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ABSTRACT. In this paper, the system of Fredholm integral equations of
the second kind is investigated by using a modified degenerate kernel
method (MDKM). To construct a MDKM the source function is approxi-
mated by the same way of producing degenerate kernel. The interpolation
is used to make the needed approximations. Lagrange polynomials are
adopted for the interpolation. The equivalency of proposed method and
Lagrange-collocation method is shown. The error and convergence analy-
sis of the algorithm are given strictly. The efficiency of the approach will

be shown by applying the procedure on some prototype examples.
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1. INTRODUCTION

The solutions of integral equations have a major role in the fields of science
and engineering. A physical event can be modeled by the differential equa-
tion (ODE/PDE), an integral equation (IE) or an integro-differential equation
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(IDE) or a system of these [10]. In this study, we consider the system of Fred-
holm integral equations of the second kind of the form [14]

T4 b
=1 e

where z € [a,b], \;; is a parameter, f;(z) is the source (or data) function,
K;; is the kernel function, u(t) = (u1(t), ..., un(t)) and w;(z), i = 1,2,...,m,
are the unknown functions that will be determined. For the linear case, it is
assumed that K;;(x,t,u(t)) = >0 Yijrkijr(z, t)ur(t). We rewrite Eq. (1.1)
in the matrix form as follows

b
u(z) = f(z) +/ K(z,t,u(t))dt, (1.2)

where

f(x) = (f1(fL'), "'ﬂfm(x))Tv

K(x,t,u(t) = (kiy..., km)7,

T4
ki = Zl Ainij(Ia t, U(t)),l = 1, 2, ey
j=
There are several analytical and numerical methods for solving integral equa-
tions, such as homotopy methods [4, 14, 6], an iterative method [3], a matrix
based method [5] and differential transform method [15].

In this paper, a review of degenerate kernel is given. Then we introduce a mod-
ified of degenerate kernel method by approximating source function using the
same way of producing degenerate kernel. We use the Lagrange interpolation
method to obtain the needed approximations and we show that for this case
the modified degenerate kernel method is equivalent to the Lagrange-collocation
method. The error and convergence analysis of the modified degenerate kernel
method are given strictly.

2. THE DEGENERATE KERNEL METHOD

The degenerate kernel method (DKM) is a well-known classical method for
solving Fredholm integral equations of the second kind, and it is one of the
easiest numerical methods to define and analyze [1, page 23]. This method for
a given degenerate kernel is called direct computation method (DCM) [11] and
[16, page 141].

We work in the space X = Cla,b] with || - ||cc. We define the the integral
operator K of (1.2) as follows

b
Klu(z)] = / K (2, 4, u(t))dt. (2.1)
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For the linear case, the integral operator denoted by (2.1) reduces as follows

b
:c):/ K(z, t)u(t)dt. (2.2)

The integral operator K is assumed to be a compact operator on X into X.
The kernel function K is approximated as follows

Ko (@, t,u(t Z@ Vit u(t)), (2.3)

such that the associated integral operators ICy, satisfy
hm I =Kl =0. (2.4)

Generally, we prefer this convergence to be rapid to obtain rapid convergence of
Up, 0 u Where u,, is the solution of the approximating equation u, —/C,, [u,] = f.
For this purpose, for linear case, we first outline a theorem as already given in
[1, page 24, Theorem 2.1.1]. Then, we extend the mentioned theorem for the
nonlinear case.

Theorem 2.1. Assume 1 — K : X ~—5 X, with X a Banach space and K

into
bounded. Further, assume IC,, is a sequence of bounded linear operators with

(2.4). Then

1. Then the operators (1 —K,,)~1 exist from X onto X for all sufficiently
large n, sayn > N, and

o -]
1= | =7l - Kl
2. For the equations u — K[u] = f and u, — Kyplu,] = f, n > N, we have

H(k/cn)*lH < n> N.

= ) < | (= 1)~ 10 = Ko (2.5)
Proof. Refer to [1] by setting A = 1. O

Remark 2.2. In using piecewise polynomial interpolation with polynomials of
degree P > 0, it is straightforward to show that the error ||u—uy,||o is O(RT+1)
provided K (x,t) and u(x) are sufficiently differentiable [1, page 41].

Now, we extend Theorem 2.1 for the nonlinear case.

Theorem 2.3. Assume K is bounded. Further, assume K, is a sequence of
bounded operators with (2.4) and K satisfies uniform Lipschitz condition

1K[u] = Klun]lloo < Lic [lu = unll » (2.6)

where Lic > 0 and 1 — Lic > 0. Thus, for the equations u — K[u] = f and
U — Kplug] = f, we have

Kn
1— Ly’

(2.7)
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where K, = || K[u,] — Knlun]|| o -
Proof. We have
u— Uy = Klu] — Klun] + Klun] — Ky [un],
therefore )
[ = unlloo < Licllu = unlloc + Kn,
this ends the proof. O

Remark 2.4. From (2.4) and (2.7), we find that if || — I, || converges rapidly
to zero, then the same is true of ||u — || .

2.1. Solution of DKM. DKM transforms a Fredholm integral equation of
the second kind to a system of algebraic equations. To handle Eq. (1.2), by
using DKM, we can express the procedure as follows

1. Substituting (2.3) into (1.2) gives

un (23 0) = f(x) + Z ;¢ (), (2.8)
where ,
o = / Y (tu(t))dt, i =1, ..., n, (2.9)

and & = (a, ..., o).
2. Replacing Eq. (2.8) into (2.9) leads to the following algebraic system

b n
ai:/ i (6 F 0+ a0 | dti=1,..m. (2.10)
a =1

3. Solving Eq. (2.10) provides values of «;, i = 1,...,n, for substituting
them into the Eq. (2.8) to obtain solution of Eq. (1.2).

Remark 2.5. In [1, page 26, Theorem 2.1.2], under some assumptions, it was
shown that the linear form of the algebraic system (2.10) is nonsingular.

3. THE MODIFIED DEGENERATE KERNEL METHOD

The modified degenerate kernel method (MDKM) is obtained by approx-
imating source function using the same way of producing degenerate kernel
denoted by Eq. (2.3) [11]. Then we write

fu(z) = Zﬁi@(x)v (3.1)

where 3;, i = 1,2, ...,n, are known. Therefore Egs. (2.8) and (2.10) become as

follows .

un (75 ) = Z (0 + Bi)di(x), (3.2)

i=1
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and

n

b
ai:/ i [ 63 (g + By | dti=1,.m, (3.3)

j=1
respectively. In this case, we have the approximate equation w,, — Ky, [un] = fr.

Remark 3.1. The nonlinear algebraic systems denoted by Egs. (2.10) and (3.3)
are nontrivial systems to solve, and usually some variant of Newton’s method
is used to find an approximating of solution. A major difficulty is that the
integrals in them will need to be numerically evaluated. Also, the role of initial
guesses in Newton’s method is very important, for more details refer to [11].

Remark 3.2. In Lagrange interpolation, for collocation nodes z,, r = 1,2, ...n,
we assume that ¢;(z,) = ;. On the other hand, from Eqgs. (2.3) and (3.1) we
find 9; (¢, u(t)) = K(z;,t,u(t)) and B; = f(x;) respectively.

Remark 3.3. In what follows, we show that when the Lagrange interpolation
method is used for the needed approximations, MKDM is equivalent to the
Lagrange-collocation method. In Lagrange interpolation method, we choose
¢i(x) =l;(x),i=1,2,...,n, where [;(x) are Lagrange polynomials at collocation
nodes z;, i = 1,2,...,n. From Eq. (3.2) we have u(z,) = u,(z,;) = ar +
f(z.), r =1,...,n. Therefore, Eq. (3.3) is equivalent to the following algebraic
system

b n
ui:fﬁ—/ K (@i, Y uyli(t) | dti=1,...,n. (3.4)
a j=1

where u; = u(z;) and f; = f(x;), i = 1,...,n. By solving Eq. (3.4) the values
of u;, 1 = 1,...,n, is provided approximately such as ;, ¢ = 1,...,n. Thus, the
n-order Lagrange interpolation approximation of solution is fund as 4, (z) =
> i=1 U5l(x). Tt is clear that Eq. (3.4) is equivalent to r,(2;) =0, =1,...,n,
where 7, (z) is residual in the approximation when using u(z) ~ ,(z). For
more details on relationship of degenerate kernel and projection methods, on
Fredholm integral equations of the second kind, refer to [12]

Remark 3.4. According to the Remark 3.3, the presented algorithm can give
an exact solution of Eq. (1.2) when this equation has an exact solution in the
form of a polynomial.

3.1. Error and convergence analysis of MDKM. There are two major
approaches to the error analysis of equation v — K[u] = f: (1) Linearize the
problem and apply the Banach fixed point theorem, (2) Apply the theory asso-
ciated with the rotation of a completely continuous vector field [2, page 542].
Here, we modify the second part of the Theorem 2.1.
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Theorem 3.5. Under the assumptions of Theorem 2.3, for the equations u —
Klu] = f and u, — Kplu,] = fn, we have

o=l < (35)
where en(f) = 1 = falloos Kn = [Klun] = Knlun]|l -
Proof. We have
u—up = f = fn+ Klu] = Klun] + Klun] = Knlun],
therefore
[t = tnlloe < en(f) + Licllu = tnlloo + Ko,
this completes the proof. O

Remark 3.6. From (2.4) and (3.5), we find that if || — K, || and e, (f) converge
rapidly to zero, then the same is true of ||u — u,|| ..

Remark 3.7. As shown in Remark 3.3, MDKM is equivalent to the Lagrange-
collocation method, therefore, for the linear case, we can use the following
theorem as already given in [1, page 55, Theorem 3.1.1] and [2, page 479,
Theorem 12.1.2].

Theorem 3.8. Let X be a Banach space, and let {X,|n > 1} be a sequence
of finite dimensional subspaces, say of dimension d,. Let P, : X — X, be
a bounded projection operator. Assume K : X — X is bounded and 1 — I :

1—1
X —— X. Further, assume
into

I —P. K| =0 as n— oo,

Then for all sufficiently large n, say n > N, the operator (1 — P,K)~1 exists
as a bounded operator from X to X. Moreover, it is uniformly bounded

:;R H(l - PnlC)_lu < 00.

For the solutions of equations (1 — K)u = f and (1 — PpK)u, = P, f, we have
u—u, =(1-— ’PnIC)_1 (u — Ppu),
and the two-sided error estimate

[[u = Ppull

Py = e unll < | =Puk) ™| 1w = Pou]

This leads to a conclusion that |[u — u,|| converges to zero at exactly the same
speed as ||u — Ppull.

Proof. Refer to [1, 2] by setting A = 1. O
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4. TEST EXAMPLES

To show the efficiency of the present procedures described in the previous
part, we present some examples. For comparison the solution given by MDKM
with the exact solution, we report the maximum error which is defined by

1wl = max, [ui(z) = uin(@)]. (4.1)

where wu; () is the n-order approximation of u;(z) corresponding to the n-
order solution given by MDKM.

EXAMPLE 4.1. Consider the following system of the Fredholm integral equa-
tions of the second kind with some non-degenerate kernels
ur(z) =32 — % + fol e*tuy (t)dt+ fol xtus(t)dt,
(4.2)
-z 2
ug(x) = 2% — T @AY 240 (4)dt + [y e Pug(t)dt.

The exact solution is (u;(z), us(z)) = (z,2?). By choosing three equally-spaced
collocation nodes, to make a degenerate approximation of the kernel as well as
an approximation of same order to the source functions, and using the MDKM,
we find

1 1
a1 =5,0121=4—-2Ve,a131=10112= 5,

(4.3)
Q211 = Q212 = %,042,2,2 =16 - %;042,3,2 =2- 27
and
ul(x; a) = —4m2a1,271 + (21’2 - 1)0[173’1 + (2562 — 3z + 1) a11,1
a1+ dxar 0 — 8y/ex? + 1322 + 8\/ex — %x — %,
’UQ(I‘; Oé) = I2a2,1,1 - 4(-1' — 1)330(272,2 + (23? — 1)560[2,372 +x — % (44)
2

2 4 o= 12— a2 +2(2— 1) (0 - })s

2(95/e—156)(z— 1)z
+ ENG .

Substituting (4.3) in (4.4) gives the exact solution of Eq. (4.2)
ui(z) = z,uz(z) = 22

It is important to notice that, in Eq. (4.2), we have f1(0) = —3 and f2(0) = —3.
Also, by choosing three Chebyshev collocation nodes, for needed approxima-
tions and using Newton method to obtain numerical solution of the correspond-
ing algebraic system, by increasing the significant digits to 50, MDKM gives

the exact solution of Eq. (4.2).
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W(X)

-05

FIGURE 1. Comparison of the exact solution with approximation
solutions given by MDKM for Example 4.2. Solid line: exact solu-
tion, dashed line: 9th-order and dotted line: 5th-order approxima-

tions.

ExAMPLE 4.2. Consider the following system of the Fredholm integral equa-
tions of the second kind with some non-degenerate kernels [13, 7]

up () = 2e* + em;il_l — fol e tuy (t)dt— fol e(@+ 2ty (t)dt,

(4.5)

us(z) = € + e + Tl ety ()dt— [} e Hus(t)dt.
The exact solution is (u1(z),us(z)) = (e®,e~*). Fig. 1 and Table 1 show the
results of applying the interpolation with equally-spaced collocation nodes to
make the degenerate approximations for the non-degenerate kernels as well as
source functions in Eq. (4.5). In this case, the obtained results are related to
the numerical solutions of the corresponding algebraic system. This numerical
results are obtained by using the Newton method by increasing the significant
digits to 50.

Table 1. Results for Example 4.2.

nodes ([ Ew, [0, 1]] [ Ew, [0, 1]]

3

3.15572 x 10792

9.19461 x 107

5 1.03176 x 1079 2.67876 x 1079
7 2.31895 x 107%7  6.15433 x 107
9 3.42516 x 1071°  9.31577 x 10~
11 3.51587 x 107 1.00920 x 10713
13 2.63874 x 1071 7.71218 x 10717
15 1.50739 x 107 4.46165 x 10720
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FIGURE 2. Comparison of the exact solution with approximation

solutions given by MDKM for Example 4.3. Solid line: exact solu-
tion, dashed line: 9th-order and dotted line: 5th-order approxima-

tions.

EXAMPLE 4.3. Consider the following system of the Fredholm integral equa-
tions of the second kind with some non-degenerate kernels [13, 8, 9]

uy(z) =z + % cos(z) + L sin®(1) — fol tcos(x)uq (t)dt— fol xsin(t)us(t)dt,

us(x) = fola) — fi e ur(t)dt— [ (x + tyus(t)dt.

(4.6)
where fa(x) = cos(z) + 62;1 + (z + 1) sin(1) + cos(1) — 1. The exact solution
is (u1(x),us(x)) = (x, cos(x)). Fig. 2 and Table 2 show the results of applying
the interpolation with equally-spaced collocation nodes to make the degenerate

approximations for the non-degenerate kernels as well as source functions in
Eq. (4.6). Similar to the Example 4.2, the obtained results are related to
the numerical solutions of the corresponding algebraic system. This numerical
results are obtained by using the Newton method by increasing the significant
digits to 50. It is important to notice that, in Eq. (4.6), we have f3(0) =
1 +sin(1) + cos(1).

Table 2. Results for Example 3.

nodes | £, [0, 1]]] | Eus [0, 1]]]
3 1.28593 x 1079 3.86950 x 1079
5 4.33040 x 107°  1.49202 x 1079
7 9.99420 x 1079 3.43136 x 107%°
9 1.50465 x 10~ 5.08941 x 10~ **
11 1.60610 x 107'*  5.22394 x 10~
13 1.21916 x 1077 3.91615 x 10717
15 7.01952 x 10721 2.23399 x 1020
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5. CONCLUSION

In this paper, a modified degenerate kernel method (MDKM) was applied
to the system of Fredholm integral equations of the second kind. The results
show that the MDKM is a promising tool to handle this type of equations.
We used the Lagrange polynomials as base functions for needed approxima-
tions, and in this case, the MDKM becomes as a collocation method, namely
Lagrange-collocation method. The alternative of using Bernstein and Cheby-
shev polynomials as well as sinc functions are also possible. Finally, extension
of the method to higher dimensional can be accommodated. We pointed out
that the corresponding analytical and numerical results are obtained using
MATHEMATICA.
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