Let R be a commutative ring with $Z(R)$ its set of zero-divisors. In this paper, we study the total graph of $R$, denoted by $T(Gamma(R))$. It is the (undirected) graph with all elements of R as vertices, and for distinct $x, yin R$, the vertices $x$ and $y$ are adjacent if and only if $x + yinZ(R)$. We study the chromatic number and edge connectivity of this graph.
بازنشر اطلاعات | |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |