
Iranian Journal of Mathematical Sciences and Informatics

Vol. 19, No. 2 (2024), pp 169-188

DOI: 10.61186/ijmsi.19.2.169

On a Group of the Form 24+5:GL(4,2)

A. B. M. Basheera,d∗, J. Moorib, A. L. Prinsc, T. T. Seretlob

aSchool of Mathematical and Computer Sciences, University of Limpopo

(Turfloop), P Bag X1106, Sovenga 0727, South Africa
bSchool of Mathematical and Statistical Sciences, PAA Focus Area,

North-West University (Mahikeng), P. Bag X2046, Mmabatho 2790, South

Africa
cDepartment of Pure and Applied Mathematics, University of Fort Hare,

Alice, 5700, South Africa
dMathematics Program, Faculty of Education and Arts, Sohar University,

Sohar, Oman

E-mail: ayoubbasheer@gmail.com

E-mail: jamshid.moori@nwu.ac.za

E-mail: aprins@ufh.ac.za

E-mail: thekiso.seretlo@nwu.ac.za

Abstract. The affine general linear group 25:GL(5, 2) of GL(6, 2) has 6

conjugacy classes of maximal subgroups. The largest two maximal sub-

groups are of the forms 21+8
+ :GL(4, 2) and 24+5:GL(4, 2). In this article

we consider the group 24+5:GL(4, 2), which we denote by G. Firstly we

determine its conjugacy classes using the coset analysis technique. The

structures of the inertia factor groups are also determined. We then com-

pute all the Fischer matrices and apply the Clifford-Fischer theory to

compute the ordinary character table of G. Using information on conju-

gacy classes, Fischer matrices and both ordinary and projective character

tables of the inertia factor groups, we concluded that we need to use the

ordinary character tables of all the inertia factor groups to construct the

character table of G. The character table of G is a 75×75 complex valued
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matrix and we supply it (in the format of Clifford-Fischer theory) at the

end of this paper as Table 6.

Keywords: Group extensions, General linear group, Character table, Inertia

factor groups, Fischer matrices.

2020 Mathematics subject classification: 20C15, 20C40.

1. Introduction

Let GL(n, q) be the finite general linear group consisting of n × n invert-

ible matrices over Fq. It is well-known that the affine general linear subgroup of

GL(n, q), denoted by AGL(n, q), is a group of the form qn−1:GL(n−1, q). With

the help of GAP [18], we were able to determine the structures of all the maxi-

mal subgroups of the affine general linear group AGL(6, 2) = 25:GL(5, 2) := M

of GL(6, 2). Representatives Mi of these maximal subgroups can be taken as

follows:

Mi |Mi| [M : Mi]

21+8
+ :GL(4, 2) 10321920 31

24+5:GL(4, 2) 10321920 31

GL(5, 2) 9999360 32

22+9:(GL(3, 2)× S3) 2064384 155

29:(GL(3, 2)× S4) 2064384 155

(25:31):5 4960 64512

Table 1. The maximal subgroups of M = AGL(6, 2) = 25:GL(5, 2).

The first group M1 = 21+8
+ :GL(4, 2) has been handled by the first two au-

thors in [15] as a special case of an investigation on the general case 21+2n
+ :GL(n, 2),

which was proved to exist for small values of n and conjectured by the authors

to exist for all values of n. In this article we handle the other largest maximal

subgroup of M, namely the group 24+5:GL(4, 2) := G. This is a split extension

of the special group 24+5 by the linear group GL(4, 2) ∼= A8. Note that the ker-

nel of this extension is a 2-group of order 512 with center, Frattini and derived

groups all are isomorphic to 24 and 24+5/24 is an elementary abelian group of

order 25. We firstly determine the conjugacy classes of G using the coset anal-

ysis technique. Then we determine the inertia factor groups and their fusions

into GL(4, 2). We also calculate the Fischer matrices and hence the ordinary

character table of G using the theory of Clifford-Fischer matrices. This is a very

good example for the applications of Clifford-Fischer Theory since the kernel of

the extension is a non-abelian group. Not many examples of this type have been

studied via Clifford-Fischer Theory. In most of the papers in the literature, the
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kernel of the extension was either abelian or an extra special p-group. In our

case here, the kernel is a special 2-group and consequently the whole structure

of the extension becomes more complicated. For example many of the proper-

ties of the Fischer matrices mentioned in [9] or [15] can not be satisfied here.

The Fischer matrices of G have all been determined in this paper and their sizes

range between 2 and 12. The character table of G is a 75× 75 complex valued

matrix and is partitioned into six blocks corresponding to the six inertia factor

groups H1 = H2 = GL(4, 2), H3 = H4 = H5 = 23:GL(3, 2) and H6 = 24:D12

(see Section 3). If one was only interested in the calculation of the character ta-

ble, then it could be computed by using GAP or Magma [16] and the generators

g1 and g2 of G, given below. But Clifford-Fischer Theory provides much more

interesting and practical information on the group and on the character table,

in particular the character table produced by Clifford-Fischer Theory is in a

special format that could not be achieved by direct computations using GAP or

Magma. Also providing examples of applications of Clifford-Fischer Theory to

both split and non-split extensions is sensible choice, since each group requires

individual approach. The readers (particulary young researchers) will highly

benefit from the theoretical background required for these computations. GAP

and Magma are computational tools and would not replace good powerful and

theoretical arguments.

For the notation used in this paper and the description of Clifford-Fischer

theory technique, we follow [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and [15].

As a subgroup of GL(6, 2), the following two elements g1 and g2 generate

the full extension G = 24+5:GL(4, 2).

g1 =



1 0 0 0 0 0

0 0 1 1 1 1

1 0 1 0 0 0

1 1 0 1 1 1

0 0 0 1 0 1

0 1 0 1 0 0

 , g2 =



1 0 0 0 0 0

1 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 1

0 1 1 0 1 0

1 1 1 0 1 1

 ,

with o(g1) = 30, o(g2) = 8 and o(g1g2) = 6.

Now having the group G constructed in GAP, it is easy to obtain all its

normal subgroups. In fact G has five non-trivial proper normal subgroups

of orders 16, 32, 256, 512 and 5160960. Let N be the normal subgroup of

order 512. One can check that Z(N) = Φ(N) = N
′ ∼= 24, the elementary

abelian group of order 16, where Z(N), Φ(N) and N
′
are the center, Frattini

and derived subgroups of N respectively. Further the quotient N/Z(N) is an

elementary abelian group of order 32. Thus N is a special 2-group of order

512 of the form 24+5. Using GAP, it will also be easy to see that Z(N) has

no complement in N and thus N can also be written in the form N = 24·25

(non-split). Generators n1, n2, · · · , n5 of N, in terms of 6-dimensional matrices

over F2 can easily be obtained. Also N has 271 involutions and 240 elements

of order 4. The elements of N are distributed into 152 conjugacy classes as

follows:
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• singleton conjugacy class consisting of the identity element,

• 15 singleton classes, each of which consists of a central involution,

• one conjugacy class consists of 16 non-central involutions,

• 120 conjugacy classes, each of which consists of two non-central invo-

lutions,

• 15 conjugacy classes, each of which consists only of 16 elements of order

4.

In Magma or GAP one can check for the complements of N in G = ⟨g1, g2⟩ ,
where here we obtained only one complement G ∼= GL(4, 2). The following two

elements g1 and g2 generate the complement G of N in G. Note that G is a

subgroup of G isomorphic to the quotient G/N ∼= GL(4, 2) and together with

N forms the split extension G in consideration.

g1 =



1 0 0 0 0 0

1 0 1 1 0 1

0 0 1 0 0 0

0 0 0 1 0 0

1 1 1 1 1 1

0 0 0 1 1 0

 , g2 =



1 0 0 0 0 0

1 1 1 0 1 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

 ,

with o(g1) = 4, o(g2) = 2 and o(g1g2) = 15.

2. Conjugacy classes of G = 24+5:GL(4, 2)

In this section we use the method of the coset analysis technique (see Basheer

[1], Basheer and Moori [5, 6] and [8] or Moori [21] and [22] for more details)

as we are interested to organize the classes of G corresponding to the classes

of G.

Example 2.1. Consider the identity coset N1G = N. The action of N on

N1G = N produces 152 orbits and these orbits are the conjugacy classes of N,

which were mentioned above, and thus k1 = 152. Now the action of CG(1G) on

these 152 classes leaves invariant

• the identity class (which will form the identity class of G),

• the class consisting of the 16 non-central involutions (which will form

an involutory class in G of size 16),

while it fuses

• the 15 singleton classes (each of which consists of a central involution)

into one orbit (forming an involutory class of size 15 in G),

• out of the 120 classes (each of which consists of two non-central in-

volutions), 15 classes fuse together to form a new orbit (forming an

involutory class of size 15×2 = 30 in G), and the remaining 105 classes

fuse together to form another orbit (and thus an involutory class of size

105× 2 = 210 in G),
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• the 15 conjugacy classes (each of which consists only of 16 elements

of order 4) into a single orbit (and thus forming a class of elements of

order 4 of size 15× 16 = 240 in G).

It follows that in G, we get 6 conjugacy classes (of sizes 1, 15, 16, 30, 210 and

240 respectively) corresponding to the identity coset.

m11 = 1 g11 1 1 10321920

m12 = 15 g12 2 15 688128

g1 = 1A k1 = 152 m13 = 16 g13 2 16 645120

m14 = 30 g14 2 30 344064

m15 = 210 g15 2 210 49152

m16 = 240 g16 4 240 43008

m21 = 4 g21 2 420 24576

m22 = 12 g22 2 1260 8192

m23 = 16 g23 2 1680 6144

m24 = 24 g24 2 2520 4096

m25 = 24 g25 2 2520 4096

g2 = 2A k2 = 48 m26 = 16 g26 4 1680 6144

m27 = 16 g27 4 1680 6144

m28 = 32 g28 4 3360 3072

m29 = 48 g29 4 5040 2048

m2,10 = 96 g2,10 4 10080 1024

m2,11 = 96 g2,11 4 10080 1024

m2,12 = 128 g2,12 4 13440 768

m31 = 16 g31 2 3360 3072

m32 = 16 g32 2 3360 3072

m33 = 48 g33 4 10080 1024

g3 = 2B k3 = 20 m34 = 48 g34 4 10080 1024

m35 = 96 g35 4 20160 512

m36 = 96 g36 4 20160 512

m37 = 192 g37 4 40320 256

g4 = 3A k4 = 2 m41 = 256 g41 3 28672 360

m42 = 256 g42 6 28672 360

Table 2. The conjugacy classes of G = 24+5:(GL(4, 2).

Next we list the conjugacy classes of G in Table 2, where in this table:
• gi is the ith conjugacy class of G as listed in the Atlas [17]).

• gij is a representative of a conjugacy class of G correspond to [gi]G.

• ki is the number of orbits Qi1, Qi2, · · · , Qiki on the action of N on

the coset Ngi = Ngi = 24+5gi. In particular, the action of N on the

identity coset N produces the conjugacy classes of N. Thus k1 = 152.

• mij are weights attached to each class of G that will be used later

in computing the Fischer matrices of G. These weights are computed

through the formula

mij = [NG(Ngi) : CG(gij)] = |N | |CG(gi)|
|CG(gij)|

. (2.1)
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m51 = 16 g51 3 17920 576

m52 = 48 g52 6 53760 192

g5 = 3B k5 = 14 m53 = 64 g53 6 71680 144

m54 = 96 g54 6 107520 96

m55 = 96 g55 6 107520 96

m56 = 192 g56 6 215040 48

m61 = 16 g61 4 20160 512

m62 = 16 g62 4 20160 512

m63 = 32 g63 4 40320 256

m64 = 32 g64 4 40320 256

m65 = 32 g65 4 40320 256

g6 = 4A k2 = 16 m66 = 32 g26 4 40320 256

m67 = 32 g67 4 40320 256

m68 = 32 g68 4 40320 256

m69 = 32 g69 4 40320 256

m6,10 = 64 g6,10 4 80640 128

m6,11 = 64 g6,11 4 80640 128

m6,12 = 128 g6,12 8 161280 64

m71 = 64 g71 4 161280 64

m72 = 64 g72 4 161280 64

g7 = 4B k7 = 6 m73 = 64 g73 8 161280 64

m74 = 64 g74 8 161280 64

m75 = 128 g75 8 322560 32

m76 = 128 g76 8 322560 32

g8 = 5A k8 = 2 m81 = 256 g81 5 344064 30

m82 = 256 g82 10 344064 30

g9 = 6A k9 = 2 m91 = 256 g91 6 430080 24

m92 = 256 g92 6 430080 24

m10,1 = 64 g10,1 6 215040 48

m10,2 = 64 g10,2 6 215040 48

g10 = 6B k10 = 6 m10,3 = 64 g10,3 12 215040 48

m10,4 = 64 g10,4 12 215040 48

m10,5 = 128 g10,5 12 430080 24

m10,6 = 128 g10,6 12 430080 24

m11,1 = 64 g11,1 7 184320 56

m11,2 = 64 g11,2 14 184320 56

g11 = 7A k11 = 5 m11,3 = 128 g11,3 14 368640 28

m11,4 = 128 g11,4 14 368640 28

m11,5 = 128 g11,5 28 368640 28

m12,1 = 64 g12,1 7 184320 56

m12,2 = 64 g12,2 14 184320 56

g12 = 7B k12 = 5 m12,3 = 128 g12,3 14 368640 28

m12,4 = 128 g12,4 14 368640 28

m12,5 = 128 g12,5 28 368640 28

g13 = 15A k13 = 2 m13,1 = 256 g13,1 15 344064 30

m13,2 = 256 g13,2 30 344064 30

g14 = 15B k14 = 2 m14,1 = 256 g14,1 15 344064 30

m14,2 = 256 g14,2 30 344064 30
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3. Inertia factor groups of G = 24+5:GL(4, 2)

We have seen in Section 2 that the action of G on the classes of N produced

six orbits of lengths 1, 15, 16, 30, 210 and 240. By a theorem of Brauer (see

for example Theorem 5.1.1 of [1]), it follows that the action of G on Irr(N)

will also produce six orbits. We have used GAP to find the lengths of these

orbits (the GAP command “Orbits(G,IrrN)” will return the orbits of G on the

set of complex irreducible characters of N, denoted here by IrrN). We found

that the orbit lengths are 1, 1, 15, 15, 15 and 105. Recall that N has 152

conjugacy classes, thus |Irr(N)| = 152. Since N/Z(N) is an elementary abelian

group of order 32, it follows that N has 32 linear characters (these are the lifts

of Irr(N/Z(N)) ∼= 25 to the full extension N). Also since N is a 2-group, it

follows that the degrees of all the other remaining 120 characters are powers

of 2. In fact all the other 120 characters have degrees 2 (one can see that
|Irr(N)|∑

i=1

(χi(1N ))2 = 32× 12 + 120× 22 = 512 = |N |). We may assume that the

first four orbits (of lengths 1, 1, 15 and 15) contains the 32 linear characters

while the fifth and the sixth orbits (of lengths 15 and 105 respectively) contain

the other 120 characters each of which is of degree 2. Now by checking the

maximal subgroups of GL(4, 2) (see the Atlas), we infer that the first five in-

ertia factor groups are H1 = H2 = GL(4, 2) and H3 = H4 = H5 = 23:GL(3, 2).

Since the sixth inertia factor group H6 has index 105 in GL(4, 2), it follows

that it is either an index 7 subgroup in 23:GL(3, 2) or an index 3 subgroup

of 24:(S3 × S3). The group 23:GL(3, 2) has two conjugacy classes of maximal

subgroups of order 192. These two class have representatives of the form 23:S4

and 24:D12 respectively. On the other hand, if H6 ≤ 24:(S3 × S3) with in-

dex 3, then H6 must be a split extension of 24 by a maximal subgroup (of

index 3) of S3 × S3. The maximal subgroups of S3 × S3 are 3 × S3 (two non-

conjugate copies), (3 × 3):2 and D12 (two non-conjugate copies). It follows

that if H6 ≤ 24:(S3 × S3) with index 3, then H6 must have the form 24:D12.

Therefore H6 ∈ {23:S4, 2
4:D12}. Thus the next step is to determine the struc-

ture of H6 and then for each inertia factor group, we have to determine which

projective character table we should use to construct the character table of G.

Now assume that the first orbit on the action of G on Irr(N) consists of the

identity character 1N , which we know that it is extendable to a character of

G (this is since 1G↓
G
N = 1N ). Also since G splits over N and the characters

of the second, third and fourth orbits are linear, it follows by application of

Theorem 5.1.8 of Basheer [1] that these characters are extendable to ordinary

characters of their respective inertia groups. Thus for the construction of the

character table of G, all the character tables of the inertia factors H1, H2, H3
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and H4 that we will use are the ordinary ones. At this stage we are not yet

sure whether the characters of the fifth and sixth orbits are extendable to

ordinary characters of H5 and H6. Now since |Irr(H1)| = |Irr(H2)| = 14 and

|Irr(H3)| = |Irr(H4)| = 11, we must have

|IrrProj(H5, α
−1)|+|IrrProj(H6, β

−1)| = |Irr(G)|−
4∑

i=1

|Irr(Hi)| = 75−50 = 25,

(3.1)

where α and β are factor sets of the Schur multipliers M(H5) and M(H6)

respectively.

Remark 3.1. Using GAP we have |Irr(H5)| = 11, while forH6, we have |Irr(23:S4)|
= 13 and |Irr(24:D12)| = 14.

In [23] it was shown that the full representation group of H5 is of the form

22·H5, with Schur multiplier M(H5) ∼= 22. Hence H5 has 4 sets of irreducible

projective character tables with associated factor sets α−1
i , i = 1, 2, 3, 4, such

that α2
i ∼ [1] for i = 2, 3, 4. The set IrrProj(H5, α

−1
1 ) = Irr(H5). The num-

ber of projective characters of H5 for each of the non-trivial factor sets α−1
i ,

i = 2, 3, 4, are found to be |IrrProj(H5, α
−1
2 )| = 5, |IrrProj(H5, α

−1
3 )| = 5 and

|IrrProj(H5, α
−1
4 )| = 8 (see [23]). Now, if |IrrProj(H5, α

−1)| = 5 or 8, then

it follows from Equation (3.1) that |IrrProj(H6, β
−1)| = 20 or 17. But it is

impossible, since |IrrProj(H6, β
−1)| cannot exceed |Irr(H6)|, which is either 13

or 14 by Remark 3.1. It is a known fact that for any finite group G, the number

|IrrProj(G,α)| of irreducible projective characters of G with associated factor

set α cannot exceed the number |Irr(G)| of ordinary irreducible characters of

G (or equivalently stated, that the number of α-regular classes is always less

then or equal to the number of conjugacy classes of G). So, the only option

left is that |IrrProj(H5, α
−1)|= |Irr(H5)| = 11, and hence we will use the or-

dinary irreducible characters of H5 in the construction of Irr(G). From the

preceding argument and Equation (3.1) it follows that |IrrProj(H6, β
−1)| = 14.

Since we have |IrrProj(H6, β
−1)| = 14 and that for each set of irreducible

projective characters IrrProj(23:S4, α) of 23:S4 with associated factor set α,

|IrrProj(23:S4, α)| ≤ |Irr(23:S4)| = 11, it follows that the structure of H6 is of

the form 24:D12.

Finally, we have to determine whether we will use the set Irr(24:D12) or

an appropriate set IrrProj(24:D12, α
−1) with non-trivial factor set α−1 such

that |IrrProj(24:D12, α
−1)| = 14. We construct 24:D12 as a permutation group

within A8 (see for generators below) using GAP and then compute the Schur

Multiplier M(H6) = 23 of H6 = 24:D12. Hence 8 sets of projective character

tables with associated factor sets β−1
i , i = 1, 2, 3, · · · , 8 exist for H6, where

IrrProj(H6, β
−1
1 ) = Irr(H6) and β2 ∼ [1] for the nontrivial factor sets. The

following GAP code (see [24], [25]) is used to find the number of irreducible
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projective characters of H6 associated with each factor set β−1
i .

gap> h := H6;;

gap> f := EpimorphismSchurCover(h);;

gap> f := InverseGeneralMapping(IsomorphismPcGroup(Source(f)))*f;;

gap> z := Kernel(f);; Schur Multiplier M(H6)

gap> x := Source(f);; Representation group for H5

gap> List( Irr(z), lambda− >Number( Irr( x ), chi− > not IsZero(ScalarProduct(

RestrictedClassFunction( chi, z ), lambda ) ) ));

The above GAP code is based on the fact that all irreducible projective rep-

resentations of a finite group G for any factor set α can be “linearized” to an

ordinary representation of a full representation group R = M(G).G of G (see

[19]). Here M(G) denotes the Schur Multiplier which is isomorphic to the sec-

ond cohomology group H2(G,C∗) and which is abelian. Hence we can obtained

all the sets IrrProj(G,α) of G for any factor set α from Irr(R). Furthermore, if

θ ∈ IrrM(G) is any linear character of M(G), then
∑

χ∈Irr(R)
<χ↓M(G),θ>

χ(1) (see

line 6 of above GAP code) is the number of irreducible characters Irr(R) of

R which lie over θ. Now
∑

χ∈Irr(R)
<χ↓M(G),θ>

χ(1) =|IrrProj(G,α)| for some factor

set α. And so we can compute
∑

χ∈Irr(R)
<χ↓M(G),θ>

χ(1) for each linear character

θ ∈ IrrM(G) and hence find the number |IrrProj(G,α)| of irreducible projec-

tive characters of G for any factor set α. The above GAP code is very efficient

if the group is of relatively small size and is also solvable as in the case of

H6. From the output of the above GAP code, we obtained that the number of

irreducible projective characters of H6 for each associated factor set are 14, 8,

7, 7, 6, 3, 6 and 3. The set containing the 14 irreducible projective characters

is associated with the trivial factor set and hence are the ordinary irreducible

characters of H6. Clearly, we can see from the output of the GAP code that

|IrrProj(H6, β
−1)| for any non-trivial factor set is strictly less than 14. Hence

we have the following proposition.

Proposition 3.2. The sixth inertia factor group H6 is 24:D12 and there is no

involvement of projective characters in the construction of the character table

of G.

Corollary 3.3. There exists characters Θ5,Θ6 ∈ Irr(G) with deg(Θ5) =

deg(Θ6) = 2 such that Θ5↓GN = θ5 and Θ6↓GN = θ6.

As subgroups of G ∼= A8, the inertia factors H1 = H2 = GL(4, 2) ∼= A8,

H3 = H4 = H5 and H6 are generated as follows:

H1 = ⟨(1, 2, 3, 4, 5, 6, 7), (6, 7, 8)⟩ ,
H3 = ⟨(2, 3, 5)(4, 7, 6), (5, 7)(6, 8), (1, 2)(3, 4)(5, 6)(7, 8)⟩ ,
H6 = ⟨(3, 4)(5, 8, 6, 7), (1, 5)(2, 8, 3, 6, 4, 7)⟩ .
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In Tables 3 and 3 we show the character tables of H3 = H4 = H5 =

23:GL(3, 2) and H6 = 24:D12 respectively, while in Table 3 we list the fusions

of the classes of H3 = H4 = H5 and H6 into the classes of G.

1a 2a 2b 2c 3a 4a 4b 4c 6a 7a 7b

|CH3
(h)| 1344 192 32 32 6 16 8 8 6 7 7

χ1 1 1 1 1 1 1 1 1 1 1 1

χ2 3 3 −1 −1 0 −1 1 1 0 A A

χ3 3 3 −1 −1 0 −1 1 1 0 A A

χ4 6 6 2 2 0 2 0 0 0 −1 −1

χ5 7 −1 3 −1 1 −1 1 −1 −1 0 0

χ6 7 7 −1 −1 1 −1 −1 −1 1 0 0

χ7 7 −1 −1 3 1 −1 −1 1 −1 0 0

χ8 8 8 0 0 −1 0 0 0 −1 1 1

χ9 14 −2 2 2 −1 −2 0 0 1 0 0

χ10 21 −3 1 −3 0 1 −1 1 0 0 0

χ11 21 −3 −3 1 0 1 1 −1 0 0 0

Table 3. The character table of H3 = H4 = H5 = 23:GL(3, 2).

where in Table 3, A = −1− b7 = − 1
2 − i

√
7
2 .

1a 2a 2b 2c 2d 2e 2f 3a 4a 4b 4c 4d 4e 6a

|CH6
(h)| 192 64 48 32 16 32 16 6 16 16 16 8 8 6

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 −1 1 −1 1 1 1 −1 −1 1 −1 1 −1

χ3 1 1 1 1 −1 1 −1 1 −1 1 −1 −1 −1 1

χ4 1 1 −1 1 1 1 −1 1 1 −1 −1 1 −1 −1

χ5 2 2 −2 2 0 2 0 −1 0 −2 0 0 0 1

χ6 2 2 2 2 0 2 0 −1 0 2 0 0 0 −1

χ7 3 3 −3 −1 −1 −1 1 0 −1 1 1 1 −1 0

χ8 3 3 3 −1 −1 −1 −1 0 −1 −1 −1 1 1 0

χ9 3 3 −3 −1 1 −1 −1 0 1 1 −1 −1 1 0

χ10 3 3 3 −1 1 −1 1 0 1 −1 1 −1 −1 0

χ11 6 −2 0 2 −2 −2 0 0 2 0 0 0 0 0

χ12 6 −2 0 −2 0 2 −2 0 0 0 2 0 0 0

χ13 6 −2 0 −2 0 2 2 0 0 0 −2 0 0 0

χ14 6 −2 0 2 2 −2 0 0 −2 0 0 0 0 0

Table 4. The character table of H6 = 24:D12

.

where in Table 3, A = −i
√
2 and B = 1

2 − i
√
11
2 .

4. Fischer matrices of G = 24+5:GL(4, 2)

Let G = N ·G, where N ◁ G and G/N ∼= G, be a finite group extension. For

each conjugacy class [gi]G, there corresponds a unique (up to the permutation

of rows and columns) matrix Fi.We refer to this matrix as the Fischer matrix

orClifford matrix and it is a very important component for the computations
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Class of Class of Class of Class of

↪→ ↪→
H3 GL(4, 2) H6 GL(4, 2)

1a 1A 1a 1A

2a 2A 2a 2A

2b 2B 2b 2A

2c 2A 2c 2A

3a 3B 2d 2A

4a 4A 2e 2B

4b 4B 2f 2B

4c 4A 3a 3B

6a 6B 4a 4A

7a 7A 4b 4A

7b 7B 4c 4A

4d 4A

4e 4B

6a 6B

Table 5. The fusions of H3 = H4 = H5 and H6 into G.

of the character table of G. For the construction of a Fischer matrix Fi, we

refer to [1]. Fischer matrices satisfy some interesting properties and certain

orthogonality relations, which help in the computations of their entries. We

gather these properties in the following Proposition.

Proposition 4.1. (i)

t∑
k=1

c(gik) = c(gi),

(ii) Fi is non-singular for each i,

(iii) a
(1,1)
ij = 1, ∀ 1 ≤ j ≤ c(gi),

(iv) If Ngi is a split coset, then a
(k,m)
i1 = |CG(gi)|

|CHk
(gikm)| , ∀i ∈ {1, 2, · · · , r}. In

particular for the identity coset we have a
(k,m)
11 = [G : Hk]θk(1N ), ∀ (k,m) ∈

J1,

(v) If Ngi is a split coset, then |a(k,m)
ij | ≤ |a(k,m)

i1 | for all 1 ≤ j ≤ c(gi).

Moreover if |N | = pα, for some prime p, then a
(k,m)
ij ≡ a

(k,m)
i1 (mod p),

(vi) For each 1 ≤ i ≤ r, the weights mij satisfy the relation

c(gi)∑
j=1

mij = |N |,

(vii) Column Orthogonality Relation:∑
(k,m)∈Ji

|CHk
(gikm)|a(k,m)

ij a
(k,m)

ij′
= δjj′ |CG(gij)|,

(viii) Row Orthogonality Relation:

c(gi)∑
j=1

mija
(k,m)
ij a

(k′ ,m′ )
ij = δ(k,m)(k′ ,m′ )a

(k,m)
i1 |N |.

We recall from [1, 5] that we label the top and bottom of the columns of

the Fischer matrix Fi, corresponding to gi, by the sizes of the centralizers
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of gij , 1 ≤ j ≤ c(gi) in G and mij respectively. In Table 2 we supplied

|CG(gij)| and mij , 1 ≤ i ≤ 14, 1 ≤ j ≤ c(gi). Also the fusions of the classes of

H3 = H4 = H5 and H6 into classes of G were given in Table 3. Since the size

of the Fischer matrix Fi is c(gi), it follows from Table 2 that the sizes of the

Fischer matrices of G range between 2 and 12 for every i ∈ {1, 2, · · · , 14}.
We have used the arithmetical properties of the Fischer matrices, given in

Proposition 4.1, to calculate some of the entries of these matrices and also

to build an algebraic system of equations. With the help of the symbolic

mathematical package Maxima [20], we were able to solve these systems of

equations and hence we have computed all the Fischer matrices of G, which

are listed below.
F1

g1 g11 g12 g13 g14 g15 g16
o(g1j) 1 2 2 2 2 4

|C
G
(g1j)| 10321920 688128 645120 344064 49152 43008

(k,m) |CHk
(g1km)|

(1, 1) 20160 1 1 1 1 1 1

(2, 1) 20160 1 1 −1 1 1 −1

(3, 1) 1344 15 15 15 −1 −1 −1

(4, 1) 1344 15 15 −15 −1 −1 1

(5, 1) 1344 30 −2 0 14 −2 0

(6, 1) 192 210 −14 0 −14 2 0

m1j 1 1 15 15 15 105

F2

g2 g21 g22 g23 g24 g25 g26 g27 g28 g29 g2,10 g2,11 g2,12
o(g2j) 2 2 2 2 2 4 4 4 4 4 4 4

|C
G
(g2j)| 24576 8192 6144 4096 4096 6144 6144 3072 2048 1024 1024 768

(k,m) |CHk
(g2km)|

(1, 1) 192 1 1 1 1 1 1 1 1 1 1 1 1

(2, 1) 192 1 1 −1 1 1 1 −1 1 1 1 −1 −1

(3, 1) 192 1 1 1 1 1 1 1 −1 1 −1 1 −1

(3, 2) 32 6 6 6 −2 −2 6 6 0 −2 0 −2 0

(4, 1) 192 1 1 −1 1 1 1 −1 −1 1 −1 −1 1

(4, 2) 32 6 6 −6 −2 −2 6 −6 0 −2 0 2 0

(5, 1) 192 2 2 0 2 2 −2 0 0 −2 0 0 0

(5, 2) 32 12 −4 0 −4 4 0 0 6 0 −2 0 0

(6, 1) 64 6 6 0 −2 −2 −6 0 0 2 0 0 0

(6, 2) 48 0 0 8 0 0 0 −8 0 0 0 0 0

(6, 3) 32 12 −4 0 −4 4 0 0 −6 0 2 0 0

(6, 4) 16 24 −8 0 8 −8 0 0 0 0 0 0 0

m2j 4 12 16 24 24 16 16 32 48 96 96 128

F3

g3 g31 g32 g33 g34 g35 g36 g37
o(g3j) 2 2 4 4 4 4 4

|C
G
(g3j)| 3072 3072 1024 1024 512 512 256

(k,m) |CHk
(g3km)|

(1, 1) 96 1 1 1 1 1 1 1

(2, 1) 96 1 −1 −1 1 1 1 −1

(3, 1) 32 3 3 3 3 −1 −1 −1

(4, 1) 32 3 −3 −3 3 −1 −1 1

(5, 1) 32 6 0 0 −2 2 −2 0

(6, 1) 32 6 0 0 −2 −2 2 0

(6, 2) 16 0 12 −4 0 0 0 0

m3j 16 16 48 48 96 96 192

F4

g4 g41 g42
o(g4j) 3 6

|C
G
(g4j)| 360 360

(k,m) |CHk
(g4km)|

(1, 1) 180 1 1

(2, 1) 180 1 −1

m4j 256 256
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F5

g5 g51 g52 g53 g54 g55 g56
o(g5j) 3 6 6 6 6 12

|C
G
(g5j)| 576 192 144 96 96 48

(k,m) |CHk
(g5km)|

(1, 1) 18 1 1 1 1 1 1

(2, 1) 18 1 1 −1 1 1 −1

(3, 1) 6 3 3 3 −1 −1 −1

(4, 1) 6 3 3 −3 −1 −1 1

(5, 1) 6 6 −2 0 2 −2 0

(6, 1) 6 6 −2 0 −2 2 0

m5j 16 48 64 96 96 192

F6

g6 g61 g62 g63 g64 g65 g66 g67 g68 g69 g6,10 g6,11 g6,12
o(g6j) 4 4 4 4 4 4 4 4 4 4 4 8

|C
G
(g6j)| 512 512 256 256 256 256 256 256 256 128 128 64

(k,m) |CHk
(g6km)|

(1, 1) 16 1 1 1 1 1 1 1 1 1 1 1 1

(2, 1) 16 1 1 1 1 1 −1 −1 −1 −1 1 1 −1

(3, 1) 16 1 1 1 1 1 1 1 1 1 −1 −1 −1

(3, 2) 8 2 2 −2 2 −2 −2 2 −2 2 0 0 0

(4, 1) 16 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1

(4, 2) 8 2 2 −2 2 −2 2 −2 2 −2 0 0 0

(5, 1) 16 2 2 −2 −2 2 0 0 0 0 0 0 0

(5, 2) 8 −4 4 0 0 0 0 0 0 0 2 −2 0

(6, 1) 16 2 2 2 −2 −2 0 0 0 0 0 0 0

(6, 2) 16 0 0 0 0 0 2 −2 −2 2 0 0 0

(6, 3) 16 0 0 0 0 0 2 2 −2 −2 0 0 0

(6, 4) 8 4 −4 0 0 0 0 0 0 0 2 −2 0

m6j 16 16 32 32 32 32 32 32 32 64 64 128

F7

g7 g71 g72 g73 g74 g75 g76
o(g7j) 4 4 8 8 8 8

|C
G
(g7j)| 64 64 64 64 32 32

(k,m) |CHk
(g7km)|

(1, 1) 8 1 1 1 1 1 1

(2, 1) 8 1 −1 −1 1 −1 1

(3, 1) 8 1 1 1 1 −1 −1

(4, 1) 8 1 −1 −1 1 1 −1

(5, 1) 8 2 0 0 −2 0 0

(6, 1) 8 0 −2 2 0 0 0

m7j 64 64 64 64 128 128

F8

g8 g81 g82
o(g8j) 5 10

|C
G
(g4j)| 30 30

(k,m) |CHk
(g8km)|

(1, 1) 15 1 1

(2, 1) 15 1 −1

m8j 256 256

F9

g9 g91 g92
o(g9j) 6 6

|C
G
(g9j)| 24 24

(k,m) |CHk
(g9km)|

(1, 1) 12 1 1

(2, 1) 12 1 −1

m9j 256 256

F10

g10 g10,1 g10,2 g10,3 g10,4 g10,5 g10,6
o(g10j) 6 6 12 12 12 12

|C
G
(g10j)| 48 48 48 48 24 24

(k,m) |CHk
(g10km)|

(1, 1) 6 1 1 1 1 1 1

(2, 1) 6 1 −1 −1 1 −1 1

(3, 1) 6 1 1 1 1 −1 −1

(4, 1) 6 1 −1 −1 1 1 −1

(5, 1) 6 2 0 0 −2 0 0

(6, 1) 6 0 −2 2 0 0 0

m10j 64 64 64 64 128 128

F11

g11 g11,1g11,2g11,3g11,4g11,5
o(g11j) 7 14 14 14 28

|C
G
(g11j)| 56 56 28 28 28

(k,m) |CHk
(g11km)|

(1, 1) 7 1 1 1 1 1

(2, 1) 7 1 1 −1 1 −1

(3, 1) 7 1 1 1 −1 −1

(4, 1) 7 1 1 −1 −1 1

(5, 1) 7 2 −2 0 0 0

m11j 64 64 128 128 128

F12

g12 g12,1g12,2g12,3g12,4g12,5
o(g12j) 7 14 14 14 28

|C
G
(g12j)| 56 56 28 28 28

(k,m) |CHk
(g12km)|

(1, 1) 7 1 1 1 1 1

(2, 1) 7 1 1 −1 1 −1

(3, 1) 7 1 1 1 −1 −1

(4, 1) 7 1 1 −1 −1 1

(5, 1) 7 2 −2 0 0 0

m12j 64 64 128 128 128
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F13

g13 g13,1 g13,2
o(g13j) 15 30

|C
G
(g13j)| 30 30

(k,m) |CHk
(g13km)|

(1, 1) 15 1 1

(2, 1) 15 1 −1

m13j 256 256

F14

g14 g14,1 g14,2
o(g14j) 15 30

|C
G
(g14j)| 30 30

(k,m) |CHk
(g14km)|

(1, 1) 15 1 1

(2, 1) 15 1 −1

m14j 256 256

5. The character table of G = 24+5:(GL(4, 2)

Let G = N ·G, where N ◁ G and G/N ∼= G, be a finite group extension.

By the description of [1, 5], it follows that the full character table of G can be

constructed easily. Let

• g1, g2, · · · , gr be representatives for the conjugacy classes of G ∼= G/N.

For each i ∈ {1, 2, · · · , r}, let gi1, gi2, · · · , gic(gi) be representatives

for the conjugacy classes of G, correspond to the class [gi]G, obtained

using the coset analysis technique (see [1] for more details),

• Kik be the fragment of the projective character table of Hk, with

factor set α−1
k , consisting of columns correspond to the α−1

k −regular

classes of Hk that fuse to [gi]G (let such classes be represented by

gik1, gik2, · · · , gikc(gik)) and
• Fik be the sub-matrix of the Fischer matrix Fi with rows correspond

to the pairs (k, gik1), (k, gik2), · · · , (k, gikc(gik)) or for brevity (k, 1),

(k, 2), · · · , (k, c(gik)) as described by Equation (3) of [9].

For each i ∈ {1, 2, · · · , r} and k ∈ {1, 2, · · · , t}, where t is the number of the

inertia factor groups (that is the number of orbits on the action of G on Irr(N)),

the part of the character table of G on the classes [gij ]G, 1 ≤ j ≤ c(gi), is given

by KikFik. Note that the size of Kik is |IrrProj(Hk, α
−1
k )| × c(gik), while the

size of Fik is c(gik)× c(gi) and thus KikFik is of size |IrrProj(Hk, α
−1
k )|× c(gi).

If we let Ks, s ∈ {1, 2, · · · , t}, be the irreducible characters of G correspond

to the inertia factor group Hk, then the character table of G in the format of

Clifford-Fischer theory will be composed of the r×t parts KikFik and will have

the form of Table 5 below.

[gi]G g1 g2 · · · gr

[gij ]G g11 g12 · · · g1c(g1) g21 g22 · · · g2c(g2) · · · gr1 gr2 · · · grc(gr)

K1 K11F11 K12F12 · · · K1rF1r

K2 K21F21 K22F22 · · · K2rF2r

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Kt Kt1Ft1 Kt2Ft2 · · · KtrFtr

Table 6. The character table of a group extension G.

Note 5.1. From Note 3.4 of [9] we know that characters of G consisted in K1 are

just Irr(G) and therefore the size of K1iF1i, for each 1 ≤ i ≤ r, is |Irr(G)|×c(gi).
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In particular, columns of K11F11 are the degrees of irreducible characters of

G repeated themselves c(g1) times, where we know that c(g1) is number of

G−conjugacy classes obtained from the normal subgroup N.

From the Atlas, Sections 2, 3 and 4 we have
• the conjugacy classes of G (Table 2),

• the character tables of the inertia factors H1 = H2 (see the Atlas),

H3 = H4 = H5 and H6 (Tables 3 and 3),

• the fusions of classes of the inertia factors H3 = H4 = H5 and H6 into

classes of G (Table 3),

• the Fischer matrices of G (see Section 4).

Applying the above, it follows that the full character table of G can be

constructed easily. We obtained that character table of G is a 75×75 C-valued
matrix, partitioned into 84 parts KikFik, where 1 ≤ i ≤ 14, 1 ≤ k ≤ 6. In

Table 6 we show the full character table of G, in the format of Clifford-Fischer

theory. We would like to remark that the accuracy of this character table

has been tested using GAP. We conclude by mentioning that in the character

table of G we supplied the fusions of the conjugacy classes of elements of G

into the conjugacy classes of the group AGL(6, 2) = 25:GL(5, 2) = M. Here the

conjugacy classes of M can be identified according to the size of the centralizers

of elements, where if nA, nB and nC are some conjugacy classes of elements

of order n in M, then nA will stand for the conjugacy class of the smallest size

(largest centralizer size) of elements of order n; nB is the second conjugacy

class of smallest size of elements of order n and so on. For example, 2A and

2B stands for the classes of elements in M with the centralizer sizes 10321920

and 344064 respectively. Similarly it is done for all the other classes of M.

6. Conclusion

In this paper we considered the groupG = 24+5:GL(4, 2), which is the largest

maximal subgroup of the affine general linear group 25:GL(5, 2) of GL(6, 2).

This is a split extension of the special 2-group 24+5 by GL(4, 2). We used the

coset analysis technique to construct its conjugacy classes, where correspond

to the 14 conjugacy classes of GL(4, 2), we obtained 75 conjugacy classes in

G. Then the inertia factor groups were determined using various techniques

including building subroutines in GAP. Here we would like to mention that

the GAP commands and other techniques introduced in this paper will be of

high benefits to other researchers working in this field. Then we determined

the Fischer matrices of the extension G using the properties mentioned in

Proposition 4.1 together with the symbolic package Maxima.
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Table 6 (continued)
[gi]GL(4,2) 2B 3A 3B 4A

[gij ]G 2j 2k 4i 4j 4k 4l4m 3a 6a 3b 6b 6c 6d 6e 12a 4n 4o 4p 4q 4r 4s 4t 4u 4v 4w 4x 8a

|C
G
(gij)| 3072204810241024512512256360360384192144 96 96 48512512256256256256256256256128128 64

↪→ 25:GL(5, 2) 2E 2D 4C 4C 4F 4G4H 3B 6B 3A 6A 6A6C6D12A 4B 4D 4E 4D 4E 4F 4H 4G4H 4I 4J8A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 3 3 3 3 3 3 3 4 4 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1−1

χ3 2 2 2 2 2 2 2 −1 −1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

χ4 4 4 4 4 4 4 4 5 5 −1 −1 −1−1−1 −1 0 0 0 0 0 0 0 0 0 0 0 0

χ5 1 1 1 1 1 1 1 6 6 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

χ6 1 1 1 1 1 1 1 −3 −3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

χ7 1 1 1 1 1 1 1 −3 −3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

χ8 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

χ9 −5 −5 −5 −5 −5 −5 −5 5 5 2 2 2 2 2 2 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1−1

χ10 −3 −3 −3 −3 −3 −3 −3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

χ11 −3 −3 −3 −3 −3 −3 −3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

χ12 0 0 0 0 0 0 0 −4 −4 −1 −1 −1−1−1 −1 0 0 0 0 0 0 0 0 0 0 0 0

χ13 0 0 0 0 0 0 0 4 4 −2 −2 −2−2−2 −2 0 0 0 0 0 0 0 0 0 0 0 0

χ14 2 2 2 2 2 2 2 −5 −5 1 1 1 1 1 1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2−2

χ15 −1 1 1 −1 1 1 −1 1 −1 1 1 −1 1 1 −1 1 1 1 −1 −1 1 1 −1 −1 1 1−1

χ16 −3 3 3 −3 3 3 −3 4 −4 1 1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

χ17 −2 2 2 −2 2 2 −2 −1 1 2 2 −2 2 2 −2 2 2 2 −2 −2 2 2 −2 −2 2 2−2

χ18 −4 4 4 −4 4 4 −4 5 −5 −1 −1 1−1−1 1 0 0 0 0 0 0 0 0 0 0 0 0

χ19 −1 1 1 −1 1 1 −1 6 −6 0 0 0 0 0 0 1 1 1 −1 −1 1 1 −1 −1 1 1−1

χ20 −1 1 1 −1 1 1 −1 −3 3 0 0 0 0 0 0 1 1 1 −1 −1 1 1 −1 −1 1 1−1

χ21 −1 1 1 −1 1 1 −1 −3 3 0 0 0 0 0 0 1 1 1 −1 −1 1 1 −1 −1 1 1−1

χ22 −4 4 4 −4 4 4 −4 1 −1 1 1 −1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

χ23 5 −5 −5 5 −5 −5 5 5 −5 2 2 −2 2 2 −2 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

χ24 3 −3 −3 3 −3 −3 3 0 0 0 0 0 0 0 0 1 1 1 −1 −1 1 1 −1 −1 1 1−1

χ25 3 −3 −3 3 −3 −3 3 0 0 0 0 0 0 0 0 1 1 1 −1 −1 1 1 −1 −1 1 1−1

χ26 0 0 0 0 0 0 0 −4 4 −1 −1 1−1−1 1 0 0 0 0 0 0 0 0 0 0 0 0

χ27 0 0 0 0 0 0 0 4 −4 −2 −2 2−2−2 2 0 0 0 0 0 0 0 0 0 0 0 0

χ28 −2 2 2 −2 2 2 −2 −5 5 1 1 −1 1 1 −1 −2 −2 −2 2 2 −2 −2 2 2 −2 −2 2

χ29 3 3 3 3 −1 −1 −1 0 0 3 3 3−1−1 −1 3 3 3 3 3 −1 −1 −1 −1 −1 −1−1

χ30 −3 −3 −3 −3 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 −3 −3 −3 −3 1 1 1

χ31 −3 −3 −3 −3 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 −3 −3 −3 −3 1 1 1

χ32 6 6 6 6 −2 −2 −2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 −2 −2−2

χ33 −3 −3 −3 −3 1 1 1 0 0 3 3 3−1−1 −1 1 1 1 1 1 −3 −3 −3 −3 1 1 1

χ34 −3 −3 −3 −3 1 1 1 0 0 3 3 3−1−1 −1 −3 −3 −3 −3 −3 1 1 1 1 1 1 1

χ35 9 9 9 9 −3 −3 −3 0 0 3 3 3−1−1 −1 −3 −3 −3 −3 −3 1 1 1 1 1 1 1

χ36 0 0 0 0 0 0 0 0 0 −3 −3 −3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

χ37 6 6 6 6 −2 −2 −2 0 0 −3 −3 −3 1 1 1 −2 −2 −2 −2 −2 −2 −2 −2 −2 2 2 2

χ38 3 3 3 3 −1 −1 −1 0 0 0 0 0 0 0 0 3 3 3 3 3 −1 −1 −1 −1 −1 −1−1

χ39 −9 −9 −9 −9 3 3 3 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 3 3 3 3 −1 −1−1

χ40 −3 3 3 −3 −1 −1 1 0 0 3 3 −3−1−1 1 3 3 3 −3 −3 −1 −1 1 1 −1 −1 1

χ41 3 −3 −3 3 1 1 −1 0 0 0 0 0 0 0 0 1 1 1 −1 −1 −3 −3 3 3 1 1−1

χ42 3 −3 −3 3 1 1 −1 0 0 0 0 0 0 0 0 1 1 1 −1 −1 −3 −3 3 3 1 1−1

χ43 −6 6 6 −6 −2 −2 2 0 0 0 0 0 0 0 0 2 2 2 −2 −2 2 2 −2 −2 −2 −2 2

χ44 3 −3 −3 3 1 1 −1 0 0 3 3 −3−1−1 1 1 1 1 −1 −1 −3 −3 3 3 1 1−1

χ45 3 −3 −3 3 1 1 −1 0 0 3 3 −3−1−1 1 −3 −3 −3 3 3 1 1 −1 −1 1 1−1

χ46 −9 9 9 −9 −3 −3 3 0 0 3 3 −3−1−1 1 −3 −3 −3 3 3 1 1 −1 −1 1 1−1

χ47 0 0 0 0 0 0 0 0 0 −3 −3 3 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

χ48 −6 6 6 −6 −2 −2 2 0 0 −3 −3 3 1 1 −1 −2 −2 −2 2 2 −2 −2 2 2 2 2−2

χ49 9 −9 −9 9 3 3 −3 0 0 0 0 0 0 0 0 −1 −1 −1 1 1 3 3 −3 −3 −1 −1 1

χ50 −3 3 3 −3 −1 −1 1 0 0 0 0 0 0 0 0 3 3 3 −3 −3 −1 −1 1 1 −1 −1 1

χ51 0 6 −2 0 2 −2 0 0 0 6 −2 0 2−2 0 6 −2 −2 0 0 2 −2 0 0 2 −2 0

χ52 0 −6 2 0 −2 2 0 0 0 0 0 0 0 0 0 2 −6 2 0 0 −2 2 0 0 2 −2 0

χ53 0 −6 2 0 −2 2 0 0 0 0 0 0 0 0 0 2 −6 2 0 0 −2 2 0 0 2 −2 0

χ54 0 12 −4 0 4 −4 0 0 0 0 0 0 0 0 0 4 4 −4 0 0 4 −4 0 0 0 0 0

χ55 0 −6 2 0 −2 2 0 0 0 6 −2 0 2−2 0 2 −6 2 0 0 −2 2 0 0 2 −2 0

χ56 0 −6 2 0 −2 2 0 0 0 6 −2 0 2−2 0 −6 2 2 0 0 −2 2 0 0 −2 2 0

χ57 0 18 −6 0 6 −6 0 0 0 6 −2 0 2−2 0 −6 2 2 0 0 −2 2 0 0 −2 2 0

χ58 0 0 0 0 0 0 0 0 0 −6 2 0−2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

χ59 0 12 −4 0 4 −4 0 0 0 −6 2 0−2 2 0 −4 −4 4 0 0 −4 4 0 0 0 0 0

χ60 0 6 −2 0 2 −2 0 0 0 0 0 0 0 0 0 6 −2 −2 0 0 2 −2 0 0 2 −2 0

χ61 0 −18 6 0 −6 6 0 0 0 0 0 0 0 0 0 −2 6 −2 0 0 2 −2 0 0 −2 2 0

χ62 −12 6 −2 4 −2 2 0 0 0 6 −2 0−2 2 0 6 −2 −2 −4 4 −2 2 0 0 −2 2 0

χ63 12 6 −2 −4 −2 2 0 0 0 6 −2 0−2 2 0 6 −2 −2 4 −4 −2 2 0 0 −2 2 0

χ64 12 6 −2 −4 −2 2 0 0 0 6 −2 0−2 2 0 −6 2 2 0 0 2 −2 −4 4 2 −2 0

χ65 −12 6 −2 4 −2 2 0 0 0 6 −2 0−2 2 0 −6 2 2 0 0 2 −2 4 −4 2 −2 0

χ66 0 12 −4 0 −4 4 0 0 0 −6 2 0 2−2 0 0 0 0 −4 4 0 0 −4 4 0 0 0

χ67 0 12 −4 0 −4 4 0 0 0 −6 2 0 2−2 0 0 0 0 4 −4 0 0 4 −4 0 0 0

χ68 −12 −6 2 4 2 −2 0 0 0 0 0 0 0 0 0 −2 6 −2 0 0 −2 2 4 −4 2 −2 0

χ69 12 −6 2 −4 2 −2 0 0 0 0 0 0 0 0 0 −2 6 −2 0 0 −2 2 −4 4 2 −2 0

χ70 12 −6 2 −4 2 −2 0 0 0 0 0 0 0 0 0 2 −6 2 4 −4 2 −2 0 0 −2 2 0

χ71 −12 −6 2 4 2 −2 0 0 0 0 0 0 0 0 0 2 −6 2 −4 4 2 −2 0 0 −2 2 0

χ72 0 −12 4 0 4 −4 0 0 0 0 0 0 0 0 0 −4 −4 4 0 0 4 −4 0 0 0 0 0

χ73 0 −12 4 0 4 −4 0 0 0 0 0 0 0 0 0 4 4 −4 0 0 −4 4 0 0 0 0 0

χ74 24 12 −4 −8 −4 4 0 0 0 0 0 0 0 0 0 0 0 0 −4 4 0 0 4 −4 0 0 0

χ75 −24 12 −4 8 −4 4 0 0 0 0 0 0 0 0 0 0 0 0 4 −4 0 0 −4 4 0 0 0 [
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On a Group of the Form 24+5:GL(4, 2) 185

[gi]GL(4,2) 1A 2A

[gij ]G 1a 2a 2b 2c 2d 4a 2e 2f 2g 2h 2i 4b 4c 4d 4e 4f 4g 4h

|C
G
(gij)| 103219206881286451203440644915243008245768192614440964096614461443072204810241024768

↪→ 25:GL(5, 2) 1A 2A 2A 2B 2C 4A 2B 2C 2C 2D 2E 4A 4A 4B 4C 4C 4D 4E

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 7 7 7 7 7 7 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

χ3 14 14 14 14 14 14 6 6 6 6 6 6 6 6 6 6 6 6

χ4 20 20 20 20 20 20 4 4 4 4 4 4 4 4 4 4 4 4

χ5 21 21 21 21 21 21 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

χ6 21 21 21 21 21 21 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

χ7 21 21 21 21 21 21 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

χ8 28 28 28 28 28 28 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4

χ9 35 35 35 35 35 35 3 3 3 3 3 3 3 3 3 3 3 3

χ10 45 45 45 45 45 45 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

χ11 45 45 45 45 45 45 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

χ12 56 56 56 56 56 56 8 8 8 8 8 8 8 8 8 8 8 8

χ13 64 64 64 64 64 64 0 0 0 0 0 0 0 0 0 0 0 0

χ14 70 70 70 70 70 70 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

χ15 1 1 −1 1 1 −1 1 1 −1 1 1 1 −1 1 1 −1 1 −1

χ16 7 7 −7 7 7 −7 −1 −1 1 −1 −1 −1 1 −1 −1 1 −1 1

χ17 14 14 −14 14 14 −14 6 6 −6 6 6 6 −6 6 6 −6 6 −6

χ18 20 20 −20 20 20 −20 4 4 −4 4 4 4 −4 4 4 −4 4 −4

χ19 21 21 −21 21 21 −21 −3 −3 3 −3 −3 −3 3 −3 −3 3 −3 3

χ20 21 21 −21 21 21 −21 −3 −3 3 −3 −3 −3 3 −3 −3 3 −3 3

χ21 21 21 −21 21 21 −21 −3 −3 3 −3 −3 −3 3 −3 −3 3 −3 3

χ22 28 28 −28 28 28 −28 −4 −4 4 −4 −4 −4 4 −4 −4 4 −4 4

χ23 35 35 −35 35 35 −35 3 3 −3 3 3 3 −3 3 3 −3 3 −3

χ24 45 45 −45 45 45 −45 −3 −3 3 −3 −3 −3 3 −3 −3 3 −3 3

χ25 45 45 −45 45 45 −45 −3 −3 3 −3 −3 −3 3 −3 −3 3 −3 3

χ26 56 56 −56 56 56 −56 8 8 −8 8 8 8 −8 8 8 −8 8 −8

χ27 64 64 −64 64 64 −64 0 0 0 0 0 0 0 0 0 0 0 0

χ28 70 70 −70 70 70 −70 −2 −2 2 −2 −2 −2 2 −2 −2 2 −2 2

χ29 15 15 15 −1 −1 −1 7 7 7 −1 −1 7 7 −1 −1 −1 −1 −1

χ30 45 45 45 −3 −3 −3 −3 −3 −3 5 5 −3 −3 −3 5 5 −3 −3

χ31 45 45 45 −3 −3 −3 −3 −3 −3 5 5 −3 −3 −3 5 5 −3 −3

χ32 90 90 90 −6 −6 −6 18 18 18 2 2 18 18 −6 2 2 −6 −6

χ33 105 105 105 −7 −7 −7 17 17 17 −7 −7 17 17 1 −7 −7 1 1

χ34 105 105 105 −7 −7 −7 1 1 1 9 9 1 1 −7 9 9 −7 −7

χ35 105 105 105 −7 −7 −7 −7 −7 −7 1 1 −7 −7 1 1 1 1 1

χ36 120 120 120 −8 −8 −8 8 8 8 8 8 8 8 −8 8 8 −8 −8

χ37 210 210 210 −14 −14 −14 10 10 10 −6 −6 10 10 2 −6 −6 2 2

χ38 315 315 315 −21 −21 −21 −21 −21 −21 3 3 −21 −21 3 3 3 3 3

χ39 315 315 315 −21 −21 −21 3 3 3 −5 −5 3 3 3 −5 −5 3 3

χ40 15 15 −15 −1 −1 1 7 7 −7 −1 −1 7 −7 −1 −1 1 −1 1

χ41 45 45 −45 −3 −3 3 −3 −3 3 5 5 −3 3 −3 5 −5 −3 3

χ42 45 45 −45 −3 −3 3 −3 −3 3 5 5 −3 3 −3 5 −5 −3 3

χ43 90 90 −90 −6 −6 6 18 18 −18 2 2 18 −18 −6 2 −2 −6 6

χ44 105 105 −105 −7 −7 7 17 17 −17 −7 −7 17 −17 1 −7 7 1 −1

χ45 105 105 −105 −7 −7 7 1 1 −1 9 9 1 −1 −7 9 −9 −7 7

χ46 105 105 −105 −7 −7 7 −7 −7 7 1 1 −7 7 1 1 −1 1 −1

χ47 120 120 −120 −8 −8 8 8 8 −8 8 8 8 −8 −8 8 −8 −8 8

χ48 210 210 −210 −14 −14 14 10 10 −10 −6 −6 10 −10 2 −6 6 2 −2

χ49 315 315 −315 −21 −21 21 3 3 −3 −5 −5 3 −3 3 −5 5 3 −3

χ50 315 315 −315 −21 −21 21 −21 −21 21 3 3 −21 21 3 3 −3 3 −3

χ51 30 −2 0 14 −2 0 14 −2 0 6 −2 −2 0 6 −2 0 −2 0

χ52 90 −6 0 42 −6 0 −6 10 0 2 10 −6 0 −6 −6 0 2 0

χ53 90 −6 0 42 −6 0 −6 10 0 2 10 −6 0 −6 −6 0 2 0

χ54 180 −12 0 84 −12 0 36 4 0 20 4 −12 0 12 −12 0 −4 0

χ55 210 −14 0 98 −14 0 34 −14 0 10 −14 2 0 18 2 0 −6 0

χ56 210 −14 0 98 −14 0 2 18 0 10 18 −14 0 −6 −14 0 2 0

χ57 210 −14 0 98 −14 0 −14 2 0 −6 2 2 0 −6 2 0 2 0

χ58 240 −16 0 112 −16 0 16 16 0 16 16 −16 0 0 −16 0 0 0

χ59 420 −28 0 196 −28 0 20 −12 0 4 −12 4 0 12 4 0 −4 0

χ60 630 −42 0 294 −42 0 −42 6 0 −18 6 6 0 −18 6 0 6 0

χ61 630 −42 0 294 −42 0 6 −10 0 −2 −10 6 0 6 6 0 −2 0

χ62 210 −14 0 −14 2 0 42 −6 −8 −6 2 −6 8 −6 2 0 2 0

χ63 210 −14 0 −14 2 0 42 −6 8 −6 2 −6 −8 −6 2 0 2 0

χ64 210 −14 0 −14 2 0 −6 10 −8 10 −14 −6 8 −6 2 0 2 0

χ65 210 −14 0 −14 2 0 −6 10 8 10 −14 −6 −8 −6 2 0 2 0

χ66 420 −28 0 −28 4 0 36 4 −16 4 −12 −12 16 −12 4 0 4 0

χ67 420 −28 0 −28 4 0 36 4 16 4 −12 −12 −16 −12 4 0 4 0

χ68 630 −42 0 −42 6 0 30 14 −24 −18 6 −18 24 6 6 0 −2 0

χ69 630 −42 0 −42 6 0 30 14 24 −18 6 −18 −24 6 6 0 −2 0

χ70 630 −42 0 −42 6 0 −18 30 −24 −2 −10 −18 24 6 6 0 −2 0

χ71 630 −42 0 −42 6 0 −18 30 24 −2 −10 −18 −24 6 6 0 −2 0

χ72 1260 −84 0 −84 12 0 60 −36 0 −4 12 12 0 −12 −4 0 4 0

χ73 1260 −84 0 −84 12 0 −36 −4 0 28 −20 12 0 −12 −4 0 4 0

χ74 1260 −84 0 −84 12 0 −36 −4 0 −4 12 12 0 12 −4 0 −4 0

χ75 1260 −84 0 −84 12 0 −36 −4 0 −4 12 12 0 12 −4 0 −4 0

Table 7. The character table of G = 24+5:GL(4, 2). [
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Table 6 (continued)
[gi]GL(4,2) 4B 5A 6A 6B 7A 7B 15A 15B

[gij ]G 4y 8b 4z 8c 8d 8e 5a 10a 6f 6g 6h 6i 12b 12c 12d 12e 7a 14a 14b 14c 28a 7b 14d 14e 14f 28b 15a 30a 15b 30b

|C
G
(gij)| 64 64 64 64 32 32 60 60 24 24 48 48 48 48 24 24 56 56 28 28 28 56 56 28 28 28 30 30 30 30

↪→ 25:GL(5, 2) 4I8A 4J8A8B8C5A10A6E6F6C6D12A12A12B12C7A14A14A14C28A7B14B14B14D28B15B30B15A30A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 2 2 0 0−1−1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1

χ3 0 0 0 0 0 0−1 −1−1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1

χ4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1−1 −1 −1 −1 −1−1 −1 −1 −1 −1 0 0 0 0

χ5 −1−1−1−1−1−1 1 1−2−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

χ6 −1−1−1−1−1−1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C C C C

χ7 −1−1−1−1−1−1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C C C C

χ8 0 0 0 0 0 0−2 −2 1 1−1−1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

χ9 −1−1−1−1−1−1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ10 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 A A A A A A A A A A 0 0 0 0

χ11 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 A A A A A A A A A A 0 0 0 0

χ12 0 0 0 0 0 0 1 1 0 0−1−1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

χ13 0 0 0 0 0 0−1 −1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1

χ14 0 0 0 0 0 0 0 0−1−1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ15 1 1−1−1 1−1 1 −1 1−1 1−1 1 −1 1 −1 1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1

χ16 1 1−1−1 1−1 2 −2 0 0−1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1

χ17 0 0 0 0 0 0−1 1−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1

χ18 0 0 0 0 0 0 0 0 1−1 1−1 1 −1 1 −1−1 −1 1 −1 1−1 −1 1 −1 1 0 0 0 0

χ19 −1−1 1 1−1 1 1 −1−2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1

χ20 −1−1 1 1−1 1 1 −1 1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C −C −C C

χ21 −1−1 1 1−1 1 1 −1 1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C −C −C C

χ22 0 0 0 0 0 0−2 2 1−1−1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1

χ23 −1−1 1 1−1 1 0 0 1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ24 1 1−1−1 1−1 0 0 0 0 0 0 0 0 0 0 B B −B B −B B B −B B −B 0 0 0 0

χ25 1 1−1−1 1−1 0 0 0 0 0 0 0 0 0 0 B B −B B −B B B −B B −B 0 0 0 0

χ26 0 0 0 0 0 0 1 −1 0 0−1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1

χ27 0 0 0 0 0 0−1 1 0 0 0 0 0 0 0 0 1 1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

χ28 0 0 0 0 0 0 0 0−1 1 1−1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ29 1 1 1 1−1−1 0 0 0 0 1 1 1 1 −1 −1 1 1 1 −1 −1 1 1 1 −1 −1 0 0 0 0

χ30 1 1 1 1−1−1 0 0 0 0 0 0 0 0 0 0 B B B −B −B B B B −B −B 0 0 0 0

χ31 1 1 1 1−1−1 0 0 0 0 0 0 0 0 0 0 B B B −B −B B B B −B −B 0 0 0 0

χ32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 −1 −1 1 1−1 −1 −1 1 1 0 0 0 0

χ33 −1−1−1−1 1 1 0 0 0 0−1−1 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ34 −1−1−1−1 1 1 0 0 0 0 1 1 1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ35 1 1 1 1−1−1 0 0 0 0−1−1 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ36 0 0 0 0 0 0 0 0 0 0−1−1 −1 −1 1 1 1 1 1 −1 −1 1 1 1 −1 −1 0 0 0 0

χ37 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ38 −1−1−1−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ39 1 1 1 1−1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ40 1 1−1−1−1 1 0 0 0 0 1−1 1 −1 −1 1 1 1 −1 −1 1 1 1 −1 −1 1 0 0 0 0

χ41 1 1−1−1−1 1 0 0 0 0 0 0 0 0 0 0 A A −A −A A A A −A −A A 0 0 0 0

χ42 1 1−1−1−1 1 0 0 0 0 0 0 0 0 0 0 A A −A −A A A A −A −A A 0 0 0 0

χ43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 −1 1 1 −1−1 −1 1 1 −1 0 0 0 0

χ44 −1−1 1 1 1−1 0 0 0 0−1 1 −1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ45 −1−1 1 1 1−1 0 0 0 0 1−1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ46 1 1−1−1−1 1 0 0 0 0−1 1 −1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ47 0 0 0 0 0 0 0 0 0 0−1 1 −1 1 1 −1 1 1 −1 −1 1 1 1 −1 −1 1 0 0 0 0

χ48 0 0 0 0 0 0 0 0 0 0 1−1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ49 1 1−1−1−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ50 −1−1 1 1 1−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ51 2−2 0 0 0 0 0 0 0 0 2 0 −2 0 0 0 2 −2 0 0 0 2 −2 0 0 0 0 0 0 0

χ52 2−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B −B 0 0 0 B −B 0 0 0 0 0 0 0

χ53 2−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B −B 0 0 0 B −B 0 0 0 0 0 0 0

χ54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−2 2 0 0 0−2 2 0 0 0 0 0 0 0

χ55 −2 2 0 0 0 0 0 0 0 0−2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ56 −2 2 0 0 0 0 0 0 0 0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ57 2−2 0 0 0 0 0 0 0 0−2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ58 0 0 0 0 0 0 0 0 0 0−2 0 2 0 0 0 2 −2 0 0 0 2 −2 0 0 0 0 0 0 0

χ59 0 0 0 0 0 0 0 0 0 0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ60 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ61 2−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ62 0 0−2 2 0 0 0 0 0 0 0−2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ63 0 0 2−2 0 0 0 0 0 0 0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ64 0 0 2−2 0 0 0 0 0 0 0−2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ65 0 0−2 2 0 0 0 0 0 0 0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ66 0 0 0 0 0 0 0 0 0 0 0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ67 0 0 0 0 0 0 0 0 0 0 0−2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ68 0 0 2−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ69 0 0−2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ70 0 0−2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ71 0 0 2−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [
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where in Table 6, A = − 1
2 −

√
7
2 i, B = −1−

√
7i and C = − 1

2 −
√
15
2 i.

After all, we applied the Clifford-Fischer theory to compute the character ta-

ble of G, which is a 75×75 complex matrix partitioned into 84 parts correspond

to the 14 conjugacy classes of GL(4, 2) and the 6 inertia factor groups. In [15],

the first two authors determined the character table of the other largest maxi-

mal subgroup of the affine general linear group 25:GL(5, 2) of GL(6, 2), namely

the group 21+8
+ :GL(4, 2), where they used similar techniques. The methods

of the coset analysis and the Clifford-Fischer theory can also be applied to

the other maximal subgroups of the affine general linear group 25:GL(5, 2) of

GL(6, 2), where the authors have already started working on some of these

groups.
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