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1. Introduction

Recently, investigations into fractional calculus showed that it can used in

many physical systems more accurately formulation of fractional derivatives [1].

It appears that many physical processes exhibit a fractal order behavior that

may be different according to space or time. Many scientists and mathemati-

cians are attracted to studying the stability of fractional equations, as well as

the convergence of the solutions to these equations in some different methods

[2].
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Finite delay depicts the delay of response of re-action and appears in many

engineering applications such as chemical control systems, laser models aircraft,

biology, medicine and internet [3].

Soliman et. al. [4, 5, 6] considered the fractional integro-differential equa-

tions with time constant and variable delays. The existence and uniqueness of

solutions of the model system and also the stability of equilibrium points are

shown. The motivation behind delay fractional order system are discussed in

[8].
In this manuscript our main aim is to show the existence of the solutions of

the fractional multiple delay integro-differential equations

Dβy(t) = f

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
,

β ∈ (0, 1), t ∈ [t0 − τ, t0] (1.1)

with the initial conditions

y(t0) = Φ(y), (1.2)

where Dβy refers to the β− th fractional derivative of the anonymous function

y(t) ∈ Y = C([a, b],R7) which characterized by the Caputo operator, τ(t) is

the time varying delay (continuous delay function), τ1, τ2 are the constant and

propotional time delays respectively, τ2 > 0, f : [a, b] × Y × Y × Y → Y is a

continuous function, G,H : [a, b]2 × Y → Y are nonlinear Lipschitz continuous

functions of y(t) and Φ : Y → R+ is a continuous function.

Let us suppose the following conditions.

There exists constants Cf > 0, CG > 0, Cτ > 0, Cτ1 > 0, Cτ2 > 0, CH > 0.

CΦ > 0

(1) For each y1, y2, z1, z2, w1, w2, h1, h2, g1, g2, f1, f2 ∈ Y

|f(t, y1, z1, w1, h1, g1, f1)− f(t, y2, z2, w2, h2, g2, f2)| ≤ Cf

[
|y1 − y2|+ |z1 − z2|

+ |w1 − w2|+ |h1 − h2|+ |g1 − g2|+ |f1 − f2|
]

(1.3)

(2)

|
∫ t

a

G(t, x, y(x))dx−
∫ t

a

G(t, x, z(x))dx| ≤ CG|y − z| (1.4)

(3)

|
∫ b

a

H(t, x, y(x)) dx−
∫ b

a

H(t, x, z(x)) dx| ≤ CH |y − z| (1.5)

(4)

|y(t− τ(t))− z(t− τ(t))| ≤ Cτ |y − z| (1.6)
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(5)

|y(t− τ1)− z(t− τ1)| ≤ Cτ1 |y − z| (1.7)

(6)

|y( t

−τ2
)− z(

t

τ2
)| ≤ Cτ |y − z| (1.8)

(7)

|Φ(y)− Φ(z)| ≤ CΦ|y − z|. (1.9)

Theorem 1.1. The equation (1.1) is equivalent to

y(t) = Iβf

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
. (1.10)

Proof. Now, we integrate two both sides of equation (1.1) to obtain

I Dβy(t) = If

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
.

Thus, we get

I1−βy(t)− ϑ = If

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
.

On employing Iβ , we have

Iy(t) = Iβ+1f

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
+

ϑ

Γ(β)

∫ t

0

ds

(t− s)1−β
. (1.11)

So that,

Iy(t) = Iβ+1f

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
+

ϑ tβ

Γ(β + 1)
. (1.12)

With the use of differentiation, we get

y(t) = Iβf

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
+

ϑ tβ−1

Γ(β)
, (1.13)

where ϑ is a constant, then at t = a we deduce that (1.1) is equivalent to

(1.10). □

Lemma 1.2. A function y ∈ Y is a solution of the problem (1.1) if and only

if it is a solution of the delay integro-differential equation.
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2. Methodology

We managed to present existence and uniqueness of the solution for the

equation (1.10). Also, we investigate the stability of much more complicated

fractional multiple delay integro-differential equations. Let ρ : Y → Y, for any

y ∈ Y. Now, we establish the following theorem for the fixed point ρ.

Theorem 2.1. The operator ρ maps Y into itself and it is also continuous on

[a,b].

Proof. From Cauchy Schwartz inequality,

∥ρy(t)∥ = ∥Φ(y) + 1

Γ(β)

∫ t

0

(t− s)β−1[f

(
s, y(s− τ(s)),

∫ s

a

G(s, x, u(x))dx

, y(s− τ1), y(
s

τ2
),

∫ s

a

G(s, x, y(x))dx,

∫ b

a

H(s, x, y(x)) dx

)
ds∥

≤ c∥y∥+ fmax

Γ(β + 1)
tβ∥y(s− τ(s))∥CG∥y∥CH∥y∥

≤ c1∥y∥ ≤ c2. (2.1)

□

Thus, ρ maps Y into itself. Also, A becomes uniformly bounded. Suppose

a sufficiently small number n > 0,

∥ρy(t+ n)− ρy(t)∥ =
1

Γ(α)
[∥
∫ t

0

(t− s)β−1f

(
s, y((s+ n)− τ((s+ n)))

, y((s+ n)− τ1), y(
(s+ n)

τ2
)

,

∫ b

a

H((s+ n), x, y(x)) dx,

∫ s

a

G((s+ n), x, y(x))dx

)
ds∥

− ∥
∫ t

0

(t− s)β−1f

(
s, y(s− τ((s+ n))),

∫ s

a

G(s, x, y(x))dx

, y((s)− τ1), y(
(s)

τ2
),

∫ b

a

H(s, x, y(x)) dx

)
ds∥]. (2.2)
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Clearly,

∥ρy(t+ n)− ρy(t)∥ ≤
1

Γ(β)

∫ t

0
(t− s)β−1∥y((s+ n)− τ(s+ n)))− y(s− τ(s))∥

+ ∥y((s+ n)− τ1)− y(s− τ1)∥+ ∥y(
s+ n

τ2
)− y(

s

τ2
)∥

+ ∥
∫ s

a
G((s+ n), x, y(x))−G(s, x, y(x))dx∥

+ ∥
∫ b

a
H((s+ n), x, y(x))−H(s, x, y(x)) dx∥ds

≤
Cf t

β

Γ(β + 1)

[
∥y((s+ n)− τ((s+ n)))− y(s− τ(s))∥

+ CG∥y(s+ n)− y(s))∥+ CH∥y(s+ n)− y(s))∥
]
. (2.3)

Consequently, we thus conclude that

∥ρy(t+ n)− ρy(t)∥ ≤
Cf t

β

Γ(β + 1)

[
Cτ + Cτ1 + Cτ2 + CG + CH

]
∥y(s+ n)− y(s))∥

≤ D∥y(s+ n)− y(s))∥, (2.4)

where t ∈ [a, b], D = max{ Cf t
α

Γ(β+1)

[
Cτ + Cτ1 + Cτ2 + CG + CH

]
}, 0 < D < 1.

It follows that,

∥ρy(t+ n)− ρy(t)∥ → 0 as n → ∞.

Then, ρy(t) is continuous on [a,b]. Our approach for proving that ρ is contin-
uous, we assume that yn converge to y, ∀n ∈ N. Then

∥ρyn(t)− ρy(t)∥ ≤ ∥Φ(yn)− Φ(y)∥+ Iβf

(
t, yn(t− τ(t)), yn(t− τ(t)),

∫ t

a
G(t, x, yn(x))dx

, yn(
t

τ2
),

∫ b

a
H(t, x, yn(x)) dx

)
− Iβf

(
t, y(t− τ(t)),

∫ t

a
G(t, x, y(x))dx

, y(
t

τ2
)− y(

t

τ2
),

∫ b

a
H(t, x, y(x)) dx

)
,

if we follow the conditions (1)- (7), we arrive at

∥ρyn(t)− ρy(t)∥ ≤ CΦ∥yn − y∥+
Cf

Γ(β)

[
(Cτ + Cτ1 + Cτ2 + Cτ1 + Cτ2 )∥yn − y∥

+ CH∥yn − u∥+ CG∥yn − y∥
]
.

This is equivalent to

∥ρyn(t)− ρy(t)∥ ≤
[
CΦ +

Cf

Γ(β) [Cτ + Cτ1 + Cτ2 + CH + CG]

]
∥yn − y∥.

Hence, we have ρyn(t) → ρy(t).

2.1. Existence and uniqueness of the solution. Here, we will check the

existence and uniqueness of solution for the fractional integro-differential equa-

tion with multiple delays (constant, proportional and variable).
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Theorem 2.2. Assume that the conditions (1)-(5) hold, then the non-linear

fractional delay integro-differential equation (1.1) has at least a unique solution

y ∈ Y .

Proof. By analogous proof to the continuity of ρ operator.

∥ρy(t)− ρz(t)∥ =
1

Γ(β)
[∥
∫ t

0

(t− s)β−1f

(
s, y((s)− τ(s))

, y(s− τ1), y(
s

τ2
),

∫ b

a

H(s, x, y(x)) dx,

∫ s

a

G((s), x, y(x))dx

)
ds∥

− ∥
∫ t

0

(t− s)α−1f

(
s, z(s− τ(s)),

∫ s

a

G(s, x, z(x))dx

, z(s− τ1), z(
s

τ2
),

∫ b

a

H(s, x, z(x)) dx

)
∥]ds+ ∥Φ(y)− Φ(z)∥.

(2.5)

For short,

∥ρy(t)− ρz(t)∥ ≤ 1

Γ(β)

∫ t

0

(t− s)β−1[∥y((s)− τ(s))− z(s− τ(s))∥

+ ∥
∫ s

a

G(s, x, y(x))−G(s, x, z(x))dx∥

+ ∥
∫ b

a

H(s, x, y(x))−H(s, x, z(x)) dx∥]ds

+ ∥Φ(y)− Φ(z)∥+ ∥y(s− τ1)− z(s− τ1)∥+ ∥y( s
τ2

)− z(
s

τ2
)∥

≤ Cf t
β

Γ(β + 1)

[
∥y(s− τ(s)− z(s− τ(s))∥

+ CG∥y(s)− z(s))∥+ CH∥y(s)− z(s)∥
]
+ CΦ∥y − z∥. (2.6)

As a result, we obtain

∥ρy(t)− ρz(t)∥ ≤ Cf t
β

Γ(β + 1)

[
Cτ + CG + CH

]
∥y(s)− z(s)∥

+ C Phi∥y − z∥
≤ U∥y(s)− z(s)∥, (2.7)

where t ∈ [a, b], U = max{ Cf b
β

Γ(β+1)

[
Cτ +Cτ1 +Cτ2 +CG+CH

]
+CΦ}, provided

that 0 < U < 1. This means that ρ is Lipschitz on Y with Lipschitz constant

U. Also, ρ is a well known fixed point as a consequence of fixed point theorem.

i.e., ρ is a contraction mapping. So, Eq.(1.1) has at least a unique solution

y ∈ Y . □
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Lemma 2.3. Suppose that {y(t)} is a continuous function on [a, b], it satisfies
Dβy(t) = f

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),
∫ t
a G(t, x, y(x))dx,

∫ b
a H(t, x, y(x)) dx

)
,

y(a) = Φ(y). α ∈ (0, 1),

Further, |y(t1)− y(t2)| ≤ q. Then {y(t)} is equicontinuous on [a,b].

Proof. Without loss of generality, for t1, t2 ∈ [a, b] such that t1 < t2, we get

|ρy(t2)− ρy(t1)| = |Φ(y(t1))− Φ(y(t2))|

+
1

Γ(β)

∫ t1

0
(t1 − s)β−1

[
|f
(
s, y(s− τ(s)),

∫ x

a
G(x,w, y(w))dw

, y(t1 − τ1), y(
t1

τ2
),

∫ b

a
H(x,w, y(w)) dw|

]
ds

−
1

Γ(β)

∫ t2

0
(t2 − s)β−1

[
|f
(
s, y(s− τ(s)),

∫ x

a
G(x,w, y(w))dw

, y(t1 − τ2), y(
t2

τ2
),

∫ b

a
H(x,w, y(w)) dw|

]
ds

≤
1

Γ(β)

∫ t1

0

[
(t1 − s)β−1 − (t2 − s)β−1

]
|f
(
s, u(s− τ(s))

,

∫ x

a
G(x,w, y(w))dw,

∫ b

a
H(x,w, y(w)) dw|ds

+
1

Γ(β)

∫ t2

t1

(t2 − s)β−1

[
|f
(
s, y(s− τ(s)), y(s− τ1), y(

s

τ2
)

,

∫ x

a
G(x,w, y(w))dw,

∫ b

a
H(x,w, y(w)) dw|

]
ds+ CΦ∥y − z∥

≤ qCΦ +
∥f∥∞

Γ(β + 1)

[
tβ1 − tβ2 + 2(t2 − t1)

β

]
,

→ 0 (2.8)

whenever t2 → t1, q > 0, where

∥f∥∞ = sup
t∈[a,b]

|f(t, ...)|.

Thus, ρy(t) is equicontinuous function in U. This means that ρ is relatively com-

pact. Hence, ρ is compact. In view of Banach contraction mapping theorem, ρ

has at least one fixed point (solution of (1.1)) in Y. □

Lemma 2.4. If the conditions (1)-(5) satisfied, then the non-linear equation

(1.1) has a unique solution provided

max{ Cfb
β

Γ(β + 1)

[
Cτ + Cτ1 + Cτ2 + CG + CH

]
+ CΦ} < 1. (2.9)

Our following attention is focused on checking the stability of the solution

y(t) for Eq. (1.1) in the frame of Ulam-Hyers and Ulam-Hyers-Rassias.
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3. Stability of the solution for Eq. (1.1).

Theorem 3.1. Suupose that the conditions (1)-(5) hold. Then the non-linear

fractional multiple delay integro-differential equation (1.1) is Ulam-Hyers sta-

ble.

Proof. If y(t) ∈ Y is a solution of equation (1.1), V(s) is a continuous and non

negative function such that

sup(

∫ t

0

(t− s)β−1)[W (s)]ds) < ∞,

|Dβy(t) = f

(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx

)
| ≤ ε.

Now, we are going to perform the integral operator Iβ on both sides of above

equation, we reach

|y(t) − Φ(y)− 1

Γ(β)

∫ t

0

(t− s)β−1f

(
s, y(s− τ(s)),

∫ s

a

G(s, p, y(p))dp

, y(t− τ1), y(
t

τ2
),

∫ b

a

H(s, p, y(p)) dp

)
|

≤ ε

Γ(β)

∫ t

0

(t− s)β−1ds.

It is equivalent to

|y(t) − Φ(y)− 1

Γ(β)

∫ t

0

(t− s)β−1f

(
s, y(s− τ(s)),

∫ s

a

G(s, p, y(p))dp

, y(t− τ1), y(
t

τ2
),

∫ b

a

H(s, p, y(p)) dp

)
|

≤ εtβ

Γ(β + 1)

≤ εE1,1(t), (3.1)

for z(t) ∈ Y, it can be written as

z(t) = Φ(v) +
1

Γ(β)

∫ t

0

(t− s)β−1

(
f(s, z(s− τ(s)),

∫ s

a

G(s, p, z(p))dp

, z(t− τ1), z(
t

τ2
),

∫ b

a

H(s, p, z(p)) dp

)
ds.
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The difference |y(t)− z(t)| is given as

|y(t)− z(t)| = |y(t)− y(t) + y(t)− z(t)|

≤ |y(t)− Φ(u)− 1

Γ(β)

∫ t

0

(t− s)β−1

(
f(s, y(s− τ(s))

,

∫ s

a

G(s, p, y(p))dp, y(t− τ1), y(
t

τ2
),

∫ b

a

H(s, p, y(p)) dp

)
ds|

+ |z(t)− Φ(z)− 1

Γ(β)

∫ t

0

(t− s)β−1

(
f(s, z(s− τ(s))

,

∫ s

a

G(s, p, z(p))dp, z(t− τ1), z(
t

τ2
),

∫ b

a

H(s, p, v(p)) dp

)
ds|

or equivalently

|y(t)− z(t)| ≤
εbβ

Γ(β + 1)
+ |Φ(y)− Φ(z)|

+
1

Γ(β)

∫ t

0
(t− s)β−1

[∫ s

a
(G(s, p, y(p))−G(s, p, z(p)))dp

]
ds

+
1

Γ(β)

∫ t

0
(t− s)β−1

[∫ b

a
(H(s, p, y(p))−H(s, p, z(p)))dp

]
ds

+
1

Γ(β)

∫ t

0
(t− s)β−1

[
y(s− τ1)− z(s− τ1) + y(

s

τ2
)− z(

s

τ2
)dp

]
ds

≤
εbβ

Γ(α+ 1)
+

Cf

Γ(β)

∫ t

0
(t− s)β−1(CG + CH)|y − z|ds+ CΦ|y − z|

≤
εbβ

Γ(β + 1)
+

R

Γ(β)

∫ t

0
(t− s)β−1|y − z|ds+ CΦ|y − z|.

In view of Gronwall’s lemma, yields

|y(t)− z(t)| ≤ εbβ

Γ(β + 1)
exp(

R

Γ(β)

∫ t

0

(t− s)β−1)ds+ CΦ|y − z|

≤ εE1,1(b) exp(E1,1(b)R) + CΦ|y − z|
≤ εK, (3.2)

where K > 0, R = Cf (CG + CH) such that

|y(t)− z(t)| ≤ εK, (3.3)

As a result, the problem (1.1) is stable in the sense of Ulam-Hyers. This

completes the proof. □

Theorem 3.2. Suupose that the conditions (1)-(7) satisfied, P (t) ∈ Y is an

increasing function and ∃ Cp > 0 such that Iβ ≤ CpP (t) for any t ∈ [a, b].

Then the non-linear fractional equation (1.1) is Ulam-Hyers-Rassias stable.

Proof. Let w ∈ Y be a solution of the following inequality

∥Dαw(t)− f

[
t, w(t− τ(t)),

∫ t

a
G(t, x, w(x))dx,

∫ b

a
H(t, x, w(x)) dx

]
∥ ≤ εP (t). (3.4)
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Further, for any t ∈ [a, b], ε > 0. Assume that u ∈ U is the solution of (1.1).

Now, integrate (1.1), that is

|w(t) − Φ(w)− f

(
s, w(s− τ(s)), w(s− τ1), w(

s

τ2
),

∫ s

a

G(s, p, w(p))dp

,

∫ b

a

H(s, p, w(p)) dp

)
|

≤ ε

Γ(α)

∫ t

0

(t− s)α−1P (t)ds

≤ εIβP (t)

≤ εCpP (t).

It can be easily noticed that

|w(t)− y(t)| = |w(t)− w(t) + w(t)− y(t)|

≤ |w(t)− Φ(w)−
1

Γ(β)

∫ t

0
(t− s)β−1

(
f(s, w(s− τ(s))

,

∫ s

a
G(s, p, w(p))dp,

∫ b

a
H(s, p, w(p)) dp

)
ds|

+ CΦ∥w − y∥+
1

Γ(β)

∫ t

0
(t− s)β−1∥w(s− τ(s))− y(s− τ(s))∥ds

+

∫ t

0
(t− s)β−1

∫ s

a

(
∥G(s, p, w(p))−G(s, p, y(p))∥dp

)
ds

+

∫ t

0
(t− s)β−1

∫ s

a

(
w(s− τ1)− y(s− τ1) + w(

s

τ2
)− y(

t

τ2
)∥dp

)
ds

+

∫ t

0
(t− s)β−1

∫ b

a

(
∥H(s, p, w(p))−H(s, p, y(p))∥dp

)
ds.

Hence,

∥w(t)− y(t)∥ ≤ CpεP (t) +
1

Γ(β)

∫ t

0

(t− s)α−1E(s)|w − y|ds.

It directly follows from Pachpatte’s lemma that

∥w(t)− y(t)∥ ≤ CεP (t), (3.5)

for C > 0 which ends the proof. □

Let us extend our results to asymptotically stable solution. For that, we

shall perform the absolute value for the solution of (1.1)

|y(t)| ≤ |Φ(y)|+ 1

Γ(β)

∫ t

0

(t− s)β−1

[
|f
(
t, y(t− τ(t)), y(t− τ1), y(

t

τ2
)

,

∫ t

a

G(t, x, y(x))dx,

∫ b

a

H(t, x, y(x)) dx)|
]
ds.

In fact, by means of Cauchy Schwartz inequality, we deduce

|y(t)| ≤ |Φ(u)|+ 1

Γ(β)
J

1
2G

1
2 ,
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where

J =

∫ t

0

(t− s)2β−2ds, J
1
2 =

tβ−0.5

Γ(1− 2β)

G =

∫ t

0
|f(t, y(t− τ(t)), y(t− τ1), y(

t

τ2
),

∫ t

a
G(t, x, y(x))dx,

∫ b

a
H(t, x, y(x)) dx)|2ds.

Now, we observe that |y(t)| → 0 whenever t → ∞. Therefore, the zero solution

of (1.1) is said to be asymptotically stable.

4. An illustrative example

Here, we give example which clarifying the gained results.

Example 4.1.

Dαu(t)− 2u(t) = u(x− 1)− xu(x)

2
+ u(t− τ1) + 2

∫ x

0

u(
t

τ2
)2dt+ f(x) (4.1)

where τ(t) = Lnt, τ1 = 1, τ2 = 2, f(x) = 1+ ex(Lnx
x − 1− x−1

e ), u(0) = 0. The

exact solution at α = 1 is xex.

Solution:

RG[u(t)]((
s

v
)
α
+ 1) = RG[2u(t) + u(x− 1)−

xu(x)

2
+ u(t− τ1) + 2

∫ x

0
u(

t

τ2
)2dt+ f(x)).

(4.2)

By using Ramadan Group properties, RGAD method [7] and we get the ana-

lytic solution

u(t) = tet. (4.3)

This is the required solution.

Remark 4.2. If the multiple delay becomes constant delay only in the studded

problem (1.1), the problem converts as the same [4]. Also, if If the multiple

delay becomes time-varying (variable) delay only in the studded problem (1.1),

the problem converts as the same [5, 6].
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