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ABSTRACT. We construct one—step iterative process for an a— nonexpan-
sive mapping and a mapping satisfying condition (C) in the framework of
a convex metric space. We study A—convergence and strong convergence
of the iterative process to the common fixed point of the mappings. Our
results are new and valid in hyperbolic spaces, CAT(0) spaces, Banach

spaces and Hilbert spaces, simultaneously.
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1. INTRODUCTION

Let K be a nonempty subset of a metric space X and T": K — K be a
mapping. Denote by F'(T), the set of fixed points of T. We say that T is:

(1) nonexpansive if d(Tz,Ty) < d(z,y) for z,y € K

(2) quasi-nonexpansive if d(Tz,y) < d(z,y) for v € K,y € F(T)
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(3) said to satisfy condition(C) if 3d(z,Tz) < d(z,y) implies d(Tz, Ty) <
d(z,y) for z,y € K

(4) a—nonexpansive if d(Tz, Ty)? < ad(Tz,y)*+ad(z, Ty)?*+(1 — 2a) d(x, y)?

for z,y € K and for some o < 1.

In 2008, Suzuki[15] proposed the condition (C) and showed that it is weaker
than nonexpansiveness but stronger than quasi-nonexpansiveness.

Aoyama and Kohsaka|[2] introduced the class of a—nonexpansive mappings
in Banach spaces and concluded the following facts:

(i) 0— nonexpansive mapping is nonexpansive

(ii) %—nonexpamsive mapping is nonspreading

(iii) %—nonexpansive mapping is hybrid mapping

The following example shows that a—nonexpansive mapping and a map-
ping satisfying condition(C) are two different generalizations of nonexpansive
mappings with a common fixed point.

ExXAMPLE 1.1. Take X =R, K =[0,3] and T, S : K — K by

T — 0 if ©x+#3
1 ifz=3

and

G Jo it a#3
2 ifz=3.

Here we see that T satisfies condition(C) and S is ;—nonexpansive with 0 as
their common fixed point. Also, T is not an a—nonexpansive and S does not
satisfy condition(C). Moreover, both S and T are discontinuous mappings and
therefore are not nonexpansive.

Takahashi and Tamura[17] studied the weak convergence of two nonexpan-
sive mappings 77 and T, in the setting of Banach space using the scheme

21 €K, Tpy1 = (1 —an)xn + a1y {BnToxn + (1 — Bn) zn} (1.1)

where 0 < a < ay,, B < b< 1.

Dhompongsa et al. [5] used the scheme(1.1) to prove the weak convergence
theorem of a nonspreading mapping and a mapping satisfying condition(C)
in the framework of Hilbert spaces(see also [3],[10],[13]). Wattanawitoon and
Khamlae[18] also considered the scheme(1.1) for proving the convergence theo-
rem for an a—nonexpansive mapping and a mapping satisfying the condition(C)
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in Hilbert spaces. The proof of their main result depends on the following iden-
tity in Hilbert spaces

2 2 2
lz+ylI” = [lzI” + llyll” + 2 (z,v) - (1.2)

A nonlinear framework for the iterative construction of fixed points of cer-
tain classes of nonlinear mappings is a metric space embedded with a convex
structure.

Takahashi[16] introduced a convex structure W : X? x I — X on a metric
space X satisfying

(W1):  d(u, W (x,y,\)) < Ad(u,z) + (1 — N)d(u,y)

for all z,y,u € X and A € I =10,1].

A metric space X with a convex structure W is known as a convex metric
space and is also denoted by X.

In general, convex structure W is not continuous. However, if the inequality

d(W(xa Y, )‘)a W((E, Z, )‘)) < (1 - >‘) d(Z, w)

holds in the convex metric space X, then it becomes continuous.

Kohlenbach [11] enriched the concept of Takahashi convex metric space as
”hyperbolic space” by including the following additional conditions in the def-
inition of a convex metric space.

(WQ) : d(W(l’,y, )\1)7W(:c,y, )‘2)) = |)‘1 —Ag‘d(if,y)

(W3): W(x,y,\) =W(y,z,1—XN)

(W4) : d(W(z,2,\), W(y,w,\)) < Xd(z,y) + (1 = \)d(z,w)
for all x,y,z,w € X and A\, A, Ao € 1.

A nonempty subset K of X is convex if and only if W(x,y,\) € K for all
z,y € K and A € I.

A convex metric space X is uniformly convex [14] if for all u,z,y € X, r >0
and € € (0,2], there exists a § > 0 such that d (W (z,y,3),u) < (1 —8)r <,
whenever d(z,u) < r,d(y,u) <r and d(z,y) > re.

Let {z,} be a bounded sequence in X. We define r(., {z,}) on X by

r(z,{z,}) = limsupd(z,z,), =€ X.
n—oo

The asymptotic radius r g ({z, }) of {z,, } with respect to K C X is defined as

ric({a)) = inf 7, {2.))
and the asymptotic center Ax ({x,}) of {z,} with respect to K is the set
Ax({zn}) ={y € K:r(y,{zn}) = re({za})} .

A sequence {z,} in (X, d) (a) is Fejér monotone with respect to a subset K
of X if d(xpy1,2) < d(zp,x) for all x € K (b) A—converges to x € X if x is
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the unique asymptotic center for every subsequence {u, } of {z,}. In this case,
we write A — lim,, z,, = =.

In this paper, we are interested to approximate common fixed point of an
a—nonexpansive mapping and a mapping satisfying condition(C) in the convex
metric space. Due to lack of the identity(1.2) in the convex metric space, we are
unable to approximate common fixed point of the mappings through convex
metric version of scheme(1.1). Therefore, we propose a one—step iterative
scheme to approximate common fixed point of an a—nonexpansive mapping
and a mapping satisfying condition(C) in the setting of a convex metric space.
Our scheme is as under

1 €K, o1 =W <Txn,W (Smn,mn, 1?2) ,an> (1.3)

where 0 < a < ayy, Bp <b<1land o, + 8, < 1.
When S =T in (1.3), it reduces to Mann iterative scheme [12]
Tpg1 = W (Txp, Ty, )
In a normed space setting, (1.3) becomes one—step iterative scheme[19]
Tpt1 = @ Txy + BpSzy + (1 — ayy — Br) Tn

where 0 < a < ay,, B, <b<1land a, + 8, <1.
Here, we state some results which will be needed in the main section.

Lemma 1.2. [15] Let T be a self-mapping on a subset K of a metric space X.
If T satisfies condition(C), then

d(z,Ty) <3d(Tz,z)+d(z,y)
holds for all x,y € K.

Lemma 1.3. [4] Let K be a nonempty closed subset of a complete metric space
(X,d) and {x,} a Fejér monotone sequence with respect to K. Then {x,} con-
verges to some point p € K if and only if lim,, o d(z,, K) = 0.

Lemma 1.4. [6] Let K be a nonempty, closed and convex subset of a complete
and uniformly convex metric space X. Then every bounded sequence {x,} in
X has a unique asymptotic center with respect to K.

Lemma 1.5. [7] Let X be a uniformly convexr metric space with continuous
convex structure W. Let x € X and {a,} be a sequence in [b,c] for some b,c €
(0,1). If {un} and {v,} are sequences in X such that limsup,,_, . d(un,z) <
r, limsup,,_ . d(vn,z) < rand lim, oo d(W (Upn,Vn,a,),2) = 7 for some
r >0, then lim,,_, o d(ty, v,) = 0.
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Lemma 1.6. [8] Let K be a nonempty, closed and convex subset of a metric

space X and T be an a— nonexpansive mapping on K. For any x,y € K, the
following assertions hold:

(i) If0 < o < 1, then d (z, Ty)* < ﬁ—gd(x,Tx)Q—F% {ad (z,y) +d(Tx,Ty)} d (z, Tx)+

d(z,y)",
(ii) If « < 0,then d (z, Ty)> < d (x, T;c)%—% {d(Txz,Ty) — ad(Tz,y)} d(x, Tz)+

d(z,y)”.
From now onwards, for an a—nonezpansive mapping T on K and S a map-
ping on K satisfying condition(C), we set F' = F(S) N F(T).
2. CONVERGENCE THEOREMS

We start with the following lemma.

Lemma 2.1. Let K be a subset of a metric space X. Let T : K — K be
an a—nonezxpansive sel-mapping for some o < 1 and S a self-mapping on K
satisfying condition(C) with F # ¢. Then T and S are quasi-nonezpansive and
F is closed.
Proof. Let x € K and z € F. Consider

d(Tx,z)2 = d(Tz,Tz)?

< ad(Tz,2)? 4 ad(z, T2)* + (1 — 2a) d(z, 2)*

24 ad(z, 2)? + (1 —2a)d(x, 2)?
2

= «ad(Tx,z2)
= ad(Tz,2)* + (1 — a)d(z, 2)2.
That is,
d(Tz,z) < d(z,2)
and 1
§d (2,52) =0
gives that

d(Sz, z) < d(z, z).
Therefore, both S and T are quasi-nonexpansive.

Let {z,} be a sequence in F such that z, — z. We claim that z € F.
Since

d(Sz,2zn) <d(z,2,) = 0and d(Tz,2,) <d(z,2,) — 0,
therefore Sz = z = T'z, proving that F' is closed. O

Lemma 2.2. Let K be a nonempty, closed and convex subset of a convex
metric space X. LetT be an a—mnonexpansive self-mapping on K and S a self-
mapping on K satisfying condition(C) such that F' # ¢. Then for the sequence
{zn} in (1.3), we have the followings:

(i) {zn} is a Fejér monotone sequence with respect to F'
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(i) limy, o0 d(zn,p) exists for each p € F
(#1) limy, o0 d(zy,, F) exists.

Proof. With the help of (W1) and the scheme(1.3), for any p € F, we have

d<xn+lap) = d (W (T$n7 w <S£I)n,l‘n, 167;) ,Oén> 7p)

< apd(Txn,p)+ (1 —ap)d <W <S:L'n,(£n, lfna) ,p)

< (1—ay) [1 fna d(Szn,p) + (1 - - fna )d(xn,p)]
+and (2, p)

< (1-ap) [1 fa d(zn,p) + (1 1 _’B"a )d(xn,p)]
+and (2, p)

= apd (337L;p) + Bnd (xmp) + (1 — Qp — /Bn) d(xmp)

= d(zn,p).

That is,
d(zn+1,p) < d(2n,p). (2.1)

Immediately, (2.1) gives that (i): {z,} is a Fejér monotone sequence with re-
spect to F and (ii): lim, o d(zn,p) exists for each p € F.

Finally inf, e p d (41, p) < inf,er d (2, p) provides that (iii): lim, o d(zp, F)
exists. 0

Lemma 2.3. Let K be a nonempty, closed and convex subset of a complete and
uniformly convex metric space X with continuous convex structure W. Let T be
an a—nonexpansive self-mapping on K and S a self-mapping on K satisfying
condition(C) such that F # ¢. If {z,} is any bounded sequence in K with

A({zn}) = {2} and
lim d(zp,Sz,) =0= lim d(z,,Tz,),

n—oo n—oo

then z € F.

Proof. Let A({z,}) = {z}. We show that z € F.
By Lemma 1.2, we have

d (zn,Sz) < 3d(zn,Szn) +d(2n, 2)
which further implies that

limsupd (z,,Sz) < 3limsupd(zn,Sz,)+ limsupd (zn, 2)
n—roo n—oo n—roo
= limsupd (zn, 2) .
n— oo

By the uniqueness of asymptotic centers (Lemma 1.4), we have that Sz = z.
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Next, we show that Tz = z.

Since {z,} is bounded and lim,, o d (2, Tz,) = 0, therefore {T'z,} is also
bounded. Set M = sup,,;~1 {d (zn,2),d(Tzn,2),d(Tz,,T2)} < 0.

Applying Lemma 1.6 fi)—(ii) for 0 < a <1 and a < 0, respectively, we have
that

1
d(zn,Tz)* < 1—1_7Zd(zn,Tzn)2 t1 5 (ad (zy,2) + d(Tzn,T2))d (20, Tzy)
—i—d(zn,z)2
< 1+ ad(zn,Tzn)Q + Md(zn,Tzn) +d (zn, 2)2
-« 11—«
and
2
d(zanZ)z S d(znaTzn)Z + m (d (TZTHTZ) —ad (Tznv Z)) d (ZnaTZn)
+d (zmz)2

< d(2n,Tzn)® + 2Md (20, Tzn) + d (20, 2)°

Taking limsup,,_, ., on both sides in the above two inequalities and using the
fact that lim, o d (2n, T2,) = 0, we have that
limsup d (z,, Tz)* < limsupd (zn, 2)> .
n—oo n— oo

By the uniqueness of asymptotic centers (Lemma 1.4), Tz = z. (I

Lemma 2.4. Let K be a nonempty, closed and convex subset of a uniformly

convex metric space X with continuous convex structure W. Let T be an a—nonexpansive
self-mapping on K and S be a self-mapping on K satisfying condition(C) such

that F' # ¢. Then for the sequence {x,} in (1.8), we have

lim d(zy,Sz,) =0= lim d(z,,Tx,).

n— oo n—oo

Proof. 1t follows from Lemma 2.2 that lim,,—, d(z,,p) exists for p € F. Set
lim,, 00 d(zp, p) = c.
For ¢ > 0,limy, o0 d(2n+1,p) = ¢ can be expressed as

lim d (W (Txn, W (an,xn, ﬁ") ,ozn> ,p) =c. (2.2)
n— 00 1—a,

As T is an a—nonexpansive and p € F (T'), therefore

limsup d(Tz,,p) < c. (2.3)
n—roo
Since S satisfies condition(C) and p € F' (S) ,we have
B B
—— <
d(W (Smn,xm T )] < 1iand(5mn,p)
B
+(1- 122 ) dann
< d(zn,p).
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That is,

limsupd <W <Smmxn, T Bn > ,p> < ¢ (2.4)
“a,

n—0o0

In the light of (2.2)-(2.4), we use Lemma 1.5 for the values x = p,r = ¢,a,, =

Ay Uy = Ty, v, =W (Szn,xn, 1?—2”) and get

lim d <Txn, W <an,xn, Bn)) =0. (2.5)
n— o0 1—a,

With the help of (2.5) and the the inequality

d(xTH'lvTxn) S d <W (Tz7laW <S'T7laxn7 1 6” ) 7an) 7Txﬂ>
—
< (1—ap)d (W (an,xn, ﬁn) ,T:cn)
1— o
<

Bn
(1—-b)d (W <an,$m 1_an> 7T93n> )

we get that

lim d(xp11,Tx,) = 0. (2.6)

n— oo

By liminf, .., on both sides in the following inequality

d(I7z+17p) < d($n+1;Txn) +d <T33n7 w (eruzna 571))

11—«
+d (W (S:cn,a:n, _Pn_ ) ,p) ;
1—a,

¢ <liminfd (W (S’xn,xn, 1@;) ,p) ) (2.7)
an

we have

n—oo

The combined effect of (2.4) and (2.7) provides that

nan;Od <W (Szn,xn, 1?767) ,p> =c. (2.8)

Again by Lemma 1.5 for values z = p,r = ¢,a,, = 1fgn,un = STy, Uy = Ty,
we get

nl;rrgo d(xy, Sxy) = 0. (2.9)
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Now with the help of (2.5), (2.6), (2.9) and the inequality

d(@ns1,o) < dl@nss, Ton) +d <T”C’“W (S“f 7 ))

+d (W (Smn,xn, lfnﬁn> 7xn)

< d(zpy1,Txn) +d <T3:n, W (an,xn, &))
an
1
+ ( T 5n> d(xp, Sz,)
<

d(xps1,Txy) +d <Txn,W (S:cn,xn, @ >)

1_ﬂn
1—2a
—|—< 175 ) d(zy, Sty,),

lim d(z,41,2,) =0. (2.10)

n— oo

we get that

Taking lim sup,,_, ., on both sides in the following inequality
d(xpn, Try) < d(Tp, Tpnt1) + d (Xpg1, Ty)
and using (2.6) and (2.10), we get

lim d(xyn,Tx,) = 0.

n—o0
Therefore

lim d(xyn,Sz,) =0= lim d(z,, Tx,).

n—oo n— oo

Here is our A—convergence theorem.

Theorem 2.5. Let K be a nonempty, closed and convexr subset of a complete
and uniformly convex metric space X with continuous convex structure W. Let
T be an a—nonexpansive self-mapping on K, S a self-mapping on K satisfying
condition(C) and {x,} given in (1.3). If F # ¢, then A —lim, x,, = x € F.

Proof. Lemma 2.2 provides that {z,} is bounded and therefore Lemma 1.4
appeals that {z,} has a unique asymptotic centre, that is, A({z,}) = {z}.
For any subsequence {u,} of {z,}, Lemma 1.4 gives that A({u,}) = {u} and
Lemma 2.4 provides that

lim d(up, Tu,) =0= lim d(u,, Suy,).

n—oo n—oo
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Then by Lemma 2.3, we conclude that v € F. We claim that = u. If not,
then by the uniqueness of asymptotic centres, we have
limsup d(u,,u) < limsupd(u,,z
n—oo n—oo
< limsupd(zy,,z
n—oo
(
n—oo
(

)
)
< limsupd(z,,u)
)

= limsupd(u,,u),
n—oo

a contradiction.
Therefore, A({uy, : {u,} is any subsequence of {z,,}}) = {«}. This proves that
A —lim, z, =z € F. O

A self-mapping T : K — K is semi-compact if for any bounded sequence
{zn} in K with d(z,,Tz,) — 0, we must have that {z,} has a convergent
subsequence in K.

Two self-mappings S and T" on K with a nonempty subset F' of K are said
to satisfy condition (AV) if there exists a nondecreasing function f on [0, 00)
with f(0) =0 and f(¢) > 0 for all ¢ € (0, 00) such that

% (d (2, T2) + d (2, Sz)] > f(d(z, F)) for all z € K.

Using Lemma 2.2 and Lemma 2.4, we obtain the following strong conver-
gence theorems.

Theorem 2.6. Let K be a nonempty, closed and convex subset of a complete
and uniformly conver metric space X with continuous convez structure W. Let
T be an a—nonexpansive self-mapping on K, S a self-mapping on K satisfying
condition(C) and {x,} given in (1.8). If F # ¢ and either S or T is semi-
compact, then the sequence {x,} converges strongly to an element of F.

Proof. Suppose that T is semi-compact. Since {2, } is bounded and d (x,,, Sz,) —
0, there exists a subsequence {z,,,} of {x,} such that z,;, — ¢ € K and

lim d(zy,,Stn;) =0= lim d(z,;,Txy;).
j—oo Jj—o0

Using © = x,,, and y = ¢ in Lemma 1.2 and Lemma 1.6, we get that ¢ € F.
Therefore z,, — ¢ € F as lim,_, d(x,,p) exists for every p € F (Lemma
2.2). O

Theorem 2.7. Let K be a nonempty, closed and convexr subset of a complete
and uniformly convex metric space X with continuous convex structure W. Let
T be an a—nonexpansive self-mapping on K, S a self-mapping on K satisfying
condition(C) and {x,,} given in (1.3). If F # ¢ and S and T satisfy condition
(AV), then the sequence {x,} converges strongly to an element of F.
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Proof. By Lemma 2.1, F' is closed. Using condition (AV) and Lemma 2.4,
we have that lim,,_,o d(x,, F') = 0. Finally by Lemma 1.3, z,, — p for some
p € F. |

The followings are corollaries to our Theorems 2.5-2.7 and yet they are new
in the literature.

Corollary 2.8. Let K be a nonempty, closed and convex subset of a complete
and uniformly convex metric space X with continuous convex structure W. Let
T be a nonspreading(or hybrid) self-mapping on K,S a self-mapping on K
satisfying condition(C) and {x,} given in (1.3). If F # ¢, then A —lim,, z,, =
z e F.

Proof. Choose @ = % in Theorem 2.5 for a nonspreading mapping (« = % in

the case of a hybrid mapping) to get the required result. (I
Corollary 2.9. Let K be a nonempty, closed and convexr subset of a complete
and uniformly convexr metric space X with continuous convex structure W. Let
T be a nonspreading(or hybrid) self-mapping on K, S a mapping on K satis-
fying condition(C) and {x,} given in (1.3). If either S or T is semi-compact,
then the sequence {x,} converges strongly to an element of F.

5 % in
the case of a hybrid self-mapping) to get the required result. O

Proof. Set o = L in Theorem 2.6 for a nonspreading self-mapping (o =

Corollary 2.10. Let K be a nonempty, closed and convez subset of a complete
and uniformly convexr metric space X with continuous convex structure W. Let
T be a nonspreading(or hybrid) self-mapping on K, S a mapping on K satisfy-
ing condition(C) and {x,} given in (1.8). If S and T satisfy condition (AV),
then the sequence {x,} converges strongly to an element of F.

in

Proof. Take a = % in Theorem 2.7 for a nonspreading self-mapping (o =

the case of a hybrid self-mapping) to get the required result. O
Remark 2.11. Observe that

(i) Hyperbolic spaces, C AT (0) spaces, Banach spaces and Hilbert spaces are
convex metric spaces, therefore our results also hold in Hyperbolic spaces,

(M

C AT (0) spaces, Banach spaces and Hilbert spaces, simultaneously.

(ii) Every nonexpansive self-mapping is a—nonexpansive and satisfy condi-
tion(C) also, therefore our theorems generalize the corresponding ones in [1, 7,
9, 10] etc.

(iil) Results of this paper are analogues of Theorem 3.1-Theorem 3.3 in [18].
(iv) A nonexpansive mapping is always continuous but an a—nonexpansive
mapping and a mapping satisfying condition(C) may or may not be continu-
ous. Therefore our results also hold for discontinuous mappings.

(v) The approximation of common fixed point of an a— nonexpansive self-
mappingT on K and a self-mapping S on K satisfying condition(C) via Ishikawa
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iterative scheme: z1 € K, xpy1 = W (T (W (Sxpn, Tn, Br)) s Tn, ) requires the
extensive use of identity (1.2) (see [18]) while our scheme(1.3) does not. There-
fore our scheme is better than Ishikawa iterative scheme. Also our scheme is
computationally simpler than Ishikawa iterative scheme.

Remark 2.12. The essentials of hypotheses in our theorems are natural in view
of the following observations: Take X = R, K = [0,3],7,S : K — K as
in Example 1.1.Then F(S) N F(T) = {0} .If a,, = %t and B, = %L, then
0< ap,Bn <1.

Open Problem: Can we approximate common fixed point of an a«—nonexpansive

mapping and a mapping satisfying condition(C) via scheme(1.1) under the hy-
pothesis of Theorem 2.57
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