[ Downloaded from ijmsi.com on 2026-01-30 ]

[ DOI: 10.61186/ijmsi.19.2.155]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 19, No. 2 (2024), pp 155-167
DOL: 10.61186/ijmsi.19.2.155

A Hybrid Method to Systems of Fredholm Integral
Differential Equations

Jafar Biazar®*, Yalda Parvari Moghaddam®, Khadijeh Sadri¢

%Department of Applied Mathematics, Faculty of Mathematical Science,
University of Guilan, Rasht, Iran
®Department of Applied Mathematics, University Campus 2, University of
Guilan, Rasht, Iran
“Mathematics Research Center, Near East University TRNC, Mersin 10,
Nicosia 99138, Turkey

E-mail:biazar@guilan.ac.ir
E-mail:yaldaparvari.m@gmail.com
E-mail:khadijeh.sadrikhatouni@neu.edu.tr

ABSTRACT. The method used in this research consists of a hybrid of the
Block-Pulse functions and third-kind Chebyshev polynomials for solving
systems of Fredholm integral differential equations. Through the use of
an operational matrix representing the derivation, the problem is repre-
sented by a system of algebraic equations. Some examples are provided
to illustrate the simplicity and effectiveness of the utilized method. In
addition, results of the presented method have been compared with those
obtained from the Tau method and variational iteration method that re-

veal the proposed scheme to be more applicable.

Keywords: System of Fredholm integral differential equations, Hybrid method,
Block-pulse functions, Third-kind Chebyshev polynomials, Operational matrix.

2020 Mathematics subject classification: 65R20, 33F05.

1. INTRODUCTION

Systems of integral differential equations appear in mathematical models of
many phenomena. Because it is difficult to obtain the analytical solutions of
systems of integral differential equations, numerical methods to obtain approx-
imate solutions are widely considered. During the last years, many different
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orthogonal functions and polynomials, such as Block-Pulse functions [7, 9],
Fourier series [10], Legendre polynomials [6], different kinds of hybrid func-
tions [2,3,14] and Legendre wavelets [15], were used to solve these systems,
just to mention a few. The first- and second-kind Chebyshev polynomials have
widely been used to solve various functional equations [10,11] and the third-
and forth-kind Chebyshev polynomials have less been taken into account. On
the other hand, the Block-Pulse method has a low accuracy. Hence, in order to
increase the accuracy of resultant approximate solutions, a numerical hybrid
approach using the Block- Pulse functions and the third-kind Chebyshev poly-
nomials is presented for the following system of Fredholm integral differential
equations,

y™ () = F:00) + pi06 100, 41 (00, s 1™ (00, - 15 (X))

my b <x<b (1.1
+X/%WOMM&WW@MWW%G7K (L)
j=1"a

with the initial conditions
0=y, i=1,2,n, r=0,1,...,m—1, (1.2)

where m, my are positive integers, f;(x),?=0,1,2,--- ,n, are known functions,
pi,i=1,2,---  n, are linear or non-linear operators, k;;(x, &) € L*([a, b] x [a, b])
are the kernels and y;(x),7i = 1,2, -+ ,n, are unknown functions [1]. The main
target of this study is to prepare an effective approach for solving the system of
(1.1) that leads to considerable computational validity and simplicity. Solutions
of the given system are approximated by linear combinations of hybrid functions
with unknown coefficients. The operational matrices are then utilized to reduce
the system (1.1) to a linear or non-linear system of algebraic equations that
by solving this algebraic equation, the unknown coefficients are determined
and approximate solutions are acquired for y;(x),i = 1,2,--- ,n. The rest of
the current paper is organized as follows, in Section 2, a hybrid method and
its construction are explained. Section 3 is devoted to obtaining operational
matrices. In Section 4, the hybrid method is applied to approximate solutions
of the system of Fredholm integral differential equations. Section 5 is devoted
to illustrating the effectiveness of the proposed scheme through giving three
objective examples. Finally, the conclusion and discussion appear in Section 6.

2. CONSTRUCTION OF THE HYBRID METHOD

In this section, we recall briefly the Block-Pulse functions, the third-kind
Chebyshev polynomials, and represent a hybrid method composing of men-
tioned functions. It’s acronym is as HBV. This method is introduced in [4]
and is used to solved Fredholm Integro-differential Equations.

2.1. HBV functions. A set of Block-Pulse functions b;(x),7 = 1,2,..., N, on
the closed interval [0, T], are defined as follows

(i—1)T

bilx) =4 N
0, otherwise.

_ T
=X=N (2.1)
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The Block-Pulse functions on [0, T') are disjoint, so for ,j = 1,2, ..., N, we have
bi(x)b;(x) = 6;5bi(x), also these functions have the property of orthogonality
on [0,T) [5]. Using these disjoint functions and the third-kind Chebyshev
polynomials, a piecewise orthogonal basis is constructed as hybrid functions.
Polynomials considered in the hybrid Block-Pulse functions and the third-kind
Chebyshev polynomials H BV on the closed interval [0, T'] are defined as follows,

[2T (2Nx .. (G —1T 5T
. _ ]Iy < =
Hi;(x) = N”J< T 2‘7“)’ N XS\ (2.2)

0, otherwise.

Here, v;(x),7 = 1,2,--- ,M — 1, are the third-kind Chebyshev polynomials
that satisfy the following well-known three terms relation,
U](X) = 2X Uj—l(X) - vj—Q(X)v .7 = 2737 seey
vo(x) =1, v1(x) =2x — 1.
Since H;;(x) is the combination of the third-kind Chebyshev polynomials and
the Block-Pulse functions which are both complete and orthogonal, then the

set of hybrid functions is a complete orthogonal system in L2[0,1) with the
weight functions,

wi(x) =w2Nx —2i+1), i=1,2,..,N.
In other words,

/ w; (x)vi(x)v; (X)dx = V7dij,

-1

1
where §;; is the Kronecker function and w(y) = 4/ 1+7X
- X

2.2. The approximation of functions. The following theorem ensures the
expansion of a square integrable function based on the proposed basis.

Theorem 2.1. Let y(x) € L?[0,1) with a bounded second-order deriative, say
14" (x) |< A, for some constant A, then

(i) y(x) can be expanded as an infinite sum of the HBV and the series
converges to y(x) uniformly, that is

y() =YD ciHi; (%),

i=1 j=0

where cij = (y(x), Hij (X)) 12 [0,1)-

[

(ii) The approzimation error is bounded, i.e.

o0 oo

A? 1
By,im < % Z Z m

imN41j=nr =

where
1 N M-1 2 %
pane = ([ o0 =3 X st 0] ) o)
0 i=1 j=0
Proof. See [4] on page 352, Theorem 5.1. O
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According to Theorem 2.1, a continuous function y(x) € L?[0,1) can be

expanded as,
Z > eiH (2.3)
i=1 j=0

where,
(y(0); Hu x _ N /
Cij = T Hij( Jwi(x)dx; (2.4)
T (Hi(x), H i
where (.,.) stands for inner product on L? € [0,1] with the weight function
w;(x). In practice, infinite series (2.3) will be reduced into the following finite

form,
M-1

~ > Y eiiHi(x) = CTHBV (x), (2.5)
i=1 j=0
where C' and HBV (z) are the following (NM x 1) vectors

T
C = [C1,05 1 C1,M—=15C2,05 s C2,M—15 s CN,05 -+ CN,M—1]

(2.6)
HBV(X) = [H1,0, s Hivr—1, H0, s Hong— 15 oo, H 05 oo Hyoar1]
The kernel k(x, &) € L2([0,1] x [0,1]) can be approximated as follows,
H,; k H;
Ky = O RO I 0)) oy vy (2.7)

(H:i(x), H; (X)) (Hi (&), H; (€))"
3. OPERATIONAL MATRIX OF DERIVATIVE

In this section, we will compute the operational matrix of derivative, which is
important for solving the Fredholm integral differential equations [7]. To clarify
first consider the six basis functions in (2.6) as the following (for N = 2, M = 3),

Hio(x) =1 1
H12(X) = 64X2 — 40)( +5

Hao(x) =1

Hoi(x) =8x —7
So, HBVs(x) = [Hio, H11, H12, Hao, Ho1, Haz). By differentiating (3.1)—(3.2),
we obtain

<x<1 (3.2)

DN =

dHy _
RS
Y8 =28H

i%

12

= 128X —40 = 16H11 + 8H10

dy
dHag
d
2L — 8 = 8Hyy
a
d; = 128y — 104 = 16Ha; + 8Hoyg
Thus,
dH BVs(x)

ix ~ Agxe HBVs(x) (3.3)
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where,

Agxp = 2

O O = =~ O
o O 0w o O
o O O o o o
o O O o o
o O O o o o

=~ ks O O O O

0 0 8

The matrix Agxg is called the operational matrix of derivative and can be
written as

O
A6><6 —9 {gBXS 3><3}
3x3 03x3

where
0 0 0
o3x3= 14 0 0
4 8 0

Therefore, the differentiations of basis functions are written as linear combina-
tions of basis functions themselves. In general, we have for arbitrary M, N

dHBV ()

ax ~ A HBV(x), (3.4)

where A is the NM x NM operational matrix of the derivative as follows,

o 0 ... O
0 o ... O
A= . :
00 --- o

and ¢ = [a;j]mxa whose elements are as the following,

2(i+j - 1), i > jand (i + j) odd,
aij =< 2(i —j), 1> 7 and (i + j) even,
0 otherwise.

)
As a result, we have

d™"HBV (y)

~A™ HB .
N V(x)

As an example, the matrix p for M =5 is as follows

0 0 0 0 0

0 0 0 0

o= |4 8 0 0 0
8 4 12 0 0

8 12 4 16 0

Remark 3.1. The integral of the product of two basis vectors in (2.6) can be
obtained as

E = / 1 HBV (x)HBV™ (x)dy, (3.5)
0
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where E is a NM x N M diagonal matrix that can be obtained as the following,

L, 0 - 0
1 lo o o

E:ﬁ A : (3.6)
0 0 - Ly

where L,,n = 1,2,...,N, are M x M symmetric matrices. For example, if
N =2 and M = 3, we have

2 -2 2 0 0 0 ]
—9 134 o 130 0 0 0
2 10 86
1135 3 & 0 0 0
E = 1 (3.7)
674 494 922
0 0 0 105 105 315
494 2182 1622
0 0 0 —15 315 35
922 1622 25402
L 0 0 0 315 T 315 3465

4. METHODOLOGY

In this section the mentioned matrices in Section 3 are utilized to reduce
system of (1.1) to a system of algebraic equations. For this purpose, consider
system (1.1) with the initial conditions (1.2). The following approximations
are proposed,

yi(x) ~ CTHBV (x), i =1,2,...,n, (4.1)

where the vectors C;,i = 1,2,...,n, and HBV(x) are determined in (2.6). So,
we have

y ()~ CTATHBV (x), i=1,2,...n, r=1,2,....,m. (4.2)
Therefore, initial conditions (1.2) are approximated as follows
CIA"HBV(0) —a;, =0, i=1,2,...n, r=0,1,....m— 1. (4.3)

So, nm algebraic equations are achieved. Now, using approximations (4.2) and
resultant matrices, other terms of system (1.1) are approximated as

filx) = FTHBV (x),

PG00, s 1™ (), - yT) & PTHBV (x),
kij(x. €) # HBVT () Ky HBV (¢),
qgﬁ)(x,yl(x), ...,ygm)(x), YCONEN Qg;HBV(X), i=1,2,..,n, j=1,2,...,my.

where F; and P; are known vectors, K;; are known matrices of the order N M x
NM, and C; are unknown vectors that must be determined. Substituting
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approximations (4.2) and (4.4) into system (1.1) leads to the following equations
CI'HBV(x) = FFHBV (x) + PTHBV (x)

+Z / QT HBV (€)HBVT(€)K, HBV (y)dé

= F'HBV (x) + PYHBV (x { ZQT E K }HBVT(X).

(4.5)
Multiplying both sides of (4.5) by HBVT (x)w;(x) and applying fo )dx, the
following linear or non-linear system of algebraic equations will be obtained,

¢ =FT + P + ZQT E Ky, i=12..n j=1,2..my. (46)

j=1
To determine n unknown vectors C;, nm equations of (4.3) and n(NM) —nm
equations from (4.6) are considered. Finally, by solving the resultant system
of algebraic equations including n/NM equations, the vectors of coefficients
C;,i = 1,2,...,n, will be determined and approximate solutions are obtained
from (4.1). Also, the absolute error function e(y;(x)) is constructed as follows,

e(yi(x)) = . i=1,2,..,m. (4.7)

5. NUMERICAL EXAMPLES

For showing the efficiency of the proposed numerical approach, we consider
the following examples. In the tables, the absolute error of y; is denoted by
AE,,. The results will be compared with those of some existing methods.

EXAMPLE 5.1. As the first example, we consider the following linear system of
Fredholm integral differential equations [8],

1
1 (X) + y2(x) +/0 2xE(y1(€) — 3y2(€))dE = 3x2 + %x +38,

00+ 300+ [ 30+ €)1 (9) — (e = 2+ 3,

subject to the initial conditions y1 (0) = 1,4, (0) = 0,2(0) = —1, and y,(0) = 2.
The exact solutions are y1(x) = 3x% + 1 and y2(x) = x> + 2x — 1. We can
approximate the functions as follows,

yi(x) ~ HBVT (x) C;, i=1,2,
yi(x) ~ HBVT()A C;, i=1,2,
v, (x) ~ HBVT ()A2C;, i=1,2,
2x¢ ~ HBVT (x\)K1HBV (€),

3(2x + &%) =~ HBVT (\) K. HBV (€),

3
3%+ pr e~ HBVT(x)Fy,

4
21 + ¢ ~ HBVT(x)F,
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and the initial conditions can be approximated as

HBVT(0) C, —1~0, HBVT(0)A C, ~0,
HBVT(0) Co4+1~0, HBVT(0)A Cy—2=0.

Substituting these approximations into the given equations and solving the
resultant linear algebraic system, the coefficients will be obtained for N = 1
and M =4 as follows

C1=1[2.0394 0.6629 0.1326 —1.2663><10*13]T,
C2=[0.74025 0.5856 0.0773 0.01104]"

Therefore, the following approximate solutions are resulted,

y1(x) & —1.1461 x 10~y + 3.0000x? + 1.9643 x 10710y + 1,
yo(x) ~ x>+ 1.3900 x 107 11y2 + 2y — 1.

The values of the exact solutions and absolute errors of approximate solutions
are computed at the points x; = 0.2¢,¢ = 0,1,...,5, for N =1 and M =5 that
are seen in Table 1. Also, the results of the proposed approach are compared
with those of the Tau method [8] in Table 1. The plots of the exact and
approximate solutions are depicted in Figure 1. The results show the good
agreement of the approximate solutions with the exact solutions.

Exact solution HBYV method Tau method in [§]
Xi (yla y2) (AEyl ) AE?/2) (AEyl ) AEyz)

0 (1,-1) 4.44e — 16,2.22e — 16 3.0e — 14,3.1e — 14

0.2 | (1.12,-0.592) | (2.66e — 16,5.42¢ — 16 2.0e — 14,2.7¢ — 14

0.6 | (2.08,0.416) 1.86e — 16, 7.03e — 16

( )
( )
0.4 | (1.48,—0.136) | (5.99¢ — 15,2.64¢ — 15)
( )
( )

0.8 | (2.92,1.112) 6.70e — 16,1.45e — 16 1.0e — 14,2.0e — 14

( )
( )
(1.0¢ — 14, 3.4e — 14)
(2.0¢ — 14,2.3¢ — 14)
( )
( )

1.0 (4,2) (1.89¢ — 15,2.59¢ — 15) | (1.0e — 14,2.0¢ — 14
TABLE 1. Numerical results for N =1, M =5 of Example 5.1.

EXAMPLE 5.2. The second example is the following non-linear system of Fred-
holm integro-differential equations [16],

1
00 =20+ o o [ RO +BE)E 3(0) =1,
B =20 g1+ g1 | 0RO - w0 =1,
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y2(x)

(b)

FIGURE 1. Plots of the exact and approximate solutions: (a)

y1(x), (b) y2(x) for Example 5.1.

with the exact solutions y1(x) = 1+ x + x?, y2(x) =1 — x + x> We can

approximate the functions as the following,

yi(x) = HBVT (\)C;, i=1,2,
yi(x) ~ HBVT (\)AC;, i=1,2,
149 67
Xt ™ HBVT(x)F1, 2x - T HBVT(X)Fs,

1 1
/ Y2 (€)de ~ / CTHBV () HBV(€)Cide ~ CTEC,, i — 1,2,
0 0

and the initial conditions can be approximated as

HBVT(0)C, —1~0, HBVT(0)Cy—1=0.

Substituting the above approximations into the given system leads to a non-

linear system of algebraic equations. By solving this system, the following
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coefficients would be achieved for N =1 and M = 3,
C1=[1.6794 039775 0.044194]"
C2=[0.61872 0.44159 0.044194]"

The values of the exact solutions and absolute errors are computed at the points
xi: = 0.2i,:=0,1,...,5, for N =1 and M = 3 which are listed in Table 2. The
maximum absolute errors of the proposed approach are (|| e(y1) |lco, || €(¥2) |loo
) = (4.44 x10716,1.11 x 10~ 16), while errors of the variational iteration method
reported in [16] are (|| e(y1) |loo, || €(¥2) |loo) = (6.26 x 1077,3.43 x 107°).
The results show the more accuracy of the proposed method. The exact and
approximate solutions are depicted in Figure 2.

Exact solution | Absolute errors
Xi (Y1, 2) (AEy,, AE,,)
0 (1.11,0.91) (0,0)
0.2 (1.24,0.84) (0,1.11e — 16)
0.4 (1.56,0.76) (0,0)
0.6 (1.96,0.76) (0,0)
0.8 (2.44,0.84) (0,0)
1.0 (3,1) (0,0)

TABLE 2. Values of exact solution and absolute errors for N =
1, M = 3 of Example 5.2.

EXAMPLE 5.3. We study the following non-linear system of the Fredholm in-
tegral differential equations [16],

() =~ cos() + f% +a1 ) RO T 0O =24i0) =0
300 =sin(0) — g7 + 57 FRO- RO 10 =150 =

with the exact solutions y1(x) = 1+ cos(x), y2(x) =1 —sin(x). Implementing
the hybrid method and solving the non-linear system, the following results will
be achieved for N =1 and M =5,

C1=[1.2048 —0.10261 —0.018523 0.00099 0.00013]
C2=1[0.23375 —0.14198 0.01174 0.00147 —0.00011]"

Thus, the approximate solutions are as

y1(x) ~ v/2(0.033795x* — 0.012251x3 — 0.35096x2 + 2.7756¢ — 17 + 1.4142),
Yo () & V2(—0.028135x% + 0.15757x3 — 0.024557x2 — 0.70711 + 0.70711).

Table 3 shows the values of the exact solutions and the absolute errors at the
points x; = w/10i,¢ = 0,1,...,5, for N = 1,M =5 and N = 3, M = 4.
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O HBV method
Exact

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

O HBVmethod
Exact

L L L L L L L
01 02 03 04 05 06 07 08 09 1

X
(b)

FIGURE 2. Plots of the exact and approximate solutions: (a)
y1(x), (b) y2(x) for Example 5.2.

The maximum absolute errors of the proposed technique are (|| e(y1) |lco, |
e(y2) |loo) = (6.4 x 1078,8.7 x 107%) and the errors reoprted in [16] are (||
e(y1) lloos || €(y2) lloo) = (5.4 x 1077,3.5 x 10~ 7). The plots of the exact and
approximate solutions are shown in Figure 3. Since the trigonometric solutions
of the system are approximated by a polynomial basis, the absolute errors
increase in compared to the previous two examples. It is excepted the errors
decrease when N, M increase for this non-linear system.

6. CONCLUSION

A Hybrid method to approximate the solutions of systems of Fredholm in-
tegral differential equations is proposed. This method is a combination of the
Chebyshev polynomials of the third kind and the Block-Pulse functions. The
numerical results show that the approximate solutions are in good agreement
with the exact solutions. The comparison of the results with other methods,
such as the Tau method [8] and variational iteration method [16], reveals that
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Exact solution N=1,M=5 N=3M=4
Xi (y1,92) (AE,,, AE),) (AE,,, AE,,
0 (2,1) (0,2.22e — 16) (0,0)

w/10 | (1.9801,0.80133) | (7.54e — 6,6.93¢ — 4) | (6.88¢ — 8, 1.96e — 8)

/5 | (1.9211,0.61058) | (8.38¢ —4,1.16e — 3) | (1.86e — 8, 3.52¢ — 8)
3m/10 | (1.8253,0.43536) | (2.13¢ — 3,3.39¢ — 3) | (3.39¢ — 8,1.81e — 8)
27/5 | (1.6967,0.28264) | (3.89¢ — 3,5.92¢ — 3) | (5.77¢ — 8,3.54e — 8)

w/2 | (1.5403,0.15853) | (6.49¢ — 3,8.71e — 3) | (8.86e — 8,5.73¢ — 8)

TABLE 3. Values of exact solution and absolute errors at se-
lected points for different values of N, M of Example 5.3.

¥, (%)
@

L L
0.5 1

¥,(X)

©g,
°°°°onn

L
0.5 1

15

FIGURE 3. Plots of the exact and approximate solutions: (a)
y1(x), (b) y2(x) for Example 5.3.
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the proposed approach has very good accuracy. Also, to get the best approx-
imate solutions of the system, the values of N and M must be chosen large
enough. The proposed method may be also applicable for the approximate
solutions of the system of integral equations and other systems of functional

equations.

ACKNOWLEDGMENTS

Authors would like to express sincere appreciation to the editor for reading

and helpful remarks, and to anonymous referees for their very precise and useful

comments that would improve the quality of our article.

10.

11.

12.

13.

14.

15.

16.

REFERENCES

J. Biazar, H. Ebrahimi, A Strong Method for Solving System of Integral Differential
Equations, Applied Mathematics, 2(9), (2011), 1105-1113.

. A. Hosry, R. Nakad, S. Bhalekar, A Hybrid Function Approach to Solving a Class of Fred-

holm and Volterra Integro-Differential Equations, Math. Comput. Appl., 25(2), (2020),
30.

. C. Hsiao, Hybrid Function Method for Solving Fredholm and Volterra Integral Equations

of the Second Kind, Journal of Computational and Applied Mathematics, 230(1), (2009),
59-68.

. R. Jafari, R. Ezzati, K. Maleknejad, Numerical Solution of Fredholm Integro-Differential

Equations By Using Hybrid Function Operational Matrix of Differentiation, Int. J. In-
dustrial Mathematics, 9(4), (2017), 349-358.

. Z. H. Jiang, W. Schaufelberger, Block-Pulse Functions and Their Applications in Control

Systems, Springer-Verlag, Berlin, Heidelberg, 1992.

. K. Maleknejad, Y. Mahmoudi, Numerical Solution of Linear Fredholm Integral Equation

by Using Hybrid Taylor and Block-Pulse Functions, Appl. Math. Comput., 149, (2004),
799-806.

. K. Maleknejad, M. Tavassoli Kajani, A Hybrid Collocation Method Based on Combining

the Third Kind Chebyshev Polynomials and Block-Pulse Functions for Solving Higer-
Order Initial Value Problems, Kuwait journal of Science, 43(4), (2016), 1-10.

. J. Pour-Mahmoud, M. Y. Rahimi-Ardabili, S. Shahmorad, Numerical Solution of the

System of Fredholm Integro-Differential Equations by the Tau Method, Applied Mathe-
matics and Computation, 168(1), (2005), 465-478.

. G. P. Rao, L. Sivakumar, Analysis Analysis and Synthesis of Dynamic Systems Contain-

ing Time-Delays Via Block-Pulse Functions, Proc. IEE, 125, (1978), 1064-1068.

M. Razzaghi, Fourier Series Approach for the Solution of Linear Two-Point Boundary
Value Problems with Time-Varying Coefficients, Int. J. Syst. Sci., 21(9), (1990), 1783-
1794.

P. Sannuti, Analysis and Synthesis of Dynamic Systems Via Block-Pulse Functions, Proc.
Inst. Elect. Eng., 124(6), (1977), 569-571.

M. Tavassoli Kajani, A. Hadi Vencheh, Solving Second Kind Integral Equations with
Hybrid Chebyshev and Block-Pulse Functions, Appl. Math. Comput., 163(1), (2005),
71-77.

X. T. Wang, Y. M. Li, Numerical Solutions of Integro-Differential Systems by Hybrid
of General Block-Pulse Functions and the Second Chebyshev Polynomials, Appl. Math.
Comput., 209(2), (2009), 266-272.

X. T. Wang, Numerical Solutions of Optimal Control for Time Delay Systems by Hy-
brid of Block-Pulse Functions and Legendre Polynomials, Appl. Math. Comput., 184(2),
(2007), 849-856.

X. T. Wang, Numerical Solution of Time-Varying Systems with a Stretch by General
Legendre Wavelets, Appl. Math.comput., 198(2), (2008), 613-620.

A. Wazwaz, Linear and Nonlinear Integral Equations, Methods And Applications,
Springer Berlin, Heidelberg, 2011.


http://dx.doi.org/10.61186/ijmsi.19.2.155
https://ijmsi.com/article-1-1800-en.html
http://www.tcpdf.org

