Z. W. Orlicz, Uber Die Verallgemeinerung Des Begriffes Der Zueinander Konjugierten Potenzen, Studia Mathematica, 3(1), (1931), 1-67. [DOI:10.4064/sm-3-1-1-67]
3. P. S. Dwyer, Computation with Approximate Numbers, Linear Computations, 1951, (1951), 11-34.
4. O. H. H. Edely, M. Mursaleen, A. Khan, Approximation for Periodic Functions Via Weighted Statistical Convergence, Applied Mathematics and Computation, 219(15), (2013), 8231-8236. [DOI:10.1016/j.amc.2013.02.024]
5. A. Esi, Some Double Sequence Spaces of Interval Numbers Defined by Orlicz Function, Journal of the Egyptian Mathematical Society, 22(3), (2014), 424-427. [DOI:10.1016/j.joems.2013.12.004]
6. H. Fast, Sur La Convergence Statistique, Colloquium Mathematicae, 2(3), (1951), 241-244. [DOI:10.4064/cm-2-3-4-241-244]
7. A. Khan, V. Sharma, Statistical Approximation by (p, q)-Analogue of Bernstein-Stancu Operators, ArXiv Preprint ArXiv:1604.05339, 16(4), (2016).
8. V. A. Khan, Q. M. Lohani, Statistically Pre-Cauchy Sequences and Orlicz Functions, Southeast Asian Bulletin of Mathematics, 31(6), (2007), 1107-1112.
9. S. A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical Convergence of Double Sequences in Locally Solid Riesz Spaces, Abstract and Applied Analysis, 2012, (2012), Art. ID 719729, 9 pp. [DOI:10.1155/2012/719729]
10. J. Lindenstrauss, L. Tzafriri, On Orlicz Sequence Spaces, Israel Journal of Mathematics, 10(3), (1971), 379-390. [DOI:10.1007/BF02771656]
11. S. A. Mohiuddine, B. Hazarika, Some Classes of Ideal Convergent Sequences and Generalized Difference Matrix Operator, Filomat, 31(6), (2017), 1827-1834. [DOI:10.2298/FIL1706827M]
12. R. E. Moore, Automatic Error Analysis in Digital Computation, Lockheed Missiles and Space Co, 1959.
13. R. E. Moore, C. T. Yang, Interval Analysis, Lockheed Missiles and Space Co, 1959.
14. F. M'oricz, Statistical Convergence of Multiple Sequences, Archiv Der Mathematik, 81(1), (2003), 82-89. [DOI:10.1007/s00013-003-0506-9]
15. M. Mursaleen, M. A. Khan, Qamaruddin, Difference Sequence Spaces Defined by Orlicz Function. Demonstratio Mathematica, 32(1), (1999), 145-150. [DOI:10.1515/dema-1999-0115]
16. S. A. Mohiuddine, K. Raj, M. Mursaleen, A. Alotaibi, Linear Isomorphic Spaces of Fractional-Order Difference Operators, Alexandria Engineering Journal, 60(1), (2021), 1155-1164. [DOI:10.1016/j.aej.2020.10.039]
17. S. D. Parashar, B. Choudhary, Sequence Spaces Defined by Orlicz Functions, Indian Journal of Pure and Applied Mathematics, 25, (1994), 419-428.
18. W. L. C. Sargent, Some Sequence Spaces Related to the lp Spaces, Journal of the London Mathematical Society, 1(2), (1960), 161-171. [DOI:10.1112/jlms/s1-35.2.161]
19. M. Sengonul, A. Eryılmaz, On the Sequence Spaces of Interval Numbers, Thai Journal of Mathematics, 8(3), (2012), 503-510.
20. I. J. Schoenberg, The Integrability of Certain Functions and Related Summability Methods, The American Mathematical Monthly, 66(5), (1959), 361-375. [DOI:10.2307/2308747]
21. H. Steinhaus, Sur la Convergence Ordinaire Et La Convergence Asymptotique, Colloquium Mathematicae, 2(1), (1951), 73-74.
22. B. C. Tripathy, R. Goswami, Vector Valued Multiple Sequence Spaces Defined by Orlicz Function, Boletim Da Sociedade Paranaense De Matematica, 33(1), (2015), 67-79. [DOI:10.5269/bspm.v33i1.21602]
23. T. Yaying, B. Hazarika, S. A. Mohiuddine, On Difference Sequence Spaces of FractionalOrder Involving Padovan Numbers, Asian-European Journal of Mathematics, 14(6), (2012), 215-225.
24. T. Yaying, B. Hazarika, S. A. Mohiuddine, M. Mursaleen, K. J. Ansari, Sequence Spaces Derived by the Triple Band Generalized Fibonacci Difference Operator, Advances in Difference Equations, 2020(1), (2020), Art. ID 639. [DOI:10.1186/s13662-020-03099-6]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb