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1. INTRODUCTION

The characterization of the points belong to topological closure of a set in
terms of neighborhoods is well known in general topology. In similar way, other
types of closures of a set have been given and characterized in terms of several
collections of generalized open sets. On the other hand, the points belong to
topological kernel can be characterized in the same style too. The notion of
topological kernel begin to play relevance from 1986, when it was used by Maki
[12] to introduce the concept of A-set in a topological space. The class of the A-
sets and their complements, called V-sets, were appropriate to characterize the
Ty axiom (see [12]). After, in 1997, Arenas et al. [2], defined and studied the
notions of A-closed and A-open sets, using A-sets and closed sets. In particular,
these authors used the A-closed sets to characterize the T/, axiom. In 1990,
Khalimsky et al. [10] studied the geometric and topological properties of digital
images, and showed an important example of a space that is 77/, but is not
T1, called the digital line or Khalimsky’s line. This fact motivated several
studies that they involved variants of the topological kernel, which were made
based on collections of generalized open sets, as we can see in [3, 4, 5, 6, 7, §]
and [13, 14, 15, 16, 17]. On the other hand, in 1933, Kuratowski [11] used
the concept of ideal on a topological space in order to generalize the notion
of the closure of a set, introducing the local function of a set with respect to
an ideal and a topology. In 1990, Jankovic and Hamlett [9] studied local and
global properties that involve the concept of ideal on a topological space. In
particular, these authors defined a Kuratowski closure operator, C1*, which
induces a topology 7* that is finer than the topology originally given in the
space. In this work, we introduced and studied a generalization of the notion
of kernel of a set, in analogous with the generalizations of the notion of the
closure of a set given in [9].

2. PRELIMINARIES

In this section, we present the main definitions and results which will be
useful in the sequel. Throughout this paper, if (X, 7) is a topological space,
for A C X, we denote the closure of A and interior of A by CI(A) and Int(A),
respectively. For a subset A of X, the 6-closure of A [19], denoted by Cly(A),
is defined as the set of all points x € X such that A N CI(U) # 0 for each
open set U containing x. Also, a subset A of a topological space (X, 7) is said
to be 0-closed it A = Cly(A). The complement of a #-closed set is said to be
a B-open set. The collection of all f-open sets in a topological space (X, 1),
denoted by 7y, forms a topology on X. It is important to note that 79 C 7 and
that Clg is not the closure of A with respect to 75 [19]. If A is a subset of X,
the kernel of a set A [12], denoted by A(A), is defined as the intersection of all
open sets containing A. Observe that if A is an open set then A(A) = A. A
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subset A is said to be a A-set [12] if A = A(A). The complements of the A-sets
are called V-sets. The family of all V-sets are denoted by 7V. It is well known
that the pair (X, 7") is an Alexandroff space (i.e. is a topological space where
any arbitrary intersection of open sets is open), see [12] for more details. A
subset A of a topological space (X, 7) is said to be A-closed [2],if A=UNF,
where U is a A-set and F' is a closed set. A subset A of a topological space
(X, 7) is said to be gA-set [12] if A(A) C F whenever A C F and F' is a closed
set.

An ideal T on a set X is a non-empty collection of subsets of X, which
satisfies the following properties: if A € Z and B C A, then B € Z, also
if A/B € Z, then AU B € Z. Throughout this work (X, 7,7Z) will denote a
topological space (X, 7) with an ideal Z on X and will be called a space. Given
a space (X, 7,Z) and a subset A of X, the local function [11] of A with respect
to Z and 7, denoted by A*(Z,7), is defined as A*(Z,7) ={x € X : UNA ¢
T for every U € 7(x)}, where 7(z) = {U € 7 : & € U}. We will denote A*(Z, 1)
by A* or A*(Z). Clearly if (X, 7,7) is a space, then * = (), since for every
x € X and every U € 7(z), )NU =0 € Z. Obviously X* C X. In general X*
is a proper subset of X. For each subset A of X, CI*(A) [9] is defined as the
union of A with A*; that is, CI*(A) = AU A*. If Z = {0}, then for each subset
Aof X, Cl*(A) = AUA* = AUCI(A) = CI(A). Tt is well known that Cl* is a
Kuratowski closure operator [9]. Using this fact, we denote by 7* (or 7*(Z)) to
the topology generated by Cl*, that is, 7* ={U C X : CI*(X -U)=X -U}.
The elements of 7* are called 7*-open and the complement of a 7*-open is
called 7*-closed. In the sequel we use the following two theorems.

Theorem 2.1. [9] A subset A of a space (X,7,T) is 7*-closed if and only if
A* C A

Theorem 2.2. [15] Let (X, 7,7) be a space and A a subset of X. Then A*— A
does not contain any nonempty T*-open set.

3. THE CO-LOCAL FUNCTION

In this section, we introduce and study the concept of co-local function as a
natural generalization of the kernel of a set in a topological space.

Definition 3.1. Let (X,7,7) be a space. For each A C X, we define the
co-local function of A with respect to Z and 7 as follows: A*(Z,7) ={z € X :
FNA¢TZ, for each F € 7°(z)}, where 7%(z) ={F: X —F e, z € F}.

We will denote A®(Z,7) by A® or A*(Z). Observe that the co-local function
can be seen as an operator from P(X) to P(X); that is, ()*: P(X) — P(X),
defined by A — A°.
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The co-local function is not a Kuratowski closure operator, since in general,
it does not satisfy A C A® for each A C X. In the case that A C A®, we say
that A is a subset e-dense in itself.

The following example shows that, in general, X*® is a proper subset of X;
that is, X is not e—dense in itself.

ExaMPLE 3.2. Let X = R with the topology 7 = {0, R,R — A} where A is
any non-empty countable subset of R and Z = C the ideal of all countable
subsets of R. Observe that the only non-empty closed sets are F; = R and
Fy = A. Since XNF, = F ¢ Cand X NFy = A € C, then is clear that
X*=R*=R-AGR=X.

Recall that the co-kernel of a subset A of X, denoted by V(A), is defined
as the union of all closed sets contained in A [12]. The following theorem gives
some characterizations for the case that X is e-dense in itself.

Theorem 3.3. Let (X, 7,Z) be a space. The following properties are equivalent:
(1) 7¢NZ = {0}, where ¢ ={F : X — F € 7}.
(2) IfI €Z, then V(I) = 0.
(3) AC A® for each A € 7°.
4) X =X°.

Proof. (1) = (2) Let I € T and suppose that there exists a point € X such
that « € V(I). Then there exists F' € 7¢ such that z € F C I. By hereditary
property of Z, it follows that F' € Z and so, F' is a nonempty set such that
F € ¢ NZ, contradicting the fact that 7 NZ = {0}.

(2) = (3) Let € A and suppose that © ¢ A®. Then there exists F' € 7¢(z)
such that ANF € Z. Since A € 7°, it follows that AN F € 7¢%(x) and so
V(ANF)=ANF € 7¢(x), which implies that V(AN F) # 0 and ANF € T.
This contradicts the fact that V(I) = @) for each I € 7.

(3) = (4) It follows from the fact that X is closed.

=1 IEX=X"then X ={zeX:FNX=F¢Zforeach F €
7¢(2)}, and this implies that 7 NZ = {0}. O

Proposition 3.4. Let (X,7,7) be a space. For each A C X, the following
properties hold:

(1) IfZ = {0}, then A®* = A(A).

(2) If T =P(X), then A* = 0.

Now we give a characterization of the co-local function.

Theorem 3.5. Let (X,7,Z) be a space. For each AC X, A*(Z,7) ={z € X :
Cl{z})nA ¢ T}

Proof. Let S = {x € X : Ci({x}) " A ¢ Z}. Suppose that y ¢ S, then
Cl{y}) N A € Z. Since Cl({y}) is a closed set containing y, then y ¢ A°.
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Conversely, if y ¢ A®, then there exists a closed set F' containing y such that
FNnAeZ, soCl{y})NAC FnAand Cl({y})NA € Z. Therefore,y ¢ S. O

Corollary 3.6. Let (X, 7) be a topological space. For each A C X,
AA)={z e X :Cli({z}) N A # 0}.

The following lemma shows several properties that involve the co-local func-
tion

Lemma 3.7. Let (X, 1) be a topological space with two ideals T, J on X. If
A, B are subsets of X, then the following properties hold:

If AC B, then A®* C B°.

IfT C J, then A*(J) C A*(Z).

A* = A(A®) C A(A)  (A® is a A-set).

(A®%)* C A°.

g* =0.

(AUB)*=A*UB".

If F is a closed set, then FNA®*=FN(FNA)®C(FnA):°.
If A€ Z, then A® = 0.

A*—B*=(A- B)* - B*.

If BeZ, then (AUB)®* = A* = (A — B)°.

If A C A®, then A®* = A(A).

—
=W N
—
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Proof. The proof follows directly from the definition. O

Corollary 3.8. Let (X,7,Z) be a space and {A, : w € Q} a collection of
subsets of X. The following properties hold:

(1) (ﬂ{Aw ‘we Q}) c{As :w e},
(2) (U (A, we Q}) = JH{As s w e ), if Q s finite.

Since the co-local function is not a Kuratowski closure operator, it is neces-
sary to introduce a new concept that allows us to obtain a new topology from
it.

Definition 3.9. Let (X, 7,Z) be a space. For each A C X, we define CI*(A) =
AU A
Remark 3.10. Let (X, 7,7Z) be a space.

(1) f Z = {0} then CI*(A) = AU A®* = AUA(A) = A(A).

(2) If Z =P(X), then CI*(A) = AUD = A.

Theorem 3.11. CI°® is a Kuratowski closure operator.
Proof. The proof is easy and is omitted. O

According with Theorem 3.11, if (X, 7,7) is a space, we denote by 7°(Z) the
topology generated by C1°; that is 7*(Z) ={U C X : CI1*(X - U) =X - U}.
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When there is no chance for confusion, we will simply write 7* for 7°(Z). The
elements of 7° are called 7°-open and the complement of a 7°-open is called
7®-closed. Note that if A is a subset of a space (X, 7,Z), then: A is 7°-closed
if and only if X — A € 7* if and only if CI*(X — (X — A)) =X — (X — A) if
and only if CI*(X — (X — A)) = X — (X — A) if and only if CI*(4) = A.

In general, 7® and 7 are incomparable, as we can see in the following example.

ExAMPLE 3.12. Consider X = {a,b,c} with the topology 7 = {0,{a,c}, X}
and the ideal Z = {0, {c}}. Take A = {a,c} and B = {c}. Since (X — A)* =
{b}* ={a,b,c} ¢ {b} = X — A, we have X — A is not 7*-closed and A = {a, c}
is not 7*-open. On the other hand, (X — B)® = {a,b}* = X — B, we have
B ={c} is a 7*-closed. Thus {a,b} is a 7*-open set, but {a, b} is not a 7-open
set.

Remark 3.13. Since A®* = A(A®) C A(A), then CI*(A) C A(A) for each subset
A of X. Therefore, if A is a A-set, then A is 7°-closed. It follows that each
V-set is 7®-open; that is 7V C 7°.

Remark 3.14. According to [1], if A is a subset of X, we define the local closure
function of A with respect to Z and 7 as follows: T'(A)(Z,7) = {z € X :
ClUYNAEZ, foreach U € 7(x)}, where 7(z) = {U : U € 7, x € U}. We
denote T'(A)(Z,7) by T'(A). Tt is easy to see that A* C T'(4) C Cly(A), it
follows that if A is a #-closed set, then A is 7°-closed. Hence 19 C 7°.

Lemma 3.15. If {A, : w € Q} is a collection of T°-closed sets in a space
(X,7,7), then the following properties hold:

(1) N{Au 1w e Q'} is a 7°-closed set for any subset Q' of Q.

(2) U{Aw :w € Qo} is a 7°-closed set for any finite subset g of 2.

Proof. The proof is an immediate consequence of De Morgan’s laws and the
duality between the notions of 7*-open and 7°-closed sets. O

Proposition 3.16. A subset A of a space (X, 7,T) is 7°-closed if and only if
A* C A.

Proof. Suppose that A is 7°-closed, then C1*(A) = A. In consequence, AUA® =
A and hence, A® C A.

Conversely, suppose that A®* C A. Since CI*(A) = AU A® and AU A® C A,
then CI*(A) C A. By Theorem 3.11, we have A C CI*(A) and so, we conclude
that Cl®*(A) = A. This shows that A is 7°-closed. O

In a similar form as the base structure for the topology 7* given by Jankovic
and Hamlett [9], we have the following result.

Proposition 3.17. Let (X,7,T) be a space. The collection k(Z,7) = {F —J :
X —F €7 and J €I} is a base for the topology T°.
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Proof. Consider F' such that X — F € 7 and J € Z. We assert that A =
X-F-J)=X—-[FNn(X—-J)]=(X—-F)UJisa1*closed set. Indeed,
suppose that ¢ A, which is equivalent to saying that x € F' — J, it follows
thatr € Fand FNA=FN[X—(F-J)|=FNn[(X-F)uJ]=FNnJeTI,
hence z ¢ A® and so A* C A. This shows that k(Z,7) C 7°. On the other
hand, it is easy to see that each element of 7* can be written as a union of sets
belonging to k(Z, 7). Therefore, k(Z,T) is a basis for the topology 7°. a

Proposition 3.18. Let (X,7,Z) be a space and A C X. Then A®* — A does
not contain any nonempty T*-open set.

Proof. Suppose that A C X and U is a 7°-open set such that U C A®* — A,
then U CA*—ACX—-A AC X —U and X —U is 7°-closed. Using Lemma
3.7-(1) and Proposition 3.16, we obtain that A* C (X —U)®* C X — U and so,
U C X — A*. Since U C A, it follows that U C (X — A*) N A®* = (), and hence
U = (. Therefore, A* — A does not contain any nonempty 7°-open set. O

Corollary 3.19. Let (X, 1) be a topological space and A C X. Then A(A)— A
does not contain any nonempty V -set.

Theorem 3.20. IfZ and J are ideals on a topological space (X, 1) such that
ICJ, thent®(Z)C7*(T).

Proof. Consider A € 7°(Z). We will prove that B = X — A is a 7°(J)-closed
set, i.e. B*(J) C B. Suppose that x ¢ B, then = ¢ B®*(Z) because B is
a 7°*(Z)-closed set. Then, there exists a closed set F' such that x € F and
BNFeZ. SinceZ C J,wehave BNF € J and so, x ¢ B*(J). This shows
that B*(J) C B and B is a 7*(J)-closed set. O

Theorem 3.21. Let {Z, : w € Q} be a collection of ideals on a topological
space (X, 7). If T = ﬂ T, then 7*(I) C ¥, where T¢ = ﬂ T*(Zy).
weN weN

Proof. The proof is clear and hence is omitted O

The following theorem gives a new characterization of the T7-spaces, using
the 7°-closed sets.

Theorem 3.22. If (X,7,7) is a Ty-space, then for every x € X, the singleton
{z} is 7*-closed. The converse is true if each singleton is e-dense in itself.

Proof. Let x be any point of X. For every y € X, y # x, there exists an open
set U such that « € U and y ¢ U. According to this, y € F = X - U, F
is closed and {x} N F C UNF ={. So, {x} N F € T and hence, y ¢ {z}°.
This shows that {z}* C {z} and {x} is 7*-closed. Conversely, suppose that
each singleton is 7°-closed and e-dense in itself. Let x be any point of X and
y € X —{z}. Then, {y}* = {y} € X — {z} and = ¢ {y}°*, so there exists a
closed set F such that x € F and F N {y} € Z. We assert that F N {y} = 0.
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Otherwise, we have that F N {y} # 0, {y} = Fn{y} € Z. It follows that
{y}* = 0, contradicting the fact that {y}* = {y}. Thus, we have F N {y} =0,
yeU=X—-F C X —{z} and U is an open set. Therefore, X — {z} is an
open set and {x} is a closed set. This shows that (X, 7,Z) is a Ty-space. [

Corollary 3.23. [12] A topological space (X,7) is Ty if and only if for each
x € X, the singleton {x} is a A-set.

4. (7*,7%)-g-CLOSED SETS

Using the topologies 7* and 7°, we introduce a modification of the notion
of g-closed set, called (7*,7°%)-g-closed, in order to characterize a separation
property called (7%, 7°%)-T} /5.

Definition 4.1. A subset A of a space (X, 7,7) is said to be (7%, 7*)-g-closed,
if C1*(A) C U whenever A C U and U is 7*-open.

Proposition 4.2. A subset A is (7*,7*)-g-closed if and only if A* C U when-
ever AC U and U is T*-open.

Proof. The proof follows from the fact that A* C Ci*(A). O

Proposition 4.3. Let A and B be subsets of a space (X, 7,Z). The following
properties hold:

(1) If A is 7*-closed, then A is (7*,7°%)-g-closed.

(2) If A is (7*,7°%)-g-closed and T°-open, then A is 7*-closed.

(3) If A is (7*,7°)-g-closed and A C B C A*, then B is (7*,7°)-g-closed.

Proof. The proof is clear. O

The following example shows that, in general, the converses of properties
(1) and (2) of Proposition 4.3 are not true.

ExAMPLE 4.4. Consider X = {a, b, ¢} with the topology 7 = {0}, {a, c}, X} and
the ideal Z = {0, {c}}. Take A = {a,c} and B = {c}, then A* = {a,c}* = X
and CI*(A) = X. Since (X — A)®* = {b}* ={a,b,c} ¢ {b} = X — A, we have
X — A is not 7°-closed and A = {a,c} is not 7*-open, which implies that X
is the only 7°-open set containing A. Hence, A = {a,c} is a (7%, 7*)-g-closed
set, but does not is 7*-closed because A* = {a,c}* = X ¢ {a,c} = A. On
the other hand, as B* = {c}* =0 C {c} = B, we have B = {c} is a 7*-closed
set and hence is a (7*,7°)-g-closed set, but does not a 7*-open set because
(X — B)* ={a,b}* = {a,b,c} ¢ {a,b} = X — B, that is X — B does not is a
7°®-closed set.

Theorem 4.5. A subset A of X is (7*,7°*)-g-closed if and only if A* C A*(A),
where A*(A) is the kernel of A in the topology T°.
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Proof. Suppose that A is (7*,7°*)-g-closed and let U be any 7°*-open set such
that A C U. Then, CI*(A) C U and hence, we get that Ci*(A) C A*(A). Con-
versely, suppose that CI*(A) C A*(A) and let U be any 7°-open set containing
A. Then, CI*(A) C A*(A) C U and so, A is a (7%, 7°)-g-closed set. O

Theorem 4.6. If a subset A of a space (X,7,Z) is (7%,7%)-g-closed, then
A* — A does not contain any nonempty 7°-closed set.

Proof. The proof is clear. |

Theorem 4.7. Let A be a (7*,7%)-g-closed subset of a space (X,7,T). The
following properties are equivalent:

(1) A is m*-closed.

(2) Ax—A=0.

(3) A* — A is a °-closed set.

Proof. (1) < (2) By Theorem 2.1, A is a 7*-closed set if and only if A* C A,
or equivalently A* — A = 0.

(2) = (3) Follows from the fact that 7° is a topology.

(3) = (2) Suppose that A* — A is a 7°-closed set. Since A is a (7*,7°)-g-
closed set, by Theorem 4.6 it follows that A* — A = (). O

Theorem 4.8. Let (X, 7,Z) be a space and Q a finite index set. If {A,, : w € Q}
is a collection of (7*,7°%)-g-closed sets, then |J{A, : w € Q} is a (7%,7°%)-g-
closed set.

Proof. The proof is clear and hence is omitted. O

Proposition 4.9. For each x € X, the singleton {x} is 7°-closed or (7*,7°)-
g-open.

Proof. Suppose that {x} does not is 7°-closed, then X —{z} is not 7*-open and
the only 7°-open set that contain X — {x} is X. Since CI*(X —{z}) C X, then
X — {z} is a (7*,7°)-g-closed set and hence, {z} is a (7*,7°%)-g-open set. [
Definition 4.10. The space (X, 7,7) is said to be (7%, 7°)-T} 2, if each (7%, 7°)-
g-closed set of X is 7*-closed.

Now we characterize the (7*,7°)-T} /2 spaces using the notions of 7*-open
and 7°-closed sets.

Theorem 4.11. The space (X,7,T) is (7%,7%)-T3 if and only if for each
x € X, the singleton {x} is 7 -open or 7°-closed.

Proof. Suppose that (X, 7,Z) is a (7*,7°)-T} 2 space and consider z € X. If
{z} does not is 7°-closed, then by Proposition 4.9, {z} is a (7*,7°*)-g-open
and so, X —{z} is a (7%, 7%)-g-closed set. Since (X,7,Z) is (7%, 7°)-T} 2, then,
X — {z} is a 7*-closed set. Therefore, {z} is a 7*-open. Conversely, suppose
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that A is a (7*,7°)-g-closed set and consider z € A*. We have to analyze the
following two cases:

Case 1: {z} is a 7*-closed set. By Theorem 4.7, A* — A does not contain any
nonempty 7°-closed set and so x ¢ A* — A. Since z € A*, it follows that x € A.
Case 2: {x} is a 7*-open set. By Theorem 2.2, A* — A does not contain any
nonempty 7*-open set and hence, x ¢ A* — A. Since x € A*, we conclude
that z € A. Thus, in both cases x € A and therefore, A* C A. Thus, A is a
7*-closed set and this shows that (X,7,7) is a (7%, 7°)-T} 2 space. O

5. Z-A-CLOSED SETS

In this section, we introduce a generalization of the notion of a A-closed
set in (X,7,7), called Z-A-closed set, in order to obtain two new separation
properties, namely quasi (7*,7°)-Ty and quasi (7*,7°*)-Rp.

Definition 5.1. A subset A of a space (X,7,Z) is said to be Z-A-closed, if
A= LNF where F is a 7°-closed set and L is a 7*-closed set.

Remark 5.2. Let (X, 7,7) be a space.

(1) If Ais a A-closed set, then A is a Z-A-closed set, because each A-set is
7*-closed and each closed set is 7*-closed.
(2) If Z = {0}, then A is a Z-A-closed set if and only if A is a A-closed set.

Proposition 5.3. FEach 7°-closed set is I-A-closed and each T*-closed set is
Z-X-closed.

Proof. The proof is clear and hence is omitted. (|

Theorem 5.4. Let (X, 7,7) be a space and Q be an index set. If {A, :w € Q}
is a collection of T-A-closed sets, then ({Aw : w € Q} is a Z-A-closed set.

Proof. The proof follows directly from the definition of Z-A-closed set and the
fact that 7® and 7* are topologies. |

Lemma 5.5. Let A be a subset of a space (X, 7,T). The following properties
are equivalent:

(1) A is a Z-A-closed set.

(2) A=LNCI*(A), where L is a 7°-closed set.

(3) A=Cl*(A) NCl*(A).

Proof. The proof is clear and hence omitted. O

Definition 5.6. The space (X, 7,7) is said to be quasi (7, 7°)-Tp, if for each
pair of distinct points z,y € X there exists a 7*-open set U containing y but
not x or there exists a 7°-closed set F' containing x but not y.

Remark 5.7. Each T, space is quasi (7%, 7°)-Tp, because each open set is 7*-
open and 7°-closed.
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Theorem 5.8. The space (X, 7,T) is quasi (7*,7*)-Ty if and only if for each
x € X, the singleton {x} is T-A-closed.

Proof. For each z € X, {z} C Cl*({z}) N Cl*({z}). If y # =, then we have to
analyze the following two cases:

Case 1: There exists a 7*-open set U containing y but not = or

Case 2: There exists a 7°-closed set F' containing x but not y.

In the Case 1, y ¢ CI*({z}) and hence, y ¢ ClI*({z}) N Cl*({z}). In Case 2,
y ¢ Cl*({z}) and then, y ¢ CI*({z}) N CI1*({z}). This shows that CI*({z}) N
Cl*({z}) C {z}. Hence {z} = CI*({z}) N CI*({z}) and by Lemma 5.5, {z} is
a Z-)A-closed set.

Conversely, suppose that (X, 7,7Z) does not is a quasi (7*, 7*)-T} space. Then
there exist two distinct points x,y € X such that (i) y € F for each 7°-closed
set F' containing = and (i4) {x} NU # 0 for each 7*-open set U containing y.
From (¢) and (i7) we obtain that y € Cl*({z}) and y € CI*({z}), respectively.
So y € Cl*({z}) N Cl*({z}). Since {x} is a Z-A-closed set, by Lemma 5.5 it
follows that {z} = CI*({z}) N CI*({z}) and from the above, we obtain that
y = z, contradicting the fact that x # y. O

Remark 5.9. In [2, Theorem 2.5] was proved that a topological space (X, 1)
is Tp if and only if for each x € X, the singleton {z} is A-closed. According to
this result, if Z = {0} we have: (X, 7,7) is a quasi (7*, 7*)-T} space if and only
if (X,7,7) is a Ty space.

Recall that a topological space (X, 7) is said to be a Ry space [18], if for
every U € 7 and every z € U, Cl({z}) C U. Now we introduce a notion that
has a certain analogy with the notion of Ry space.

Definition 5.10. The space (X, 7,7) is said to be quasi (7, 7*)-Ry, if for each
T*-closed set F' and each x € F, ClI*({z}) C F.

Theorem 5.11. Let (X, 7,Z) be a quasi (7*,7%)-Ry space. A singleton {x} is
Z-A-closed if and only if is T*-closed.

Proof. Suppose that {z} is a Z-A-closed set. By Lemma 5.5, {x} = Cl*({z}) N
Cl*({z}). For each 7°-closed set F' containing x, CI*({z}) C F; in particu-
lar, C1*({z}) c CI*({z}). Thus, we get that {z} = ClI*({z}) N CI*({z}) =
Cl*({z}) and {z} is 7*-closed.

Conversely, suppose that {z} is a 7*-closed set. Then, {z} = Cl*({z}) and
follows that {x} C Cl*({z}) N CI*({z}) = Cl*({z}) N {z} = {z}. Therefore,
{z} = CI*({z}) N CI*({z}) and again by Lemma 5.5, we conclude that {z} is
a Z-A-closed set. g

Corollary 5.12. Let (X,7,Z) be a quasi (7*,7*)-Ry space. Then, (X,7,T) is
a quasi (7*,7*)-Ty space if and only if (X,7*) is a Ty space.
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Proof. The proof is an immediate consequence of Theorem 5.11 and the char-
acterization of a T space. O

6. Z-gA-SETS

Now we introduce the notion of Z-gA-set in order to extend the notion of
gA-set and obtain some related results with the (7*,7°%)-T} 5 spaces.

Definition 6.1. A subset A of a space (X,7,Z) is said to be Z-gA-set, if
A® C F whenever A C F and F' is a 7*-closed set.

Remark 6.2. If T = {0}, then A an Z-gA-set if and only if A is a gA-set.

Proposition 6.3. If A and B are subsets of a space (X, 7,T), then the following
properties hold:

(1) If A is a T°-closed set, then A is a T-gA-set.
(2) If A is a Z-gA-set and 7*-closed, then A is 7°-closed.
(3) If A is a Z-gA-set and A C B C A®, then B is a Z-gA-set.

Proof. (1) Follows from the definition of 7°-closed set,

(2) Follows from the definitions of Z-gA-set, 7*-closed set and Proposition
3.16.

(3) Follows from (1) and (3) of Lemma 3.7. O

Theorem 6.4. Let A be a subset of a space (X, 7,T). The following properties
are equivalent:

(1) A is a ZT-gA-set.

(2) A*NU =0 whenever ANU =0 and U € T*.

(3) A* C ClI*(A)

Proof. The equivalences follows directly and are omitted. O

Theorem 6.5. Let A be a subset of a space (X, 7,Z). If A is a T-gA-set and
F is a 7*-closed set such that (X — A*)UA C F, then F = X.

Proof. Suppose that A is a Z-gA-set and F is a 7*-closed set such that (X —
A*)UA C F. Then, A C (X—A®*)UA C F and so, A* C F. Therefore, X —F C
X — A*. Since (X —A*)UA C F, it follows that X — F C A*N(X —A) C A°.
In consequence, X — F C (X — A®)NA®* =0 and so X = F. O

Theorem 6.6. Let A be a Z-gA-set of a space (X, 7,Z). Then, (X —A*)UA
is a 7*-closed set if and only if A is a T7°-closed set.

Proof. The proof follows from Theorem 6.5. (]

Proposition 6.7. For each x € X, the singleton {z} is 7™ -open or X — {z}
is a T-gA-set.
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Proof. Suppose that {x} does not is a 7*-open set, then X — {z} is not a
7*-closed set and the only 7*-closed set that contain X — {«} is X. Thus,
(X —{z})* € X* C X and hence, X — {z} is a Z-gA-set. O

Theorem 6.8. Let A be a subset of a space (X, 7,Z). If A is a Z-gA-set, then
A® — A does not contain any nonempty T*-open set.

Proof. The proof is clear and is omitted. O

Theorem 6.9. Let A be a Z-gA-set in a space (X, 7,Z). Then, A is a 7°-closed
set if and only if A®* — A is a T*-open set.

Proof. If A is a 7®-closed set, then A®* C A and A®* — A = (). Since 7* is a
topology, then A®* — A is a 7*-open set.

Conversely, si A®* — A is a 7*-open set. Since A is a Z-gA-set, by Theorem
6.8 it follows that A®* — A = () and hence, A* C A. This shows that A is a
T°-closed set. (Il

Theorem 6.10. If each T-gA-set in a space (X,7,7) is a T7*-closed set, then
(X,7,7) is a (7%,7%)-Ty )2 space.

Proof. The proof follows from Proposition 6.7 and Theorem 4.11. O

7. INVARIANCE UNDER CERTAIN FORMS OF CONTINUITY

In this section, we introduce certain types of continuity in order to analyze
the invariance of some separation properties studied in the previous sections
under the action of these new classes of functions. Next we consider a function
f defined from a space (X, 7,1) to a space (Y,a,J).

Definition 7.1. A function f: (X,7,Z) — (Y,0,J) is called:

(1) e-irresolute if f=!(B) is a 7°-closed set whenever B is a o®-closed set.

(2) (%,e)-g-irresolute if f~1(B) is a (7*,7*)-g-closed set whenever B is a
(o*,0%)-g-closed set.

(3) (Z,J)-Mirresolute if f=(B) is an Z-A-closed set whenever B is an
J-X-closed set.

Theorem 7.2. Let f: (X,7,7) — (Y,0,J) be a (*,e)-g-irresolute surjection
such that (f(A))* C f(A*) for each T*-closed set A. If (X,7,T) is a (7%,7°)-
Ty /2 space, then (Y,0,J) is a (0*,0%)-Ty /5 space.

Proof. Assume that (X, 7,Z) is a (7%, 7%)-T} /2 space and let B be any (0*,0°)-
g-closed set. Since f is (%, ®)-g-irresolute, f~1(B) is a (7*,7®)-g-closed set and,
hence, it is 7*-closed. Thus, we obtain B* = (f(f~%(B)))* C f((f~*(B))*) C
f(f~Y(B)) = B and, so B is a o*-closed set. This shows that (Y,0,J) is a
(0*,0°)-Ty 5 space. |
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Theorem 7.3. Let f: (X, 7,7) = (Y,0,7) be a (Z,J)-A-irresolute bijection.
If (X,7,7) is a quasi (7%,7*)-Ty space, then (Y,0,J) is a quasi (6*,0°)-Tp
space.

Proof. This follows from Theorem 5.8. O

Theorem 7.4. Let f : (X,7,7) — (Y,0,J) be a e-irresolute surjection such
that (f({z}))* C f({a}*) for each x € X. If (X,7,Z) is a quasi (7*,7°%)-Ro
space, then (Y,0,J) is a quasi (c*,0°)-Roy space.

Proof. Straightforward. O
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