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ABSTRACT. Let R be a commutative ring with identity and M be an R-
module. The zero divisor graph of M is denoted by I'(M). In this study,
we are going to generalize the zero divisor graph I'(M) to submodule-
based zero divisor graph I'(M, N) by replacing elements whose product
is zero with elements whose product is in some submodule N of M. The
main objective of this paper is to study the interplay of the properties of
submodule N and the properties of I'(M, N).
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1. INTRODUCTION

Let R be a commutative ring with identity. The zero divisor graph of R,
denoted I'(R), is an undirected graph whose vertices are the nonzero zero divi-
sor of R with two distinct vertices  and y are adjacent by an edge if and only
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if zy = 0. The idea of a zero divisor graph of a commutative ring was intro-
duced by Beck in [3] where he was mainly interested with colorings of rings.
The definition above first is appeared in [2], which contains several fundamen-
tal results concerning I'(R). The zero-divisor graph of a commutative ring is
further examined by Anderson, Levy and Shapiro, Mulay in [1, 9]. Also, the
ideal-based zero divisor graph of R is defined by Redmond, in [12].

The zero divisor graph for modules over commutative rings has been defined
by Behboodi in [4] as a generalization of zero divisor graph of rings. Let R
be a commutative ring and M be an R-module, for x € M, we denote the
annihilator of the factor module M/Rx by I,. An element x € M is called a
zero divisor, if either = 0 or 1,1, M = 0 for some y # 0 with I, C R. The set
of zero divisors of M is denoted by Z(M) and the associated graph to M with
vertices in Z*(M) = Z(M) \ {0} is denoted by I'(M), such that two different
vertices x and y are adjacent provided I,I,M = 0.

In this paper, we introduce the submodule-based zero divisor graph that is a
generalization of zero divisor graph for modules. Let R be a commutative ring,
M be an R-module and N be a proper submodule of M. An element x € M is
called zero divisor with respect to IV, if either x € N or I, I,M C N for some
y € M\ N with I, C R. We denote Z(M, N) for the set of zero divisors of M
with respect to N. Also, we denote the associated graph to M with vertices
Z*(M,N)=Z(M,N)\ N by I'(M, N), and two different vertices = and y are
adjacent provided I,I,M C N.

In the second section, we define a submodule-based zero divisor graph for a
module and we study basic properties of this graph. In the third section, if M is
a finitely generated semisimple R-module such that its homogenous components
are simple and NV is a submodule of M, we determine some relations between
I'(M,N) and T'(M/N), where M/N is the quotient module of M, we show
that the clique number and chromatic number of T'(M, N) are equal. Also, we
determine some submodule of M such that I'(M, N) is an empty or a complete
bipartite graph.

Let T be a (undirected) graph. We say that T' is connected if there is a
path between any two distinct vertices. For vertex x the number of graph
edges which touch z is called the degree of x and is denoted by deg(x). For
vertices  and y of T, we define d(z,y) to be the length of a shortest path
between = and y, if there is no path, then d(z,y) = co. The diameter of T is
diam(T") = sup{d(z, y)|z and y are vertices of I'}. The girth of T, denoted by
gr(T"), is the length of a shortest cycle in ' (gr(T") = oo if T' contains no cycle).

A graph T is complete if any two distinct vertices are adjacent. The complete
graph with n vertices is denoted by K™ (we allow n to be an infinite cardinal).
The cliqgue number, w(I"), is the greatest integer n > 1 such that K™ C I', and
w) =o0if K" CT for all n > 1. A complete bipartite graph is a graph T
which may be partitioned into two disjoint nonempty vertex sets V; and V5


https://ijmsi.com/article-1-956-en.html

[ Downloaded from ijmsi.com on 2025-11-05 ]

A submodule-based zero divisor graphs for modules 149

such that two distinct vertices are adjacent if and only if they are in different
vertex sets. If one of the vertex sets is a singleton, then we call that T is a star
graph. We denote the complete bipartite graph by K™, where |V;| = m and
|Va] = n (again, we allow m and n to be infinite cardinals); so a star graph is
Kb for some n € N.

The chromatic number, x(I'), of a graph T is the minimum number of colors
needed to color the vertices of I', so that no two adjacent vertices share the
same color. A graph T is called planar if it can be drawn in such a way that
no two edges intersect.

Throughout this study, R is a commutative ring with nonzero identity, M is
a unitary R-module and N is a proper submodule of M. Given any subset S
of M, the annihilator of S is denoted by ann(S) = {r € Rjrs =0 for all s € S}
and the cardinal number of S is denoted by |S|.

2. SUBMODULE-BASED ZERO DIVISOR GRAPH

Recall that R is a commutative ring, M is an R-module and N is a proper
submodule of M. For x € M, we denote ann(M/Rx) by I,.

Definition 2.1. Let M be an R-module and N be a proper submodule of M.
An x € M is called a zero divisor with respect to N if x € N or I,I[,M C N
for some y € M \ N with I, C R.

We denote the set of zero divisors of M with respect to N by Z(M, N) and
Z*(M,N)=Z(M,N)\N. The submodule-based zero divisor graph of M with
respect to N, I'(M, N), is an undirected graph with vertices Z*(M, N) such
that distinct vertices = and y are adjacent if and only if I, [,M C N.

The following example shows that Z(M/N) and Z(M, N) are different from
each other.

EXAMPLE 2.2. Let M = Z® Z and N = 2Z © 0. Then I(,, ) = 0, for all
(m,n) € Z®Z. But Iy, ny4n = 2nZ whenever m € 2Z and Iy, ny4n = 27
whenever m ¢ 27. Thus (1,0),(1,1) € Z*(M, N) are adjacent in I'(M, N), but
(1,0) + N, (1,1) + N ¢ Z*(M/N).

Proposition 2.3. If Z*(M,N) = 0, then ann(M/N) is a prime ideal of R.
Proof. Suppose that ann(M/N) is not prime. Then there are ideals I and J
of R such that ITJM C N but IM Z N and JM € N. Let x € IM \ N and
y € JM\ N. Then I,J,M C IJM C N and I, C R. Thus z € Z*(M,N), a
contradiction. Hence, ann(M/N) is a prime ideal of R. d
Lemma 2.4. Let x,y € Z*(M,N). If x — y is an edge in T'(M, N), then for
each 0 #r € R, either ry € N or x —ry is also an edge in T'(M, N).

Proof. Let x,y € Z*(M,N) and r € R. Assume that z — y is an edge in

I'(M,N) and ry ¢ N. Then I,I,M C N. It is clear that I,, C I,. So that
I.I.,M C I,I,M C N and therefore,  — ry is an edge in I'(M, N). |
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It is shown that the graphs are defined in [12] and [4], are connected with
diameter less than or equal to three. Moreover, it shown that if those graphs
contain a cycle, then they have the girth less than or equal to four. In the next
theorems, we extend these results to a submodule-based zero divisor graph.

Theorem 2.5. T'(M, N) is a connected graph and diam(I'(M,N)) < 3.

Proof. Let x and y be distinct vertices of I'(M, N). Then, there are a,b €
Z*(M,N) with I,I,M C N and I,I,M C N (we allow a,b € {z,y}). If
I,I,M C N, then  —a—b—y is a path, thus d(z,y) < 3. If I,[,M ¢ N, then
RaNRb ¢ N, and for every d € (RaN Rb)\ N, x —d — y is a path of length 2,
d(z,y) < 2, by Lemma 2.4. Hence, we conclude that diam(I'(M,N)) <3. O

Theorem 2.6. If I'(M, N) contains a cycle, then gr(I'(M,N)) < 4.

Proof. We have gr(I'(M, N)) < 7, by Proposition 1.3.2 in [7] and Theorem 2.5.
Assume that ©1 — 29 — -+ — x7y — 21 is a cycle in T'(M, N). If 1 = x4 then it
is clear that gr(I'(M, N)) < 3. So, suppose that x1 # z4. Then we have the
following two cases:
Case 1. If 27 and x4 are adjacent in I'(M, N), then x1 — x9 — 23 — x4 — 21 is
a cycle and gr(I'(M, N)) < 4.
Case 2. Suppose that 21 and z4 are not adjacent in I'(M, N). Then I, I,, M ¢
N and so there is a z € (Rx; N Rxy) \ N. If z = zy, then z # x4 and
X3 — x4 — x5 — 2z — x3 is a cycle in ['(M, N), by Lemma 2.4. If z # x1, then by
Lemma 2.4, ©1 — 9 — z — x7 — 1 is a cycle and gr(I'(M, N)) < 4.

For cycles with length 5 or 6, by using a similar argument as above, one can
shows that gr(I'(M, N)) < 4. O

EXAMPLE 2.7. Assume that M = Z and p, g are two prime numbers. If N = pZ,
then T'(M,N) = 0. If N = pqZ, then TI'(M, N) is an infinite complete bipartite
graph with vertex set V3 U Vo, where Vi = pZ \ pgZ and Vo = ¢Z \ pqZ and so
gr(l'(M,N)) = 4.

Corollary 2.8. If N is a prime submodule of M, then diam(I'(M,N)) < 2
and gr(D'(M, N)) = 3, whenever it contains a cycle.

Proof. Let x,y be two distinct vertices which are not adjacent in I'(M, N).
Thus there is an @ € M \ N such that I,[,M C N. Since N is a prime
submodule, then I,M C N. Thus I,I,M C N, and then x —a —y is a path in
I'(M,N). Then diam(I'(M, N)) < 2. O

Lemma 2.9. Let |I'(M,N)| > 3, gr(I'(M,N)) = 0 and x € Z*(M,N) with
deg(x) > 1. Then Rx = {0, x} and ann(z) is a prime ideal of R.

Proof. First we show that Rz = {0,z}. Let u —x — v be a path in I'(M, N).
Then u — v is not an edge in I'(M, N) since gr(I'(M,N)) = co. If x # rz for
some r € R and rx € N, then by Lemma 2.4, rz —u —x —v — rx is a cycle in
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I'(M, N), that is a contradiction. So, for every r € R either rz =z or rz € N.
If there is an r € R such that rz € N, then we have either (1 + )z € N or
(14 r)z = x. These imply that x € N or rz = 0. Therefore, we have shown
that Rx = {0, z}.

Let a,b € R and abx = 0. Then bx = 0 or bx = x. Hence, bx = 0 or ax = 0.
So, ann(x) is a prime ideal of R. O

Theorem 2.10. If N is a nonzero submodule of M and gr(T'(M,N)) = oo,
then T'(M, N) is a star graph.

Proof. Suppose that I'(M, N) is not a star graph. Then there is a path in
I'(M,N) such as u — 2 —y — v. By Lemma 2.9, we have Ry = {0,y} and by
assumption v and y are not adjacent, thus I, M # 0. So that [, M = Ry. Also,
x —y — v is a path, thus I,I,M C N and I,I,M C N. Hence, I, Ry C N and
I.Ry C N. On the other hand, for every nonzero n € N, we have

Iva—i-nM c IUR(y + Tl) c Iv(Ry + N) CN

and similarly I, I, ,M C N. So that x —y —v — (y +n) — z is a cycle in
(M, N), a contradiction. Therefore, I'(M, N) is a star graph. O

Theorem 2.11. Let N be a nonzero submodule of M, |I'(M,N)| > 3 and
[(M,N) is a star graph. Then the following statements are true:

(i) If x is the center vertex, then I, = ann(M).
(ii) T(M, N) is a subgraph of T'(M).

Proof. (i) By Lemma 2.9, we have Rx = {0,z}. Thus either I,M = 0 or
IM = Rzx. Assume that I;M = Rz. If y is a vertex of I'(M,N) such
that y # «, then deg(y) = 1 and I,I,M C N. Thus I,Rx C N. Since
IoinIyM C I,R(z +n) C N for every nonzero element n € N it concludes
that y = x +n. In this case, every other vertices of I'(M, N) are adjacent to y,
a contradiction. Hence, I, M = 0 and I, = ann(M).

(ii) It is obvious. O

Theorem 2.12. If |[N| > 3 and T'(M, N) is a complete bipartite graph which
is not a star graph, then I>M ¢ N, for every x € Z*(M, N).

Proof. Let Z*(M,N) = V; UVs, where Vi NV, = ). Suppose that I2M C N for
some z € Z*(M,N). Without loss of generality, we can assume that = € V.
By a similar argument with Lemma 2.9, either Rx = {0,z} or there is an
r € R such that  # rx and re € N. If Rx = {0, 2}, then I, M = Rx. Thus
I,Rx C N. Now, for every y € V5 and n € N we get

I, ynM CIyR(x+n) CI,(Re+N)CN
and I I,y,M C N. Then, x +n € V; N V;, a contradiction. So, assume that

x # rx and rez € N for some r € R. Since Iy, C I, then I I,y , M C N
and for all y € Vo, IyI,31.M C N. Thus re +2x € V1N Va, a contradiction. [J
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An R-module X is called a multiplication-like module if, for each nonzero
submodule Y of X, ann(X) C ann(X/Y). Multiplication-like module have
been studied in [8, 13].

A vertex x of a connected graph G is a cut-point, if there are vertices u, v of
G such that z is in every path from u to v and = # wu,  # v. For a connected
graph G, an edge F of G is defined to be a bridge if G — {E'} is disconnected,
see [6].

Theorem 2.13. Let M be a multiplication-like module and N be a monzero
submodule of M. Then T'(M, N) has no cut-points.

Proof. Suppose that z is a cut-point of I'(M, N). Then there exist vertices
u,v € M\ N such that x lies on every path from u to v. By Theorem 2.5, the
shortest path from u to v has length 2 or 3.

Case 1. Suppose that u—x—uv is a path of shortest length from w to v. Since x is
a cut point x, u, v aren’t in a cycle. By a similar argument to that of Lemma 2.9,
we have Rz = {0, z}. On the other hand, I, M C Rz and M is a multiplication-
like module, so we have I, M = Rx. Hence I, Rx C N and I, Rx C N. Also, for
every nonzeron € N, we have I, [, n,M C I,(Rz+N) C N and I,I,1,M C N.
Therefore, u — (z + n) — v is a path from u to v, a contradiction.

Case 2. Suppose that u—xz—y—wv is a path in T'(M, N). Then, we have I, M =
Rz and for every nonzero n € N, we have Iyl M C N and Iylp1nM C N.
Thus u — (x +n) —y — v is a path from u to v, a contradiction. (]

Theorem 2.14. Let M be a multiplication-like module and N be a nonzero
submodule of M. Then T'(M, N) has a bridge if and only if T'(M, N) is a graph
on two vertices.

Proof. 1f |[I'(M,N)| = 3, then I'(M, N) = K3, by Theorem 2.11, and it has
no bridge. Assume that |[T'(M,N)| > 4 and « — y is a bridge. Thus there is
not a cycle containing x — y. Without loss of generality, we can assume that
deg(z) > 1. Thus, there exists a vertex z # y such that z — x is an edge
of I'(M,N). Then Rx = {0,z} and I, M = Rxz. Hence, for every n € N,
LI, 4nM C N and I,I, .M C N, a contradiction. Therefore, I'(M, N) has
not a bridge. The converse is clear. ]

3. SUBMODULE-BASED ZERO DIVISOR GRAPH OF SEMISIMPLE MODULES

A nonzero R-module X is called simple if its only submodules are (0) and
X. An R-module X is called semisimple if it is a direct sum of simple modules.
Also, X is called homogenous semisimple if it is a direct sum of isomorphic
simple modules.

In this section, R is a commutative ring and M is a finitely generated
semisimple R-module such that its homogenous components are simple and
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N is a submodule of M. The following theorem has a crucial role in this
section.

Theorem 3.1. Let xz,y € M\ N. Then x,y are adjacent in T'(M,N) if and
only if Re N Ry C N.

Proof. Let M = @,,
of M. By assumption N is a submodule of M, so there exists a subset A
of I such that M = N @ (P;c4 M;) and so ann(M/N) = ann(P;c 4 M;) =
Nic4 ann(M;). Assume that z,y € M \ N are adjacent in I'(M, N') and Rz N
Ry ¢ N. Thus there exists « € I such that M, C (Rxz N Ry)\ N. Also,
there exist subsets B C I and C' C I such that M = Rx © (@,.5 M;) and
M = Ry® (D, Mi). Therefore, I, = [, g ann(M;) and I, = [,c - ann(M;).
Since I,I,M C N, we have I,I, C ann(M/N). For every i,j € I, ann(M;)
and ann(Mj;) are coprime, then
11, = [ﬂ ann(Mi)][m ann(M;)] = H ann(M;)
ieB ieC ieBUC
- ﬂ ann(M;) C ann(M,.),

M;, where M;’s are non-isomorphic simple submodules

for all » € A. Thus for any r € A there exists j, € B U C such that
ann(M;,) C ann(M,). So that ann(M;,) = ann(M,) implies that M, = M,
and by hypothesis M; = M,. Hence,

Mo C@ica Mi € Djcpuc Mj-
Thus there exists v € B U C such that M, = M,, also

Mo © Re N Ry = (Bicp g Mi) N (Djep o Mi)-
Therefore, o € I\ (BUC), a contradiction. The converse is obvious. (]

Corollary 3.2. Let x,y € M\ N be such that x + N #y+ N. Then
(i) = and y are adjacent in T'(M,N) if and only if x + N and y + N are
adjacent in T(M/N).
(ii) if z and y are adjacent in T'(M, N), then all distinct elements of x + N
and y+ N are adjacent in T'(M, N).

Proof. (i) Let M = @,.; M;, where M;’s are non-isomorphic simple submod-
ules of M. Suppose that x and y are adjacent in I'(M, N), Rx = P, 4 M;,
Ry = @;cpM; and N = @, M;. Then Rt + N = @, ¢ M; and

Ry + N = @,cp,c M;. Thus,

(Rz+N)N(Ry+ N) = b M= € M;=(RznRy)+N.

1€(AUC)N(BUC) i€(ANB)UC
By Theorem 3.1, we have Rx N Ry C N hence,

IoynIyenM C (Re+N)N(Ry+ N)=(RzNRy)+ N =N.
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Therefore, z + N and y+ N are adjacent in I'(M/N). The converse is obvious.
(i) Let x,y € Z*(M, N) be adjacent in I'(M, N). Then Rz N Ry C N by
Theorem 3.1. So for every n,n’ € N we have

LivnIlysnM CR(x+n)NRy+n') C (Rx+N)N(Ry+ N)=N.
Hence,  + n and y + n’ are adjacent in I'(M, N). O

In the following theorem, we prove that the clique number of graphs T'(M, N)
and I'(M/N) are equal.

Theorem 3.3. If N is a nonzero submodule of M, then w(T'(M/N)) = w(T'(M, N)).

Proof. First we show that If,H_NM ¢ N for each 0 # m + N € M/N.
Assume that N = @®;ceaM; and m = (m;)ie; € M\ N. Then I,4n =
NigA.m,—o ann(M;). Hence, Inyn = I2 . n. Thus I2, M ¢ N since there is
at least one j € I\ A such that m; # 0.

Now, Corollary 3.2 implies that w(I'(M/N)) < w(I'(M,N)). Thus, it is
enough to consider the case where w(I'(M/N)) = d < co. Assume that G
is a complete subgraph of T'(M, N) with vertices mq, ma,--- ,mg41, we pro-
vide a contradiction. Consider the subgraph G, of I'(M/N) with vertices
my + N,--- ,mgy1 + N. By Corollary 3.2, G, is a complete subgraph of
I'(M,N). Thus mj; + N = my + N for some 1 < j, k < d+ 1 with j # k since
w('((M/N)) = d. We have I, I,,, M C N. Therefore, Rm; N Rmy, C N and
80 I, +NIm,+NM C N. Hence, I72n]_+NM C N, that is a contradiction. O

In the following theorem, we show that there is a relation between w(I'(M, N))
and x(T'(M,N)).

Theorem 3.4. Assume that M = @,.; M;, where M;’s are non-isomorphic
simple submodules of M and N = @, 4 M; is a submodule of M for some
AcCI. Then w(T'(M,N)) = x(T'(M,N)) =1|I| — |A4].

Proof. Suppose that I\ A ={1,--- ,n} so My, -+ ,M,, Z N. Let for 1 < k <
n—1
L* = {m € M : m has k nonzero components }

and let for 1 <s<n
L! = {m € L' : the s'" component of m is nonzero}.

If m € L! and m’ € L} for some 1 < s,t < n with s # ¢, then m and m/
are adjacent and so K™ is a subgraph of I'(M, N). Thus w(I'(M,N)) > n.
If m,m’ € Ll for some 1 < s < n, then m,m’ are not adjacent because
ann(Ms) € I,,I, and so the elements of L! have same color. On the other
hand, if 2 € L' with ¢ > 1, then there is not a complete subgraph K" of
(M, N) containing x, such that h > n. Thus w(I'(M,N)) =n < x(I'(M, N)).
Also, if x € Lt with ¢ > 1, then there is an s with 1 < s < n such that z is not
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adjacent to each element of L. Thus the color of = is same as the elements of
L. Thus x(I'(M,N)) = n. O

The Kuartowski’s Theorem states: A graph G is planar if and only if it
contains no subgraph homeomorphic to K° or K33,

Theorem 3.5. Let N be a nonzero proper submodule of M such that N is not
prime. Then T'(M, N) is not planar.

Proof. Assume that M = ,.; M;, where M;’s are non-isomorphic simple sub-
modules of M and N = ;.4 M; for some A C I. Let I\ A = {i,j}. Then
['(M, N) is a complete bipartite graph K™™, where n = (|M;|—1)(ITcr— 5y 1Mrl)
and m = (|M;| — 1)(IIxer— i,y 1Mr])- By hypotheses N is a nonzero and M;’s
are non-isomorphic, so we have n,m > 3. Hence I'(M, N) has a subgraph
homeomorphic to K33. The cases |I \ A| > 3 are similar to that of the case
T\ Al = 2. O

Theorem 3.6. A nonzero submodule N of M is prime if and only if Z* (M, N) =
0.

Proof. Let M = @,.; M;, where M;’s are non-isomorphic simple submodules
of M and N is prime. Then N = @iel\{k} M;, for some k € I. If x €
Z*(M,N), then there exists a y € M \ N such that I,I,M C N. If x # y,
then Rz N Ry C N, by Theorem 3.1. Thus either My € Rz or My Z Ry.
Hence, either Rx C N or Ry C N, a contradiction. Now, suppose that z = y
so by I2M C N and hypotheses I, M C N. Thus I,;,I,M C N for every
0 #n € N. By a similar argument, we have either x € N or x +n € N, a
contradiction. Hence, Z*(M, N) = (.

Conversely, assume that Z*(M,N) = (). Then ann(M/N) is prime ideal of
R by Proposition 2.3 and there exists a k € I such that ann(M/N) = ann(My,).
Hence, N = @, 1\ (; M is a prime submodule of M. O

A proper submodule N of M is called 2-absorbing if whenever a,b € R,
m € M and abm € N, then am € N or bm € N or ab € ann(M/N), see
[10, 11]. In the following results, we study the behavior of I'(M, N) whenever
N is a 2-absorbing submodule of M .

Theorem 3.7. A submodule N of M is 2-absorbing if and only if at most two
components of M are zero in N.

Proof. Let M = @,.; M;, where M;’s are non-isomorphic simple submodules
of M. Suppose that N is a 2-absorbing submodule of M and N = P, 4, M;,
where A = I\ {s,t,k}. Since for all ¢ € I, ann(M;) is prime, there are a €
ann(My) \ (ann(M;) U ann(My)), b € ann(M,;) \ (ann(My) U ann(M})) and
¢ € Njen (a—{sp ann(M;) \ (ann(M,) Uann(M¢)). Now, abe € ann(M/N) but
ab & ann(M/N), ac € ann(M/N) and bc ¢ ann(M/N). This contradict with
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Theorem 2.3 in [10]. Thus |A| > |I| — 2 and at most two components of M are
zero in N.

Conversely, if one component of M is zero in N, then N is a prime submodule
of M. Suppose that N = @, 4, M;, where A = I\ {4,5}. Thus M;, M; Z N.
Suppose that a,b € R, (m;);c;r = m € M\N and abm € N. Then either m; # 0
orm; # 0. If m; # 0 and m; # 0, then ab € ann(M;) Nann(M;) = ann(M/N).
If m; # 0 and m; = 0, then ab € ann(M;) and so either a € ann(M;) or
b € ann(M;). Hence, am € N or bm € N. The case m; = 0 and m; # 0,
is similar to the previous case. Therefore, N is a 2-absorbing submodule of
M. O

Theorem 3.8. N is a 2-absorbing submodule of M if and only if Z*(M,N) =
or T'(M, N) is a complete bipartite graph.

Proof. Let N be a 2-absorbing submodule of M. If N is prime, then Z*(M, N) =
(), by Theorem 3.6. Now, assume that N = ®iel\{j,k} M; for some j, k € I
and (m;)ier = m € M\ N. Thus Iy = (\icrm,—0y ann(M;). If m; # 0 and
my # 0, then m ¢ Z(M,N). Let Vi = {(m;)icr € M\ N : m; = 0} and
Vo = {(m;)icr € M\ N : m = 0}. Thus m — m/ is an edge of T'(M, N) for
every m € V7 and m’ € V5. Also, every vertices in Vi and V5 are not adjacent.
Hence, I'(M, N) is a complete bipartite graph.

Now, suppose that I'(M, N) is a complete bipartite graph and N is not 2-
absorbing. By Theorem 3.7, there are at least three components Mg, M;, My,
such that Mg, My, M, € N. For i = s,t,k let v; = (m;);er, where m; # 0
and m; = 0 for all j # 4. Then vy — v, — vy — v, is a cycle in I'(M, N). Thus
gr(I'"(M,N)) = 3 and so I'(M, N) is not bipartite graph, by Theorem 1 of Sec.
1.2 in [5]. Hence, N is a 2-absorbing submodule of M. O

EXAMPLE 3.9. Let M = Zo ® 75D Z7. Then every nonzero submodule N of M
is 2-absorbing. Thus either Z*(M, N) = () or I'(M, N) is a complete bipartite
graph. In particular, if N = Z7, then T'(M, N) = K728,
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