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Abstract. Arenas et al. [1] introduced the notion of λ-closed sets as

a generalization of locally closed sets. In this paper, we introduce the

notions of λ-locally closed sets, Λλ-closed sets and λg-closed sets and

obtain some decompositions of closed sets and continuity in topological

spaces.
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1. Introduction and Preliminaries

The study of locally closed sets was introduced by Bourbaki [3] in 1966 then

the authors Ganster and Reilly [6] have studied it extensively. A subset A of

a topological space X is called locally closed if A = U ∩ F , where U is open

and F is closed. It is interesting that a locally closed set is a generalization

of both open sets and closed sets. The generalization has also been discussed

in completely regular Hausdorff spaces [5] and has also been done on algebra

with topology in [12] and [2].
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In this paper we consider a new type of sets in the topological space which

is called λ-open sets. A set is said to be λ-open if it contains a nonempty open

set. This idea is not a new idea. In literature, semi-open sets [7] and α-sets [11]

are examples of that type of sets although preopen sets [10] is not an example

of it. Because: let R be the usual real line and Q the rational numbers. Then

Cl(Q) = R and Q ⊆ Int(Cl(Q)) = R (where ‘Cl’ and ‘Int’ denote the closure

and interior operators, respectively). But Q does not contain nonempty open

set. However Dontechev [4] has introduced an S-space: A topological space X

is called an S-space if every subset which contains a non-void open subset is

open. But the concept of λ-open sets is different from Dontechev’s S-spaces.

Definition 1.1. A subset A of a topological space X is said to be λ-open if A

contains a nonempty open set. The complement of a λ-open set is said to be

λ-closed.

For a subset A of a topological space X, Intλ(A) and Clλ(A) are defined as

follows:

Definition 1.2. Let X be a topological space and A be a subset of X.

Intλ(A) = ∪{U : U ⊆ A,U is λ-open in X};

Clλ(A) = ∩{F : A ⊆ F, F is λ-closed in X}.

Lemma 1.3. Let X be a topological space and A,B subsets of X.

(1) if A ⊆ B, then Intλ(A) ⊆ Intλ(B) and Clλ(A) ⊆ Clλ(B),

(2) X \ Intλ(A) = Clλ(X \A),

(3) For any index set ∆, if Aα is λ-open (resp. λ-closed), then ∪{Aα : α ∈

∆} is λ-open (resp. ∩{Aα : α ∈ ∆} is λ-closed),

(4) Intλ(A) is λ-open and Clλ(A) is λ-closed.

Remark 1.4. The finite intersection of λ-open sets need not be λ-open. Let R

be the usual real line, A = (−1, 0] and B = [0, 1). The A and B are λ-open

but A ∩B = {0} is not λ-open.

We generalize the locally closed set by using λ-open sets.

2. λ-Locally Closed Sets

Definition 2.1. A subset A of a topological space X is said to be λ-locally

closed if A = U ∩ F , where U is λ-open and F is closed.

Corollary 2.2. Let f : X → Y be a continuous function. If L is a λ-locally

closed subset of Y , then f−1(L) is λ-locally closed in X.

From Definition 1.1 it is obvious that every locally closed set is λ-locally

closed. But the converse need not hold in general.

Example 2.3. Let X = {a, b, c, d}, τ = {∅, X, {a}}. Then C(X)(all closed sets

inX) = {∅, X, {b, c, d}}. And λ-open sets are: ∅, X, {a}, {a, b}, {a, b, c}, {a, c},
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{a, d}, {a, b, d}, {a, c, d}. Therefore, {d} = {a, d}∩{b, c, d} is a λ-locally closed

set but it is not a locally closed set in X.

Remark 2.4. A subset A of a topological space X is λ-locally closed if and only

if X \A is the union of a λ-closed set and an open set.

Remark 2.5. For a subset of a topological space, the following hold:

(1) Every λ-open set is λ-locally closed,

(2) Every closed set is λ-locally closed.

Theorem 2.6. For a subset A of a topological space X, the following are

equivalent:

(1) A is λ-locally closed;

(2) A = U ∩ Cl(A) for some λ-open set U ;

(3) A ∪ (X \ Cl(A)) is λ-open;

(4) A ⊆ Intλ[A ∪ (X \ Cl(A))];

(5) Cl(A) \A is λ-closed.

Proof. (1) ⇒ (2): Suppose A is λ-locally closed. Then A = U ∩ F where U

is λ-open and F is closed. Then Cl(A) = Cl(U ∩ F ) ⊆ Cl(F ) = F . Then

A ⊆ U ∩ Cl(A) ⊆ U ∩ F = A and hence A = U ∩ Cl(A).

(2) ⇒ (3): X \ [A ∪ (X \ Cl(A))] = (X \A) ∩ Cl(A) = Cl(A) \A = Cl(A) \

(U ∩Cl(A)) = Cl(A)\U = Cl(A)∩ (X \U). Since U is λ-open, Cl(A)∩ (X \U)

is λ-closed and hence A ∪ (X \ Cl(A)) is λ-open.

(3) ⇒ (4): Since A ∪ (X \Cl(A)) is a λ-open set containing A, it is obvious

that A ⊂ Intλ[A ∪ (X \ Cl(A))].

(4) ⇒ (1): A = A ∩ Cl(A) ⊆ Intλ[A ∪ (X \ Cl(A))] ∩ Cl(A) ⊆ [A ∪ (X \

Cl(A))]∩Cl(A) = A∩Cl(A) = A. Therefore, A = Intλ[A∪(X \Cl(A))]∩Cl(A)

and A is λ-locally closed.

(3) ⇔ (5): It is obvious. �

The union of two λ-locally closed sets need not be λ-locally closed.

Example 2.7. Let X = {a, b, c, d}, τ = {∅, X, {a, b}, {c, d}}. Then C(X) =

{∅, X, {c, d}, {a, b}} and λ-open sets are: ∅, X, {a, b}, {c, d}, {a, b, c}, {a, b, d},

{a, c, d}, {b, c, d}. λ-locally closed sets are: ∅, X, {a, b}, {c, d}, {a, b, c},

{a, b, d}, {a, c, d}, {b, c, d}, {c}, {d}, {a}, {b}. Therefore, {a} and {c} are

λ-locally closed sets but their union {a, c} is not a λ-locally closed set.

3. Λλ-Closed Sets

Locally closed sets in a topological space are introduced and investigated in

[3] and [6]. As a generalization of locally closed sets, Arenas et al. [1] introduced

the notion of λ-closed sets in a topological space. In this section, we introduce

the notion of Λλ-closed sets which is a generalization of λ-closed sets. We

obtain some characterizations of Λλ-closed sets and obtain decompositions of

closed sets.
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Definition 3.1. Let X be a topological space and A a subset of X. The subset

Λλ(A) is defined as follows: Λλ(A) = ∩{U : A ⊆ U, U is λ-open }.

A subset A is called a Λλ-set if A = Λλ(A). If U is open in Definition 3.1,

then a Λλ-set A is called a Λ-set [9].

Lemma 3.2. For any subsets A and B of a topological space X, the following

hold:

(1) A ⊆ Λλ(A),

(2) If A ⊆ B, then Λλ(A) ⊆ Λλ(B),

(3) Λλ(Λλ(A)) = Λλ(A),

(4) Λλ(∩α∈∆Aα) ⊆ ∩α∈∆Λλ(Aα) for any index set ∆.

Lemma 3.3. For any subset A of a topological space X, the following hold:

(1) Λλ(A) is a Λλ-set,

(2) If A is λ-open, then A is a Λλ-set,

(3) If Aα is a Λλ-set for each α ∈ ∆, then ∩α∈∆Aα is a Λλ-set.

Remark 3.4. The converse of Lemma 3.3 (2) need not hold as shown by the

following example: Let R be the usual real line and A = {0}. Then A is a

Λλ-set but it is not λ-open. Because {0} ⊆ Λλ({0}) ⊆ (−1, 0] ∩ [0, 1) = {0}

and hence Λλ({0}) = {0}. Therefore, A = {0} is a Λλ-set but it is not λ-open.

Definition 3.5. A subset A of a topological space X is said to be Λλ-closed

(resp. λ-closed [1]) if A = L ∩ F , where L is a Λλ-set (resp. Λ-set) and F is a

closed set.

Lemma 3.6. For a subset of a topological space X, the following properties

hold:

(1) Every λ-locally closed set is Λλ-closed,

(2) Every λ-closed set is Λλ-closed.

Proof. (1) By Lemma 3.3, every λ-open set is a Λλ-set and (1) holds.

(2) Let U be a Λ-set. Then,

U = ∩{V : U ⊆ V, V is open } ⊇ ∩{V : U ⊂ V, V is λ-open } ⊇ U

and hence U is a Λλ-set. Therefore, (2) holds. �

Remark 3.7. By Lemma 3.6, we obtain the following diagram.

DIAGRAM I

locally closed ⇒ λ-locally closed

⇓ ⇓

λ-closed ⇒ Λλ-closed
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Theorem 3.8. For a subset A of a topological space X, the following are

equivalent:

(1) A is Λλ-closed;

(2) A = U ∩ Cl(A) for some Λλ-set U ;

(3) A = Λλ(A) ∩ Cl(A).

Proof. (1) ⇒ (2): Let A be a Λλ-closed set. Then A = U ∩ F , where U is a

Λλ-set and F is a closed set. Thus, we have A ⊆ U ∩ Cl(A) ⊆ U ∩ Cl(F ) =

U ∩ F = A. Therefore, A = U ∩ Cl(A).

(2) ⇒ (3): Let A = U ∩ Cl(A) for some Λλ-set U . Since A ⊆ U , by Lemma

3.2 Λλ(A) ⊆ Λλ(U) = U and hence A ⊆ Λλ(A) ∩ Cl(A) ⊆ U ∩ Cl(A) = A.

Therefore, we obtain A = Λλ(A) ∩ Cl(A).

(3) ⇒ (1): Let A = Λλ(A) ∩ Cl(A). By Lemma 3.3, Λλ(A) is a Λλ-set and

Cl(A) is closed. Therefore, A is Λλ-closed. �

Definition 3.9. Let X be a topological space. A subset A of X is said to be

λg-closed (resp. g-closed [8]) if Cl(A) ⊆ U whenever A ⊆ U and U is a λ-open

(resp. open) set.

Theorem 3.10. For a subset A of a topological space X, the following are

equivalent:

(1) A is closed;

(2) A is λ-locally closed and λg-closed;

(3) A is Λλ-closed and λg-closed.

Proof. (1)⇒ (2): Let A be closed inX. Since A = X∩A andX is a Λλ-set, A is

λ-locally closed. Let U be any λ-open set containing A. Then Cl(A) = A ⊆ U

and hence A is λg-closed.

(2) ⇒ (3): By Lemma 3.6, every λ-locally closed set is Λλ-closed.

(3) ⇒ (1): Let A be Λλ-closed and λg-closed. Since A is Λλ-closed, A = P ∩

L, where P is a Λλ-set and L is closed in X. Let V be any λ-open set containing

A. Since A is λg-closed, Cl(A) ⊆ V and hence Cl(A) ⊆ ∩{V : A ⊆ V, V is λ-

open } = Λλ(A). Therefore, Cl(A) ⊆ Λλ(A) ⊆ Λλ(P ) = P . On the other hand,

A ⊆ L and Cl(A) ⊆ Cl(L) = L. Therefore, we obtain Cl(A) ⊆ P ∩ L = A.

Thus A is closed.

�

Theorem 3.11. Let X be a topological space. If Aα is a Λλ-closed set for each

α ∈ ∆, then ∩α∈∆Aα is Λλ-closed.

Proof. Let Aα be a Λλ-closed set for each α ∈ ∆. Then Aα = Uα ∩ Fα, where

Uα is a Λλ-set and Fα is a closed set for each α ∈ ∆. By Lemma 3.3, ∩α∈∆Uα is

a Λλ-set, ∩α∈∆Fα is closed and ∩α∈∆Aα = (∩α∈∆Uα)∩ (∩α∈∆Fα). Therefore,

∩α∈∆Aα is Λλ-closed.

�
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4. Decompositions of Continuity

In this section, we obtain the decompositions of continuity.

Definition 4.1. A function f : X → Y is said to be

(1) λ-LC-continuous if f−1(V ) is λ-locally closed in X for any closed set V

of Y ,

(2) Λλ-continuous if f
−1(V ) is Λλ-closed in X for any closed set V of Y ,

(3) λg-continuous if f−1(V ) is λg-closed in X for any closed set V of Y .

Theorem 4.2. For a function f : X → Y , the following are equivalent:

(1) f is continuous;

(2) f is λ-LC-continuous and λg-continuous;

(3) f is Λλ-continuous and λg-continuous.

Proof. This is an immediate consequence of Theorem 3.10 �

Remark 4.3. The following facts are shown by Examples 4.4 and 4.5 and Re-

mark 4.6:

(1) λ-LC-continuity and λg-continuity are independent of each other,

(2) Λλ-continuity and λg-continuity are independent of each other.

Example 4.4. Let X = Y = {a, b, c, d}, τ = σ = {∅, X, {a}}. Then C(X) =

C(Y ) = {∅, {b, c, d}} and λ-open sets in X (resp. Y ) are: ∅, X, {a}, {a, b},

{a, c}, {a, d}, {a, b, c}, {a, c, d}, {a, b, d}. λ-locally closed sets in X (resp. Y )

are: ∅, X, {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d},

{b, c}, {c, d}, {b, d}, {b}, {c}, {d}. Define a function f : X → Y by f(a) =

c, f(b) = b, f(c) = d, f(d) = a. Then we have the following:

(1) Since f−1({b, c, d}) = {a, b, c}, then f is not continuous.

(2) Since f−1({b, c, d}) = {a, b, c}, then f is λ-LC-continuous.

(3) Since Cl({a, b, c}) = X (i.e. {a, b, c} is not λg-closed), then f is not

λg-continuous.

(4) Since {a, b, c} ⊆ ∩{U : {a, b, c} ⊆ U, U is λ-open } = {a, b, c} and

{a, b, c} = {a, b, c} ∩ X = {a, b.c}, then {a, b, c} is Λλ-closed. Thus f is Λλ-

continuous.

Example 4.5. Let X = Y = {a, b, c, d}, τ = σ = {∅, X, {a, b}, {c, d}}. Then

C(X) = C(Y ) = {∅, X, {a, b}, {c, d}} and λ-open sets in X (resp. Y ) are:

∅, X, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. And λ-locally closed

sets inX (resp. Y ) are: ∅, X, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},

{a}, {b}, {c}, {d}. Define g : X → Y by g(a) = c, g(b) = b, g(c) = a, g(d) =

d. Then we have the following:

(1) Since g−1({c, d}) = {a, d}, then g is not a continuous function.

(2) Since g−1({c, d}) = {a, d}, it is not a λ-locally closed set in X. Then g

is not a λ-LC-continuous function.

(3) Since g−1({a, b}) = {b, c} ⊆ ∩{U : {b, c} ⊆ U, U is λ -open in X} =
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{b, c}∩X = {b, c} and g−1({c, d}) = {a, d} = ∩{U : {a, d} ⊆ U, U is λ-open in X}

= {a, d} ∩X = {a, d} are Λλ-closed, then Λλ-continuous.

Remark 4.6. (1) If every λg-continuous function is λ-LC-continuous, then it is

continuous from Theorem 4.2 This is not true from Example 4.4(1).

(2) If every λg-continuous function is Λλ-continuous, then it is continuous

from Theorem 4.2. This not true from Example 4.5(1).
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