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ABSTRACT. In this paper, we consider the minimum Hamming weight
for linear codes over special finite quasi-Frobenius rings. Furthermore,
we obtain minimal free R-submodules of a finite quasi-Frobenius ring R
which contain a linear code and derive the relation between their mini-
mum Hamming weights. Finally, we suggest an algorithm that computes
this weight using the Grobner basis and we show that under certain con-

ditions a linear code takes the maximum of minimum Hamming weight.
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1. INTRODUCTION

Linear codes have been extensively studied since, because of their algebraic
structure, they are easier to describe, encode and decode than nonlinear codes.
Let Fy be a field with ¢ elements. Suppose that Fj' denotes the vector space
of all n-tuples over F,. A code C of length n over F, is a subset of F'. We
usually denote the vectors in F" by (a1, as,...,a,) and call the vectors in C' “
codewords”. If we do not impose further structure on a code, its usefulness is
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limited. The most useful additional structure is that of linearity. The two most
common representations of a linear code are a generator matrix and a parity
check matrixs(see [15]). The foundations of classical algebraic coding theory
over finite fields involve notions and results like dual code, MacWilliams identity
and extension theorem. Kuzmin, Kurakin, Nechaev, Norton, and Salagean
([13, 17, 18, 20, 22]) developed a theory of linear codes over finite commutative
rings and showed that the basic results may be suitably generalized to codes
over quasi-Frobenius rings. Actually, coding theorists can extend many results
in coding theory over fields to the quasi Frobenius rings. In the other words,
quasi Frobenius rings lie on the intersection of coding theory and ring theory.
Codes over finite rings, especially over Z4, have been of great interest, starting
with Nechaev [19] and Hammons, et. al. [6]. Hammons, et. al showed that
Kerdock and Preparata codes are linear over Z, via the Gray map from Zj
to Z3" and that viewed as Zj-codes they are duals [6]. However, the study
of codes over finite rings other than finite fields goes back to the early 1970’s.
Many researchers have considered codes over finite chain rings (e.g., [7, 22])
and codes over finite Frobenius rings (e.g., [5, 26]) with respect to homogeneous
weights [3]. In particular, Wood [26] has proved the two MacWilliams theorems,
the extension theorem and the MacWilliams identities for codes over finite
Frobenius rings. Horimoto, Storme, and Shiromoto [10, 11, 24] have introduced
the singleton bound for codes over finite quasi-Frobenius (QF) rings. Codes
over rings have been shown to have interesting connections to lattices, modular
forms [16], and Hjelmslev geometries [8, 9] as well as many other branches of
mathematics.

In this paper, we consider linear codes over an SPAP-ring (special kind of
finite Frobenius rings). The best examples of SPAP-rings, are fields and Z,2,
where p is a prime number, which play an important role in coding theory. In
particular Zy4, is known in coding theory as a Gray code. So the SPAP-rings are
more general than the rings considered in coding theory. Also, we characterize
the structure of SPAP-rings in [21]. One of the advantages of this structure
is that we can give an algorithm for computing almost all computable items,
such as dimension, rank and basis, and ..., by using the theory of Grobner
basis. Hence SPAP-rings are applicable to the class of rings in coding theory.
Then we obtain the relationship between the minimum Hamming weight and
the minimum free module containing this code. Also, we propose an algorithm
for computing the minimum Hamming weight for a linear code and state a
condition for a code to be optimal. We refer to [15] for any undefined terms
from coding theory.

2. MINIMUM HAMMING WEIGHT AND GRIESMER BOUND

Let R be a finite QF-ring, that is, a ring which can be viewed as an injective
module over itself (see [14]). Let R™ be the free R-module of rank n consisting
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of all n-tuples of elements of R. With respect to component-wise addition and
ring multiplication, R™ has the structure of an R-module. A linear code C of
length n over R is an R-submodule of R". If C' is a free R-submodule of R"™,
we call C' a free code. For a vector x € R", the (Hamming) weight wt(z) of
x is defined to be the number of non-zero components in  and the minimum
Hamming weight of a linear code C of length n over R, denoted be d(C), is
min{wt(z)|z € C,z # 0}.

If an error event affects entire symbols, then the minimum Hamming weight
comes naturally. In this case a code with minimum Hamming weight d can
cope with all patterns of ¢ erroneous symbols and e erased symbols, if d >
2t +e. So, most of the well-known algebraic decoding algorithms use minimum
Hamming weight. For example Berlekamp-Massey algorithm was devised for
Zy, using minimum Hamming weight for decoding. Also, for codes over rings
the minimum Hamming weight is a lower bound for the Lee distance. So
by computing minimum Hamming weight, we can find a lower bound for Lee
distance. Furthermore, for some rings, for example Z, , the minimum Hamming
weight and Lee distance coincide. A local ring (R, m) is called a special product
of almost prime ideals ring (abbreviated, SPAP-ring) if for each © € m —
m?2, (z?) = m? and m® = 0. This class of rings is a subclass of local rings
introduced in 2008 by D. D. Anderson and M. Bataineh in [2]. The aim of
this paper is to study the linear codes over SPAP-rings. For more information
about SPAP-rings see [21]. Also, SPAP-rings have a graphical characterization
which helps for understanding these rings, see [23, 25] for more informations.
In [21], we show that finite SPAP-rings are quasi Frobenius, which are the most
important rings considered in coding theory. Essential extension and injective
hull are two concepts that help us to establish our results(see [14]). Now let C
be a linear code. Hence C' is a subspace of R™ for some n .Thus there exists a
minimal free R-module in R™ that contains C/(see [14]). We have the following
proposition.

Proposition 2.1. Let (R, m) be an SPAP-ring with finitely generated m and let
C be a linear code of R™. If E(C) is an injective hull of C' contained in R™, then
E(C) is a minimum free R-module containing C and the minimum Hamming
weight of C is equal to the minimum Hamming weight of E(C). Furthermore,
each minimum free R-module of R™ containing C is R-isomorphic with E(C).

Proof. Let C' be a linear code of R™. Hence C' is a submodule of R™. Since R™
is a free R-module, by [21, Lemma 2.3] , it is an injective R-module containing
C. Therefore, by [14, Lemma 3.29], F(C) is in R"™ and by [21, Lemma 2.3,
E(C) is free. However by [21, Lemma 2.3], we know that over SPAP-rings a
free R-module is equivalent to an injective R-module and E(C') is a minimum
injective R-module of R™ containing C. It follows that E(C) is a minimum free
R-module of R™ containing C. Now if L is a minimum free R-module of R"
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containing C, by [21, Lemma 2.3], it is a minimum injective R-module of R"
containing C. So it is an injective hull of C' and hence by [14, Corollary 3.32],
it is R-isomorphic with E(C). Now we prove that the minimum Hamming
weight of C' is equal to the minimum Hamming weight of F(C). We note that
C C E(C). So d(E(C)) = min{wt(x)|lz € E(C),xz # 0} < min{wt(z)|x €
C,z # 0} = d(C). Now let d(E(C)) = n, hence there exists 0 # y € E(C) such
that d(E(C)) = wt(y). Since E(C) is the injective hull of C, it is essential over
C'. Hence by [14, Remark 3.27], there exists 0 # r € R such that 0 # ry € C.
Now if we consider y and ry as elements of R", we see that wt(ry) < wt(y).
So d(C) = min{wt(z)|z € C,z # 0} < wt(ry) < wi(y) = n = d(E(C)).
Therefore, d(E(C)) = d(C). O

In the theory of linear codes, minimum Hamming weight has an economic
and error-correcting interpretation and we want to obtain a linear code such
that its minimum Hamming weight is maximum. By Proposition 2.1, it is
sufficient to maximize the minimum Hamming weight of the injective hull. For
a linear code C' of length n over R, we denote the rank of minimal free R-
submodule of R™ which contain C by k(C). So k(C) = rank(E(C)). Now we
have the following theorem.

Theorem 2.2. [24] Let (R,m) be a finite local Frobenius ring with |£| = g,
where q is a prime power. For a linear code C of length n over R and rank
k(C), we have

k(C)—1rd(C
n2 SO,
where [x] denotes the smallest integer greater than or equal to x.

For a linear code C' over a finite local Frobenius ring R with minimum
Hamming distance d, the bound in the inequality in above theorem is known as
the Griesmer bound for C. Consider a linear code C with rank(E(C)) = k. For
computing minimum Hamming weight of C, we must first be able to compute
the minimum Hamming weight of free E(C'). In the next section we propose an
algorithm for computing the minimum Hamming weight of a free R-modules
using the Grobner basis and give a characterization of a free module which has
the maximum minimum Hamming weight over SPAP-rings.

3. AN ALGORITHM FOR COMPUTING MINIMUM HAMMING WEIGHT

In this section, we use the theory of Grobner basis and the structure of
SPAP-rings to compute the minimum Hamming weight of a free linear code.
For this we suggest an algorithm that computes the minimum Hamming weight
of a linear code. Moreover, this algorithm can distinguish, is a given subset of
a code, linearly independent or not. In the other word this algorithm distin-
guishes, when a linear code is free and by omitting the additional elements in
a generating set it can find a maximal linearly independent subset of a given
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set. We also derive a condition for a linear code to have maximum minimum
Hamming weight.

Definition 3.1. Let R be aring and let (f1, ..., ft) be an ordered ¢-tuple, where
fi € R. The set of all (ay,...,a;) € R such that a;f; + ... + azfy = 0 is an
R-submodule of R!, called the Syzygy module of (fi,..., f;) and denoted by

Syz(f1, ..., ft)-

Now we state some results concerning Grobner basis and COCOA program-
ming that help us to compute the minimum Hamming weight of a free linear
code over SPAP-rings. Note that in this section the ring S = k[z1, 2, ..., Zp]
is the ring of all polynomials in n variables with coefficients in the field k. Let
(f1,--, ft) be an ordered t-tuple of elements with f; € R. Then Syz(f1,..., ft)
is computable by an algorithm using COCOA programing and the command
“Syz(M : IDEALorMODULE,Index : INT) : MODULE”. Also if N
and M be two submodules of R™, then we can compute the intersection of N
and M, by command “Intersection(Ey : MODULE,....,E, : MODULE) :
MODULE : MODULE” (see [1, 4, 12]). In [21], we characterize the structure

klz1,22,...,%5]

of SPAP-rings, in this paper we focus in all rings of the form (st ah) s

that are special kind of SPAP-rings, where k is a field. By an easy computa-
tion we see that two ideals (x;x;, 2%

7 —af 1)y and (w35, ] — 23,2 )iz ave
klzy,22,...,2n]

(wiwy,ef—2F,23 )izt ©

Let R be the SPAP-ring CE:]:;[“TQ—QM, where k is a field. Suppose

5087 — 23,23, )ity
that C is a free linear code of R™ of rgank k with basis Q = {(fi1 + I, fiza +
I,.. fin+I)}fori=1,..,kand j=1,2,..,n, where f;; € k[, 22, ..., 2, and

equal. So we shall consider rings of the form

_ 2 2 .3 _

I = (l‘ﬂ}j,xl — Jij,J?n)i?gj. Let Mj = Syz([flj,fgj, ...,fkj,$1$2,$1$3,...,l‘ll‘n,
2 2 .2 2 2 2 .3

T2X1y T2XG, cvey L2y ooy 1, T2y T Tn—1, L3 — T, T — T3, ey TT — Ty Th ),

forj=1,...,n.

We have the following lemma.

Lemma 3.2. Let [f1;+ 1, fo; + 1, ..., fu; +I] be an ordered k-tuple in R*, then
[g1+1,92+1,..., g5 + 1] is an element of Syz([f1;+ I, fo; +1, ..., fu; +1I]) in R
if and only if the elements of ordered k-tuple [g1, ga, ..., gx| are Tespectively the
first k components of an element in M;.

Proof. Let [g1+1,g2+1, ..., g +1] be an element of Syz([f1;+1, foj+1, ..., frj+
I]). Hence

Zi’c:l(fij +I)(g:+1)=0.

This means that Ele fijgi € I. So Zle fij9i is a combination of the genera-
tors {x;xj, x7 —a3, 2} of I using the ordering in M;. Therefore the elements of
ordered the k-tuple [g1, g2, ..., gi] are respectively the first k& components of an
element in M;. Conversely, let [g1, g2, ..., gx] be respectively the first k elements
of an element in M;. Hence by the definition of M;, we have
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S (i) (90) + X (ha)(ga) = 0

where g, is the ordering of elements according to M;. So we have

S i+ D(gi + 1) + X (ha +1)(ga +1) =0+ L.

Therefore

Zf:l(fij +)(g;+1)=0.

Hence [g1+1, go+1, ..., gx+1I] is an element of Syz([f1,+1, fo;+1, ..., fr;+1]).

O
Now we consider the following matrix equation:
+1 +1 ... a+1
Ji J21 Jr1 g+ T
Jiz+I foot+I ... fro+1 ) 0
' ' gr +1
f1n+-[ f2n+I fk:n"'_I nxk kx1
By Lemma 3.2, (g1 + I,g92 + I,...,gr + I) is the solution of this matrix
equation if and only if for all j = 1,...,n, the elements of ordered k-tuple

(91,92, -, gx) are respectively the first k& components of an element in Mj.
Note that an element h = (Iy + I,lo + I,...,l, + I) € R™ is an element of C
if it is a linear combination of its basis. This means there exists an element
(g1 +1,92+1,...,g1 +I) € RF such that

fu+1 fie+1 ... fin+1

foao+1 foo+I ... foo+1
h=(g+1,g2+1,...9r+1) ) . eC

foo+I fiu+I ... fin+T

where g1 + 1,92 + I, ..., g, + I are the coefficients of this combination. Hence

fij+1
L+I=(gi+1, g2+1, ... ,gk+1)1xk :

Jeg + 17

g +1
=(fuy+1, fo+1, o f+I), :

gt 1/

Solj+I=0if and only if (g1 + 1,92 + I,...,gx + I) belongs to Syz([f1; +
I, fo;+1,..., fr;+1I]) or by Lemma 3.2, equivalently the elements of the ordered
k-tuple [g1, g2, ..., gk] are respectively the first k£ components of an element in
M;. Now, by definition of minimum Hamming weight, it is enough to find the
nonzero element of C' with maximum zero component. The minimum Hamming
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weight of C' will be equal to n—n’ where n’ = “the number of zero component”.
To obtain the minimum Hamming weight of C' we first compute the M; and
then the following sets:

To = My, Tiy = Njze, My Tivia = Mg giriny Moo Tinresie = Njggan,ivy Mis

where i, € {1,2,..,n} and [ € {1,2,...,n — 1}.
Now if for all elements of the above sets we keep the first k components and
erase the rest and take the remaining set modulo I, we obtain new sets, say,

Ty Tis Tivigr o Ty

Brigs o Lin,oiy

where i, € {1,2,...,n} and | € {1,2,....,n — 1}.
Theorem 3.3. (Algorithm) In the above notation for a free linear code C, if
for somem —1¢€ {1,2,...n—1} and i, € {1,2,....,n} all TL],/—\ =0 and
there exists i1, 42, ..., im € {1,2,...,n} such that T:\Z # 0, then the minimum
Hamming weight of C' is m.

stm—1

Proof. Suppose that the hypothesis is true for m = 1. Then at last one 1/“\
nonzero, suppose T is nonzero. So by definition of Tn7 there exists (g1 +1, g2+
I,..,gx+1) # (0,0,...,0) € RF such that the elements of (g +1, ga+1, ..., gr.+1)
are respectively the first k components of an element in T;, = ﬂj ¢{n} M;. This
means that (g1 + I, g2 + I, ...,gr + I) is a nontrivial solution of the following
matrix equation.

fu+1I for+1 fon+1
X1 +1
fiz+1 J2a+1 ... Jez +1 1. 0
ho-n+ 1 oy + 1 oo Jom-ny T L/ (o wt

But since C'is free, it is not a solution of the following equation because the
columns of the matrix are linearly independent.

fu+l fa+I ... fia+1
X1 +1
fio+ I foot+tI ... fro+1 1‘ .
: : Xp 1
fln"’I f2n+I fkn+I k kx1

nxk

This means that C' contains the element X = (0,0, ...,0, Zle(fm +1)(g; +
I)), where

S (fan+D)(gi+ 1) #0.

Sowt(X) =1 and therefore the minimum Hamming weight of C' is 1.

Now suppose all T,, are zero modules and at last one T}, ;, is nonzero. Let

11 112

Tf,l\m be nonzero. By definition of Tn,l)n, there exists (g1 + I, g2+ 1, ..., g1 +
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I) # (0,0,...,0) € RF such that the elements of (g1 + I,g2 + I,...,gx + I) are
respectively the first £ components of an element in 7,1, = nj%{nfl,n} M;.
This means that (g1+1,g2+1, ..., g+ 1) is a nontrivial solution of the following
matrix equation:

fuu+1 fa+1 fo1+1
X I
fia+1 Ja2a +1 Jreo+1 1-+ 0
: ' Xp+1
ho-y + 1 fo-y + 1 oo Jom-y T 1/ (5 * b

However since T; =0, Z{n,\l = 0, it is not the the solution of following tow
matrix equations :

fuu+1 fa+1 foa+1

X1 +1
fia+1 foo +1 fro+1 1_ 0
: ' X+ 1
fim—y + 1 fon—vy +1 oo frm—1y +1 (n—1)xk » kex1
f11+I f21+I fk1+I
fia+1 fo2+1 fra+1 Xi1+1
: : : =0.
Jim—2)y + 1 foneoy +1 o frmooy+1 Xp+I /),
Jim) +1 oy +1 o femy+ L )

This means that C' has an element of the form
X = (O’ 07 tey 0’ Z?:l(fi(nfl)""l) (gi+I), Zf‘:1(fln+l) (gi+1))7 where Zf:l(fin""
N(gi+1)#0# Zle(fi(n,l) +1I)(g; +I). So wt(X) = 2 and therefore the
minimum Hamming weight of C is less than or equal 2. Suppose C has an
element of weight one. Then all components of this element except one mem-
ber are zero. In particular, suppose it is of the form (0,0,...,0, f + I), where
f+1#0. Since (0,0, ...,0, f+1) is an element in C it is the linear combination
of its basis. This means that there exists (g1 41, g2+1, ..., gr+1) € R such that

fu+I fio+1 ... fin+1

foa+1 foo+I ... fo+1
(0,0,...,0, f+1I) = (g1 +1, g2+, ..., gp+1) ) )

fia+1 fra+1 ... fin+1

We can write the above as follows:
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fu+I  fa+I ... fia+I . 0
fio+ 1T foo+T ... fro+I 1. :

| E gt 1 0
iy + 1 foy + 1 oo fr@m) +1 ok k kx1 f+1I

This means that T; is not zero, which is a contradiction. Hence C has no
element of weight 1. Since C' is nonzero, hence the minimum Hamming weight
of C'is 2. The rest of the proof follows by induction. O

It is easy to see that the maximum of minimum Hamming weight of a free
linear code is least or equal to n — 1.

Remark 3.4. This algorithm, is able to compute the minimum Hamming weight
for a linear code of arbitrary length. It is enough to give the basis for a
free linear code. This algorithm then easily computes the minimum Hamming
weight of the code generated by this basis. Note that this is important when
our code is infinite or is a code over a polynomial ring with many variables
(The Example 4.1 that is considered in this paper is only for checking our
algorithm and showing how this algorithm works, not for displaying its ability).
Moreover, the first step of this algorithm can distinguish if a given subset of a
code is linearly independent or not. In other words this algorithm recognizes
a free linear code. Also, by omitting the additional elements in a generating
set it can find a linearly independent subset of a given set. Furthermore, the
algorithm mentioned in this paper connects coding theory and commutative
algebra over polynomial rings using Grébner basis and Syzygy modules. This
algorithm works not only for SPAP-rings but also can be modified for any
quotient of polynomial rings. One of this rings is k[z]/(x?), where k is a field.
In particular this result are true for Z,[x]/(z?), where p is a prime number.

Proposition 3.5. Let C be a free linear code . Then the mazimum of minimum
Hamming weight of C' is n — 1 if and only if all TZ,T/“\Q,,T“/—L\W2 are zero

and at least one Tj, S Nonzero.

yeeybn—1
Proof. This is a direct consequence of Theorem 3.3. O

Theorem 3.6. (Algorithm) Suppose that C' is a linear code of R™ and Q =
{(fa+1 fio+1I,....fin+ 1)} fori=1,...k and j = 1,2,...,n, where f;; €
klxy,xa, ..., 2], is a subset of C. Then the elements of Q are linearly indepen-
dent if and only of Ty = 0.

Proof. Clearly form definition and verification of Theorem 3.3. (]

Theorem 3.7. (Algorithm) Suppose that C' is a linear code of R™ and Q0 =
{(fa+1 fio+1I,....fin+ 1)} fori=1,...k and j = 1,2,...,n, where f;; €

nx1
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klx1, 22, ..., y], is a subset of C. Then we can select the largest linearly inde-
pendent subset of ).

Proof. If Tz = 0, then by above theorem {2 is this set. If Ty # 0, we define
QO ={(fa+1 fio+1, ..., fin+ID)} fori=1,..,1,....k and [ omitted. Now if for
some Q, Ty = 0, then O is a wanted set. Otherwise, we continue this process
until Tz = 0. (I

4. EXAMPLES

Now we bring some examples. The first example that be considered is only
for checking our algorithm and showing that how this algorithm works, not for
the ability of it. This algorithm after making into a computer program, is able
to compute the minimum Hamming weight for a linear code of arbitrary length
by a click. After programming this algorithm, it is enough to give the basis
for a free linear code, then this algorithm computes the minimum Hamming
weight of the code that generated by this basis without cumbersome manual
works on the elements.

EXAMPLE 4.1. In this example all computation has been carried out using
COCOA. We compute the minimum Hamming weight of a free linear code by
our algorithm. Consider the field is Z3 and we work with two variables. So
our SPAP-ring is R = % Suppose that C is the submodule of R3
generated by (fu + 1, fio + I, f13 +I> = (1 +I,1+1,1 +I>,(f21 + 1, foo +
Ifos+1)=Q+1,2+1,3+1).

First we compute M;, for i = 1,2, 3.

Step 1: UseR = ZZ/(3)[x, y];

Syz([la L, 1Y, a? — y2» yS])§

The output is:

Module([[1,-1,0,0,0], [0, zy, —1,0,0], [-y?, 22,0, —1,0], 0,43, 0,0, —1]]).

This means that

M, = Module([[1,~1,0,0,0], [0, zy, —1,0,0], [y, 22,0, —1,0], [0, %3, 0,0,

—1]]).

Step 2: UseR := ZZ/(3)[x, y];

Syz([1,2,zy,2° — y*,4°));

The output is:

Module([[1,1,0,0,0],[0, —zy, —1,0,0], [y, —22,0,—1,0], [0, —y>,0,0, —1]]).

This means that

My = Module([[1,1,0,0,0],[0, —zy, —1,0,0], [y, —22,0, —1,0], [0, —y>, 0, 0,

—1)

Step 3: UseR ::= ZZ/(3)[x, y];

Syz([la 3; 1Y, a? — y2, yg]);

The output is:

Module([[0,1,0,0,0], [zy,0,—1,0,0], [x* — y2,0,0,—1,0], [y*,0,0,0, —1]]).
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This means that

M3 = Module([[0,1,0,0,0], [zy,0,—1,0,0], [#2—y*,0,0,—1,0], [y3,0,0,0, —1]]).
Now we have:

Tp = My (N Mz () M3

Step 4: UseR = ZZ/(3)[x, y];

Intersection(Module([[1,-1,0,0,0], [0, acy, 1,0,0] [—y2,2%,0,—1,0], [0, 93,0,
0, —1]]), Module([[1,1,0,0,0], [0, —xy, —1,0,0], [-y2, —22,0,—1,0], [0, —¢3, 0, 0,
—1]]), Module(][0,1,0,0,0], [zy, 0, —1,0, 0],[1:2 2.0,0,—1,0],[y3,0,0,0,—1]]))
The output is:

Module([[zy,0,—1,0,0], [z? — y2,0,0,—1,0], [y*,0,0,0, —1]]).

This means that

Ty —Module([[ﬂcy7 ,—1,0,0], [#2 — 4%,0,0,—1,0], [¢3,0,0,0,—1]])

So Ty = Module([[xy + 1,0+ 1], [2% — y*> + 1,0 + I, [y31,0 + I]]) = 0

By Theorem 3.6, this shows that C' is free.

For Ty = My () M3, we have

Step 5: UseR ::= ZZ/(3)[z, y];

Intersection(Module([[1,—1,0,0,0], [0, zy, —1,0,0], [-y?, 22,0, —1,0], [0, 43, 0,
0, —1]]), Module([[1,1,0,0,0], [0, —2y, —1,0,0], [-y?, —22,0,—1,0], [0, —¢3, 0,0,
1)

The output is:

Module([[xy,0,-1,0,0],[z?—y?,0,0,-1,0], [y*,0,0,0,—1],[0,0, —z, y, 1], [0, 0,
*y270,1’H)-

This means that

Ty = Module([[zy,0,—1,0,0], [z?>—y%,0,0,—1,0], [y3,0,0,0,—1],[0,0, =z, y, 1],
[O,O,—yQ,O,x]]).

So Ty = Module([[zy+1,0+1), [z —y2+1,0+1], [y*+1,0+1],[0+1,0+1],
[0+ 1,0+ 1]]) =0.

For To, = M () M3, we have

Step 6: UseR ::= ZZ/(3)[z,y];
Intersection(Module([[1,—1,0,0,0], [0, 7y, —1,0,0], [-y?, 22,0, 1,0 ,
0, —1]]), Module([[0,1,0,0,0], [zy, 0, —1,0,0], [*—y2,0,0,—1,0], [y>,0,0,0, —1]
1)

The output is:

Module([[xy, 0,—1,0,0],[z% — y2,0,0,-1,0], [y3,0,0,0, —1]]).

This means that

Ty, = Module([[zy,0,—1,0,0], [z? — y2,0,0,—1,0], [y>,0,0,0, —1]]).
soﬁzModuze([[:cy+I 0+1],[22 =y + 1,0+ 1], [y® + 1,0+ I]) = 0.

For T3 = M; () M2, we have

Step 7: UseR ::= ZZ/(3)[x, y];

<
<

|qc,o

=)

Intersection(Module([[1,1,0,0,0], [0, —zy, —1,0,0], [-y?, —22,0,—1,0], [0, =2,
0,0, —1]]), Module([[0,1,0,0,0], [zy,0, —1,0, 0] [ y2, ,0,—1,0], [v%,0,0,0,—1
Ik
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The output is:

Module([[-2y,0,1,0,0],[-22 + v%,0,0,1,0], [-y3,0,0,0, 1]]).

This means that

Ts = Module([[-zy,0,1,0,0], [-2% + y2,0,0,1,0], [-%>,0,0,0,1]]).

So Ts = Module([[—zy + 1,0+ I, [-22 + 3>+ 1,0+ 1], [~y® + 1,0+ 1]) = 0.

Since ﬁ = @ = 7/:3 = 0, hence the minimum Hamming weight of C is not 1.

Now since Tyo = M3 = Module([[0,1,0,0,0], [zy,0,—1,0,0], [z*~%>,0,0, -1,

0], [y3,0,0,0,—1]], hence Tha = Module([[0 + 1,1+ I], [zy + I,0 + I], [x>—

y?>+ 1,0+ 1), [y> + 1,0+ I]] = Module([[0 + I,1 + I]] # 0.

This shows that fl\g # 0 and so the minimum Hamming weight of C' is 2.
By Proposition 3.5, this code has maximum minimum Hamming weight.

In the following examples we omit the details.

EXAMPLE 4.2. Consider the field Q (the field of rational number), and we work
Qlz,y,7]

(zy,2z,y2,22 —y?,02 —22,y2 —22,23)

Suppose that C is the submodule of R® generated by:
{(@P+ Ly +Lat+ Ly+Lz+ D), (" + L2+ Ly+Lz+ 1+ 1),
2+ L2+ 1z+ L+ Ly+D),(e+y+Lae+z+TLy+z+1,1+1,1+1)}.

For this set of generators, we have Tz = 0. So this set is linearly independent.

with tree variables. So our SPAP-ring is R =

5. CONCLUSION

The main purpose of this paper is to consider a part of coding theory, error-
correcting, with techniques of computational commutative algebra, specially
Syzygy modules. So we have brought an algorithm for computing the minimum
Hamming weight of a free linear code over rings that are SPAP-rings. We
believe that the techniques that are considered can be extended to many of the
quotient of the polynomial rings with several variables. Also, the mentioned
techniques can be used for other kinds of codes that were defined by polynomial
ring.
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