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Abstract. By the Mordell- Weil theorem, the group of rational points on

an elliptic curve over a number field is a finitely generated abelian group.

This paper studies the rank of the family Epq : y2 = x3 − pqx of elliptic

curves, where p and q are distinct primes. We give infinite families of

elliptic curves of the form y2 = x3 − pqx with rank two, three and four,

assuming a conjecture of Schinzel and Sierpinski is true.
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1. Introduction

Finding integral solutions of Diophantine equations has a long history [1, 2,

3, 11]. Elliptic curves over rational numbers are special types of these equations.

Let E be an elliptic curve over Q and E(Q) be its Mordell-Weil group over Q
which is a finitely generated abelian group. The rank of the free part of E(Q)

as a Z-module is called the rank of E over Q.

In our previous paper[4], we considered the family of elliptic curves of the

form Ep : y2 = x3 − 3px over Q, where p is a prime number. In this paper we
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consider the family of elliptic curves over Q given by the equation

Epq : y2 = x3 − pqx,

where p and q are distinct primes 6= 2, 3. Using Selmer groups we first find an

upper bound for the rank of this family. Then using the Parity conjecture, we

refine our result and find infinite families of elliptic curves which conjecturally

have rank zero. Finally we provide sufficient conditions on p and q, for the

elliptic curves y2 = x3 − pqx to have rank two, three and four. We also show

that conjecturally, there exist infinitely many such primes.

2. Computing Selmer Groups and Proof of the Main Result

Let E and E′ be elliptic curves defined over Q, and ϕ : E −→ E′ be a non
zero 2−isogeny. Then we have the following commutative diagram:

0 −→ E′(Q)/ϕ(E(Q))
δ−→H1(Gal(Q/Q, E[ϕ]) −→H1(Gal(Q/Q, E)[ϕ]−→ 0

↓ ↓ ↓
0 −→

∏
v E
′(Qv)/ϕ(E(Qv))

δ−→
∏
v H

1(Qv , E[ϕ]) −→
∏
v H

1(Qv , E)[ϕ] −→ 0

where H1(Qv,−) denotes H1(Gal(Qv/Q),−) and δ is the connecting homo-

morphism. ϕ- Selmer group is then defined as

S(ϕ)(E/Q) = Ker{H1(Gal(Q/Q), E[ϕ]) −→
∏
v

H1(Qv, E)}

and the Shafarevich-Tate group X(E/Q) is

X(E/Q) = Ker{H1(Gal(Q/Q), E) −→
∏
v

H1(Qv, E)}

Using the dual isogeny ϕ̂ : E′ −→ E, S(ϕ̂)(E′/Q) and X(E′/Q)[ϕ̂] are simi-

larly defined. We have the following relation

rankE(Q) = dimF2S
(ϕ̂)(E′/Q)− dimF2X(E′/Q)[ϕ̂] +

dimF2
S(ϕ)(E/Q)− dimF2

X(E/Q)[ϕ]− 2. (2.1)

In our case, we use E′pq : y2 = x3 + 4pqx and the 2-isogeny ϕ : Epq −→ E′pq
defined by

ϕ(x, y) = (y2/x2,−y(pq + x2)/x2).

For computing Selmer groups, we use proposition X.4.9 in [14]. Thus assuming

S = {∞, 2, p, q} ⊆MQ,

Q(S, 2) = {b ∈ Q∗/(Q∗)2; ordv(b) ≡ 0(mod 2) for all v /∈ S}

and for

Cd : dy2 = d2 + 4pqx4,

C ′d : dy2 = d2 − pqx4,

we have the following identifications:
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S(ϕ)(Epq/Q) ' {d ∈ Q(S, 2) : Cd(Ql) 6= φ for all l ∈ S},
S(ϕ̂)(Epq/Q) ' {d ∈ Q(S, 2) : C ′d(Ql) 6= φ for all l ∈ S}.

Note that {±1,±2,±q,±p,±2q,±2p,±qp,±2pq} is a complete set of represen-

tatives for Q(S, 2). we identify this set with Q(S, 2).

Proposition 2.1. We have:

(1) {1, pq} ⊆ S(ϕ)(Epq/Q);

(2) if d < 0 then d /∈ S(ϕ)(Epq/Q);

(3) 2 ∈ S(ϕ)(Epq/Q) iff ( 2
p ) = (2

q ) = 1 and pq ≡ 1, 7, 15(mod 16) ;

(4) p ∈ S(ϕ)(Epq/Q) iff ( qp ) = 1 and [p ≡ 1(mod 4) or q ≡ 1(mod 4)];

(5) 2p ∈ S(ϕ)(Epq/Q) iff ( 2p
q ) = ( 2q

p ) = 1 and p+ q ≡ 0, 2, 8(mod 16);

Proof. Using the identification in lemma we have {1, pq} ⊆ S(ϕ)(E/Q). On the

other hand Cd(R) = φ for d < 0, and Cd(R) 6= φ for d > 0.

For d = 2,we have:

C2(Q2) 6= φ⇐⇒ pq ≡ 1, 7, 15(mod 16),

C2(Qq) 6= φ⇐⇒ ( 2
q ) = 1⇐⇒ q ≡ 1, 7(mod 8),

C2(Qp) 6= φ⇐⇒ ( 2
p ) = 1⇐⇒ p ≡ 1, 7(mod 8),

For d = p,we have:

Cp(Q2) 6= φ⇐⇒ [q ≡ 1(mod 4) or p ≡ 1(mod 4)],

Cp(Qq) 6= φ⇐⇒ (pq ) = 1,

Cp(Qp) 6= φ⇐⇒ ( qp ) = 1,

For d = 2p,we have:

C2p(Q2) 6= φ⇐⇒ p+ q ≡ 0, 2, 8(mod 16).

C2p(Qq) 6= φ⇐⇒ ( 2p
q ) = 1⇐⇒ p ≡ 2(mod 3).

C2p(Qp) 6= φ⇐⇒ ( 2q
p ) = 1.

Since pq ∈ S(ϕ)(Epq/Q) we conclude that:

q ∈ S(ϕ)(Epq/Q)⇐⇒ p ∈ S(ϕ)(Epq/Q),

2pq ∈ S(ϕ)(Epq/Q)⇐⇒ 2 ∈ S(ϕ)(Epq/Q),

2p ∈ S(ϕ)(Epq/Q)⇐⇒ 2q ∈ S(ϕ)(Epq/Q).
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This completes the proof. �

Proposition 2.2. We have

(1) {1,−pq} ⊆ S(ϕ̂)(E′pq/Q);

(2) −1 ∈ S(ϕ̂)(E′pq/Q) iff p ≡ q ≡ 1(mod 4) and pq ≡ 1, 5, 9(mod 16);

(3) ±2 /∈ S(ϕ̂)(E′pq/Q);

(4) p ∈ S(ϕ̂)(E′pq/Q) iff (−qp ) = (pq ) = 1 and one of the following conditions

hold:

• p ≡ 1(mod 8)

• q ≡ 7(mod 8)

• p− q ≡ 0, 4(mod 16)

(5) q ∈ S(ϕ̂)(E′pq/Q) iff (−pq ) = ( qp ) = 1 and one of the following conditions

hold:

• q ≡ 1(mod 8)

• p ≡ 7(mod 8)

• q − p ≡ 0, 4(mod 16)

(6) ±2p /∈ S(ϕ̂)(E′pq/Q);

Proof. It is clear from definition that {1,−pq} ⊆ S(ϕ̂)(E′/Q). Next suppose

that d=2k with k = ±1,±q,±p and C ′2k(Q2) 6= φ. Taking the valuation v2 at

2 of both sides, we obtain a contradiction.

For d = −1, we have:

C ′−1(Q2) 6= φ⇐⇒ pq ≡ 1, 5, 9(mod 16)

C ′−1(Qp) 6= φ⇐⇒ p ≡ 1(mod 4).

C ′−1(Qq) 6= φ⇐⇒ q ≡ 1(mod 4).

For d = p we have:

C ′p(Q2) 6= φ⇐⇒ [p− q ≡ 0, 4(mod 16) or p ≡ 1(mod 8) or q ≡ 7(mod 8)]

C ′p(Qq) 6= φ⇐⇒ (pq ) = 1,

C ′p(Qp) 6= φ⇐⇒ (−qp ) = 1.

For d = q, similar to case d = p we get the desired result.

Since −pq ∈ S(ϕ̂)(E′pq/Q) we conclude that:

p ∈ S(ϕ̂)(E′pq/Q)⇐⇒ −q ∈ S(ϕ̂)(E′pq/Q),

−p ∈ S(ϕ̂)(E′pq/Q)⇐⇒ q ∈ S(ϕ̂)(E′pq/Q)
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pq ∈ S(ϕ̂)(E′pq/Q)⇐⇒ −1 ∈ S(ϕ̂)(E′pq/Q).

This completes the proof. �

Theorem 2.3. We have the following facts about the rank of Epq(Q):

(i) rank(Epq(Q)) ≤ 4.

(ii) If (p, q) ≡ (3, 11), (3, 15) (mod 16) and ( qp ) = 1, then rank(Epq(Q)) = 0.

(iii) If (p, q) ≡ (1, 3), (1, 11), (3, 9), (3, 11), (5, 7), (5, 9), (5, 15), (7, 13), (9, 11), (13, 15)

(mod 48) and ( qp ) = −1, then rank(Epq(Q)) = 0.

3. Calculation of the Root Number

In this section, we first recall the concept of the root number and then use
Parity conjecture to refine our result in the previous section. Let E be an
elliptic curve over Q and np be the number of points in the reduction of curve
modulo p. Also let ap = p+ 1− np. The local part of the L-series of E at p is
defined as

Lp(T ) =


1− apT + pT 2 if E has good reduction at p,

1− T if E has split multiplicative reduction at p,

1 + T if E has non- split multiplicative reduction at p,

1 if E has additive reduction at p.

Definition 3.1. The L- series of E is defined to be

L(E, s) =
∏
p

1
Lp(p−s)

where the product is over all primes.

Theorem 3.2. The L- series L(E, s) has an analytic continuation to the entire

complex plane, and it satisfies the functional equation

Λ(E, s) = ε(E)Λ(E, 2− s),
where

Λ(E, s) = (NE/Q)s/2(2π)−sΓ(s)L(E, s),

NE/Qis the conductor of E and Γ is the Gamma function. Here ε(E) = ±1 is

called the global root number of E.

The Parity conjecture states that

ε(E) = (−1)rE (3.1)

where rE denotes the rank of Mordell- Weil group of E. On the other hand, ε(E)

can be expressed as a product
∏
l εl(E) taken over all places of Q, each local

root number εl(E) being defined in terms of representations of Weil- Deligne

group of Ql. We recall some facts from[12]

Proposition 3.3. Let l be any prime of Q. Then
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(1) If E is any elliptic curve over R, then ε∞(E) = −1.

(2) If E/Ql has good reduction, then εl(E) = 1.

(3) If E/Ql has multiplicative reduction, εl(E) = −1 if and only if the

reduction is split.

(4) If E/Ql has additive, potentially multiplicative reduction then for l > 2,

εl(E) = (−1/l) and for l = 2, ε2(E) ≡ −c6/2v2(c6) mod 4.

(5) If E/Ql has additive, potentially good reduction with l > 3 and e =

12/gcd(vl(∆), 12), then

εl(E) =


(−1/l) if e = 2 or 6

(−3/l) if e = 3

(−2/l) if e = 4

(6) If E/Ql has additive, potentially good reduction with l = 3 (resp.l=2)

and E is given in minimal form, then εl(E) depends only on the l-adic

expansion of c4, c6 and ∆; if E is given in minimal Weirestrass form,

εl(E) can be read from table II of [6].

Proposition 3.4. For any prime l, if E/Ql is in minimal Weierstrass form,

then its reduction is: good if and only if vl(∆) = 0, multiplicative if and only if

vl(∆) > 0 and vl(c4) = 0, additive if and only if vl(∆) > 0 and vl(c4) > 0, in

the last case, the reduction is potentially multiplicative if and only if vl(∆) >

3vl(c4).

For the elliptic curve Epq in the family, we have ∆Epq
= 26 × p3 × q3. In

particular, y2 = x3 − pqx is in global minimal Weierstrass form. In this case

the reduction of Epq is additive, potentially good at 2,p and q, and good at all

other primes.

Proposition 3.5. For elliptic curve Epq : y2 = x3 − pqx, we have

ε(Epq) =

{
+1 if pq ≡ 1, 3, 11, 13 (mod 16)

−1 if pq ≡ 5, 7, 9, 15 (mod 16)

Proof. Let εl(Epq) denote the local root number at l. Therefore from proposi-

tion 3.3 and above discussion, we have

ε2(Epq) =

{
+1 if pq ≡ 9, 13 (mod 16)

−1 if pq ≡ 1, 3, 5, 7, 11, 15 (mod 16)

and

εp(Epq) = (−2p ) =

{
+1 if p ≡ 1, 3 (mod 8)

−1 if p ≡ 5, 7 (mod 8)

and, finally
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εq(Epq) = (−2q ) =

{
+1 if q ≡ 1, 3 (mod 8)

−1 if q ≡ 5, 7 (mod 8)

The assertion now follows. �

Remark 3.6. If the parity conjecture holds true in the family, then

(1) If (p, q) ≡ (5, 7), (5, 15), (7, 11), (13, 15) (mod 16) and ( qp ) = 1, then

rank(Epq(Q)) = 0.

(2) If (p, q) ≡ (1, 13), (7, 11), (15, 15) (mod 16) and ( qp ) = −1, then rank(Epq
(Q)) = 0.

(3) If pq ≡ 5, 7, 9, 15 (mod 16), then rank(Epq(Q)) > 0.

4. Infinite Family with Non-zero Rank

Now, following [9, 15] we try to find elliptic curves with maximal rank in

the family. Using the homomorphism

α : Epq(Q) −→ Q×/Q×2,

which is defined by

α(P ) =


Q×2 if P = O
−pqQ×2 if P = (0, 0)

xQ×2 if P = (x, y) 6= (0, 0),O
we have the following exact sequence

0 −→ ϕ̂(E′pq(Q)) −→ Epq(Q)
α−→Q×/Q×2

as well as the corresponding result for the dual isogeny:

0 −→ ϕ(Epq(Q)) −→ E′pq(Q)
β−→Q×/Q×2.

So imα ' Epq(Q)

ϕ̂(E′pq(Q))
and imβ '

E′pq(Q)

ϕ(Epq(Q))
. As mentioned in [9], The images

of α and β can be described as follows: WC(E′pq/Q) := imα consists of all

classes b1Q×2, where b1 is a squarefree integer such that

N2 = b1M
4 + b2e

4, b1b2 = −pq (4.1)

has a nontrivial solution N,M, e ∈ N with (M, e) = (N, e) = 1. The equa-

tion (4.1) is called a torsor of E/Q and is denoted by T (ϕ̂)(b1). Similarly,

WC(Epq/Q) := imβ consists of all classes b1Q×2, where b1 is a squarefree

integer such that

T (ϕ)(b1) : N2 = b1M
4 + b2e

4, b1b2 = 4pq (4.2)

has a nontrivial solution in integers N,M, e ∈ N. It is easy to see that ev-

ery rational point P 6= O on Epq has the form P = (m/e2, n/e3) for inte-

gers n,m, e ∈ Z such that (m, e) = (n, e) = 1, and by definition we have

α(P ) = mQ×2; moreover, it can be shown that the corresponding torsor
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T (ϕ̂)(m) is solvable. Conversely, if (N,M, e) is a nontrivial primitive solu-

tion of T ˆ(ϕ)(b1), then (b1M
2/e2, b1MN/e3) is a rational point on E. Finally we

have the following exact sequences

0→WC(Epq/Q)→ S(ϕ)(Epq/Q)→X(Epq/Q)[ϕ]→ 0, (4.3)

0→WC(E′pq/Q)→ S(ϕ̂)(E′pq/Q)→X(E′pq/Q)[ϕ̂]→ 0. (4.4)

Proposition 4.1. If p = 1 + 4x21 + b4 − 2b2 and q = p + 4b2, then

rank(Epq(Q)) ≥ 2.

Proof. First we see that q − p = 4b2, thus (M,N, e) = (1, 1, 2b) is a solution

of T (ϕ̂)(q)so q ∈ WC(E′pq/Q), so that {1,−pq, q,−p} ⊆ WC(E′pq/Q). On the

other hand pq−(2x1b)
4 = (1+4x41−b4)2, which implies that pq ∈WC(E′pq/Q).

From these we get WC(E′pq/Q) = {1,−pq, q,−p, pq,−1,−q, p}. Now our as-

sertion follows from 2.1 and (4.4). �

Corollary 4.2. If p = (5 + b4)− 2b2 and q = p+ 4b2, then rp,q = 3.

Proof. The last proposition with x1 = 1 implies that

WC(E′pq/Q) = {1,−pq, q,−p, pq,−1,−q, p}.

Now if we let x = b + 1, then 4p + qx4 = (p + 2bx2)2. Therefore

(M,N, e) = (1, x, p+ 2bx2) is a solution of T (ϕ)(4p) so 4p ∈WC(Epq/Q), thus

{1, pq, p, q} ⊆WC(Epq/Q). �

Corollary 4.3. Under the assumption of proposition 4.1, if 1 + 4x21 + b4 is a

square, then rp,q ≥ 3.

Proof. From the proposition, we know that

WC(E′pq/Q) = {1,−pq, q,−p, pq,−1,−q, p}.

Now if there exists y such that 1 + 4x21 + b4 = y2, then p + q = 2y2, there-

fore (M,N, e) = (1, 1, 2y) is a solution of T (ϕ)(p) so p ∈ WC(Epq/Q), thus

{1, pq, 2p, 2q} ⊆WC(Epq/Q). �

Corollary 4.4. If p = (1 + 8b41)2 − 8b21 and q = p+ 16b21, then rp,q = 4.

Proof. By letting x1 = 2b21 and b = 2b1 in corollary 4.3, we get WC(E′pq/Q) =

{1,−pq, q,−p, pq,−1,−q, p} and {1, pq, 2p, 2q} ⊆ WC(Epq/Q). On the other

hand, we have 4p(2b21)4 + q(1 + 2b1)4 = (2(2b21)4 + (1+2b1)
4+p

2 )2, therefore

(M,N, e) = (2b21, 1 + 2b1, 2(2b21)4 + (1+2b1)
4+p

2 ) is a solution of T (ϕ)(4p) so

p ∈ WC(Epq/Q), thus {1, pq, 2p, 2q, p, 2, q, 2pq} ⊆ WC(Epq/Q), and the rank

is maximal. �

The following conjecture due to Schinzel and Sierpinski [13] implies that

there exist infinitely many such primes.
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Conjecture 4.5. Let f1(x), f2(x), . . . , fm(x) ∈ Z[x] be irreducible polynomials

with positive leading coefficients. Assume that there exists no integer n > 1

dividing f1(k), f2(k), . . . , fm(k) for all integers k. Then there exist infinitely

many positive integers l such that each of the numbers f1(l), f2(l), . . . , fm(l) is

prime.

We can see that f(x) = 64x8+16x4−8x2+1 and g(x) = 64x8+16x4+8x2+1

satisfy the assumption of the conjecture with m = 2. So there exist infinitely

many positive integers l, such that f(l) and g(l) are prime numbers. So there

exist infinitely many elliptic curves y2 = x3−pqx with rank four. The following

table gives some values for b1 with p = (1+8b41)2−8b21 and q = (1+8b41)2 +8b21
prime, which results in Epq of rank exactly four.

Table 1

b1 p q

1 73 89

16 274878953473 274878957569

82 130825015677259489 130825015677367073

89 251941684568745673 251941684568872409

137 7942267523567796169 7942267523568096473

292 3382538789388030027649 3382538789388031391873

337 10646802084655597975369 10646802084655599792473

374 24499250121921170415073 24499250121921172653089

409 50114850374836220150473 50114850374836222826969

649 2014362131305403061936073 2014362131305403068675289

718 4520386069891056038654689 4520386069891056046903073

748 6271808031136689174004609 6271808031136689182956673

761 7198752264425208374121673 7198752264425208383387609

853 17937925803933572266971529 17937925803933572278613273
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