
Iranian Journal of Mathematical Sciences and Informatics

Vol. 19, No. 2 (2024), pp 51-60

DOI: 10.61186/ijmsi.19.2.51

G-Injective Envelope of Separable G-C∗-algebras

Ali Mahmoodi, Mohammad R. Mardanbeigi∗

Department of Mathematics, Faculty of Science, Science and Research

Branch, Islamic Azad University(IAU), Tehran, Iran

E-mail: mahmoodi326@gmail.com

E-mail: mrmardanbeigi@srbiau.ac.ir

Abstract. Argerami and Farenick have found conditions for the injective

envelope of a separable C∗-algebra to be a von Neumann algebra. In

this paper, we introduce an equivalent version of this result by finding

conditions for the G-injective envelope of a separable G-C∗-algebra A to

be a von Neumann algebra, when G is a discrete group acting on A.
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1. Introduction

1.1. Notice. In 1979, Hamana [7, theorem 4.1] used the Arveson extension

theorem to prove that any C∗-algebra has an injective envelope which is unique

up to *-isomorphism. Indeed, he showed that if A is a C∗-algebra, then the

image of a unit-preserving idempotent contractive linear map φ of an Arveson

injective extension B into itself, is the injective envelope of A. Later, in 1985,

Hamana found an equivariant version of his result [9] by showing that there

exists a unique G-injective envelope (IG(A), κ), for any G-operator system A,

such that if (B, κ́) is any G-injective envelope of A, there exists a complete
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order isomorphism φ : IG(A) −→ B, satisfying φ ◦κ = κ́, where G is a discrete

group acting on A and B.

On the other hand, an injective operator system is unitally and completely

order isomorphic to a unital, monotone complete AW ∗-algebra [5, 12]. In the

above cited result of Hamana, if φ : B −→ B is a minimal A-projection, then

the multiplication on IG(A) = φ(B) is given by the Choi-Effros product, that

is, by

x ◦ y = φ(xy), x, y ∈ IG(A)

and the involution and norm on IG(A) are inherited from B. Furthermore, if A

is a unital G-C∗-algebra, then A embeds into its G-injective envelope as a G-

invariant unital C∗-subalgebra. In the case when G = {1}, the above product

yields a C∗-algebra injective structure on the injective envelope I(A) of A.

In this paper, we extend a result of M. Argerami and D. R. Farenick [2,

Theorem 1.2] to the setting of discrete C∗-dynamics. In the next section, we

set up the terminology and notations for G-C∗-algebras and G-W ∗-algebras.

In the main result of the paper in section 3, we show that parts (i), (ii) and (v)

of Theorem 1.2 in [2] remain equivalent in separable G-C∗-algebras for discrete

C∗-dynamics.

2. G-C∗-algebras

Let B(H) and K(H) be the set of bounded and compact operators on a

complex Hilbert space H, respectively. A C∗-algebra A is a W ∗-algebra if A,

as a Banach space, is the dual space X∗ of some (in fact, unique) Banach

space X. It is a classical fact that a C∗-algebra A is a W ∗-algebra iff A has a

representation as a von Neumann algebra of operators acting on some complex

Hilbert space. A C∗-algebra A is an AW ∗-algebra if the left annihilator of each

right ideal in A is of the form Ap, for some projection p ∈ A, or equivalently,

if every maximal abelian C∗-subalgebra D ⊆ A is monotone complete [3]. Any

W ∗-algebra is an AW ∗-algebra, but the converse is not true, i.e., there exists

AW ∗-algebras that fail to have any faithful representation as a von Neumann

algebra.

In the category of C∗-algebras and completely positive (c.p.) linear maps,

the pair (B, κ) is an extension of a C∗-algebra A, if B is a C∗-algebra and

κ : A −→ B is a c.p. map. A C∗-algebra A is injective if we can extend any

A-valued completely positive linear map of subspace S of a C∗-algebra C to

an A-valued completely positive linear map of the C∗-algebra C. An extension

(B, κ) of a C∗-algebra A is called the injective envelope of A if B is injective and

the only completely positive linear map of B into itself that fixes each element

of κ(A), is the identity map idB . In [7], Hamana proved that any C∗-algebra

has a unique injective envelope. Following Choi and Effros [4], he considered a

completely positive linear map ϕ of the C∗-algebra B into itself, and observed
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that Im(ϕ) with multiplication ” ◦ ”, x ◦ y = ϕ(xy) for all x, y ∈ Im(ϕ), and

involution and norm induced by those of B, is a unital C∗-algebra. The C∗-

algebra Im(ϕ) is denoted by C∗(ϕ). Hamana proved that C∗(ϕ) is injective

if B is injective in this category. Finally, if A is a C∗-algebra, there exists

an injective C∗-algebra C containing A as a C∗-subalgebra, by the Arveson

extension theorem (which asserts that the algebra of bounded operators on a

complex Hilbert space is injective). By [7, Theorem 3.4], there exists a minimal

A-projection ϕ on C. If B = C∗(ϕ) and κ is the canonical inclusion of A into

B, then (B, κ) is an injective envelope of A.

In this section we generalize some of the results obtained in the category

of C∗-algebras and completely positive linear maps to the category of G-C∗-

algebras and completely positive G-linear maps. We assume throughout this

paper that G is a discrete group.

A G-C∗-algebra is a C∗-algebra which equipped with an action of G by

automorphisms. In other words, a G-C∗-algebra A is a C∗-algebra and a left

G-module. Given two G-C∗-algebras A and B, the unital completely positive

linear map φ : A −→ B is G-equivariant, if φ(g · a) = g · φ(a), for any g ∈ G

and a ∈ A. A G-C∗-algebra B can be viewed as a C∗-algebra over the discrete

group algebra L1(G) with the module operation defined by

f · x =
∫
f(g)θg(x)dg , f ∈ L1(G), x ∈ B

One could define the category of G-W ∗-algebras and G-injective objects in

this category in an analogous manner. A G-C∗-algebra B is a G-W ∗-algebra if

B is aW ∗-algebra with the L1(G)-module structure such that the map x 7→ f ·x
in B is positive and normal, for each f ∈ L1(G)+.

A G-C∗-algebra A is said to be G-injective if for any G-C∗-algebras B and

C, any G-equivariant complete isometry κ : B −→ C and any G-equivariant

u.c.p map φ : B −→ A, there exists a G-equivariant u.c.p map φ̃ : C −→ A

satisfying φ̃ ◦ κ = φ, i.e., the following diagram commutes,

B
κ
//

φ
��

C

φ̃

��

A

This simply means that G-equivariant u.c.p maps into A have G-equivariant

u.c.p extensions.

Suppose that A and B are G-C∗-algebras. We say that;

(i) (B, κ) is a G-extension of A, if κ : A −→ B be a G-equivariant and u.c.p

∗-monomorphism.

(ii) The G-extension (B, κ) is G-essential if for any G-C∗-algebra C and any

G-equivariant u.c.p map φ : B −→ C, φ is completely isometric whenever φ◦κ
is.
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(iii) The G-extension (B, κ) is G-rigid if the only G-equivariant u.c.p map

φ : B −→ B satisfying φ ◦ κ = κ is the identity map idB .

The pair (B, κ) is a G-injective envelope of A, if (B, κ) is G-essential , G-rigid

and B is G-injective.

Throughout this paper, we denote theG-injective envelope of aG-C∗-algebra

A by IG(A). When G is trivial we are back to the notations of injectivity for

C∗-algebras, as well as plain essentiality and rigidity of extensions.

Let A be a unital G-C∗-algebra and let θ : G −→ Aut(A) be a G-action.

Writing θg = θ(g), for all g ∈ G, by injectivity each θg : A −→ A (a −→ g · a)
extends to a ∗-isomorphism IG(A) −→ IG(A), still denoted by θg. Due to

rigidity, one can show that θg◦θh = θgh on IG(A), for all g, h ∈ G, so that IG(A)

becomes a unital G-C∗-algebra containing A as a G-invariant C∗-subalgebra.

Further, the inclusion A ↪→ IG(A) is a G-essential extension of A.

In [9], Hamana proved that there exist a uniqueG-injective envelope (IG(A), κ),

for any G-operator system A, such that if (B, κ́) is any other G-injective enve-

lope of A, there exists a complete order isomorphism φ : IG(A) −→ B satisfying

φ ◦ κ = κ́.

Let H be a complex Hilbert space and A be an operator system in B(H),

then ℓ∞(G,A) becomes a G-operator subsystem of B(H ⊗ ℓ2(G)) with the

action of G given by the left translation, i.e.,

(gf)(h) = f(g−1h), g, h ∈ G, f ∈ ℓ∞(G,A)

and each f ∈ ℓ∞(G,A) is acting on H ⊗ ℓ2(G) by f(ξ ⊗ δg) = f(g)ξ ⊗ δg, for

ξ ∈ H and g ∈ G.

Hamana showed that if A is an injective operator system, then ℓ∞(G,A) is

G-injective, and that any G-injective G-operator system is injective.

If A ⊆ B and B is a G-injective G-operator system, then an A-projection

on B is a G-equivariant u.c.p map φ : B −→ B satisfying φ|A = idA. A

partial ordering on the set of A-projections on B can be defined by φ ≺ ψ, for

A-projections φ, ψ : B −→ B if φ ◦ ψ = ψ ◦ φ = φ.

By the Zorn’s lemma, there exists a minimal A-projection φ : B −→ B on

the set of seminorms induced by A-projection on B. In this argument, letting

κ : A −→ B be the inclusion map, then (φ(B), κ) is a G-rigid and G-C∗-

injective extension of A. Therefore, (φ(B), κ) is the G-injective envelope of

A.

A canonical G-injective G-operator system is ℓ∞(G,B), where B is an in-

jective C∗-algebra. Let A be a unital G-C∗-algebra and B be a unital injective

C∗-algebra containing A Let κ : A −→ M = ℓ∞(G,B) be the G-equivariant

injective ∗-homomorphism given by

κ(x)(g) = g−1x, x ∈ A, g ∈ G.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
2.

51
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-0

9-
02

 ]
 

                             4 / 10

http://dx.doi.org/10.61186/ijmsi.19.2.51
https://ijmsi.com/article-1-1760-en.html


G-Injective Envelope of Separable G-C∗-algebras 55

Then there is a κ(A)-projection φ : M −→ M such that (φ(M), κ) is the

G-injective envelope of A. Thus, for any injective extension B of a unital

G-C∗-algebra A, the map κ : A −→ ℓ∞(G,B) is the canonical inclusion map.

Any injective operator system is unitally and completely order isomorphic to

a unital, monotone complete AW ∗-algebra [5, 12]. In our setting, if A ⊆ B are

as above and φ : B −→ B is a minimal A-projection, then the multiplication

on IG(A) = φ(B) is given by the Choi-Effros product, i.e., by

x ◦ y = φ(xy), x, y ∈ IG(A)

and the involution and norm on IG(A) are inherited from B [7]. Further, if A

is a unital G-C∗-algebra, then A embeds into its G-injective envelope as a G-

invariant unital C∗-subalgebra. In the case when G = {1}, the above product

yields a C∗-algebra injective structure on the injective envelope I(A) of A.

A G-C∗-algebra A is a G-monotone complete if underlying C∗-algebra A is a

monotone complete. AG-W ∗-algebra isG-monotone complete if the underlying

W ∗-algebra is so as a C∗-algebra. A linear subspace A of a G-C∗-algebra B

is called G-C∗-subalgebra of B, written A ⪯ B, if A is a G-C∗-algebra in the

restricted action of G.

Given two G-C∗-algebra A ⪯ B, A is said to be G-closed in B if y ∈ B and

g · y ∈ A, for all g ∈ L1(G), imply y ∈ A. For any G-C∗-algebras A ⪯ B the

smallest G-closed G-C∗-subalgebra of B containing A is called the G-closure of

A in B, written G-clBA, i.e., G-clBA = {y ∈ B : f · y ∈ A for all f ∈ L1(G)}.
A G-C∗-algebra A is G-complete if for any G-C∗-algebra B with A ⪯ B, A is

a G-closed in B.

A G-regular completion of a G-C∗-algebra A is a G-C∗-algebra, written AG,

such that;

(1) AG is G-complete,

(2) A ⪯ AG,

(3) If A ⪯ B and B is G-C∗-complete, there are a G-C∗-algebra B′ with

A ⪯ B′ ⪯ B and a G-isomorphism ψ : AG −→ B′ with ψ|A = idA.

In fact, the AG is the smallest G-complete containing A. Hence, AG exists

and is unique. Now the Hamana’s construction [9] of AG is via the G-injective

envelope of A. Namely, AG is the G-closure of A in IG(A).

For each G-C∗-algebra A, there is a representation in which

A ⪯ AG ⪯ IG(A),

where each containment is as a G-C∗-subalgebra. An important feature of this

sequence of containments is that AG is G-monotone closed in IG(A)

An ideal I of A is essential if K ∩ I ̸= {0}, for any non-zero ideal K ⊆ A.

Equivalently, if aI = 0, for all a ∈ A, then a = 0. Any essential ideal is

necessarily non-zero. The multiplier algebra M(A) of a C∗-algebra A is a C∗-

subalgebra of the enveloping von Neumann algebra A∗∗ that consists of all

x ∈ A∗∗ for which xa ∈ A and ax ∈ A, for all a ∈ A.
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An essential ideal I of a G-C∗-algebra A is G-essential ideal if I is G-

invariant. For a G-invariant ideal I of A, the G-multiplier algebra MG(I) of I

is the G-regular completion of the multiplier algebra M(I), endowed with the

canonical strictly continuous action of G,that is, MG(I) =M(I)G.

If J ⊆ A is a G-invariant ideal, then J∗∗ is identified with the closure of

J in A∗∗ with respect to the strong operator topology. Thus, if J and K are

G-invariant ideals of A, and if J ⊆ K, then MG(J) ⪰MG(K) ⪰MG(A).

Consider the G-multiplier algebra MG(J) of any G-essential ideal J of A. If

εG(A) is the set of G-essential ideals of A, partially ordered by reverse inclusion,

then the set ξ(A) of G-multiplier algebras MG(K) of K ∈ εG(A) is a directed

system of G-C∗-algebras. We define a G-local multiplier algebra, denoted by

M loc
G (A), as follows

M loc
G (A) = lim−→{MG(K);K ∈ εG(A)}.

In fact, the M loc
G (A) is defined to be the C∗-direct limit over the downward

directed system K ∈ εG(A), and M
loc
G (A) is realized by idealizers in IG(A) of

G-essential ideals of A. By an argument similar to [6, Corollary 4.3]

M loc
G (A) = cl

(⋃
K∈εG(A){x ∈ IG(A);xK +Kx ⊆ K}

)
where the closure is with respect to the norm topology of IG(A). Thus,

A ⪯M loc
G (A) ⪯ IG(A)

is an inclusion of G-C∗-subalgebras.

Lemma 2.1. If A is a G-C∗-algebra for which IG(A) is a G-W
∗-algebra, then

AG is a G-W ∗-algebra.

Proof. Suppose that IG(A) is a G-W
∗-algebra. Then IG(A) is represented as a

von Neumann algebra acting on a Hilbert space. We assume that {hα}α be any

bounded increasing net in (AG)sa. Because IG(A) is G-monotone complete,

{hα}α has a least upper h such that h = limα hα = supα hα in the strong

operator topology. Since, AG isG-monotone closed in IG(A), h ∈ AG. Thus AG

is a G-C∗-algebra of operators in which the limit of every bounded increasing

net of hermitian elements again belongs to AG. Therefore, AG is a G-W ∗-

algebra by [10, lemma 1]. □

Proposition 2.2. For any G-C∗-algebra A the G-closure of A in its G-injective

envelope IG(A) is the G-regular completion AG of A.

Proof. Let A1 be the G-closure of A in IG(A) and A ⪯ B, then A ⪯ B ⪯ B1 for

some G-injective B1, and there are an idempotent G-morphism ϕ : B1 −→ B1

and a G-isomorphism ψ : IG(A) −→ ϕ(B1) such that ϕ|A = idA = ψ|A. We

have G-clB1
A ⪯ ϕ(B1). Indeed, if b ∈ G-clB1

A, then f ·b ∈ A for all f ∈ L1(G)

and f · b = ϕ(f · b) = f · ϕ(b) in B1 for all f ∈ L1(G); hence b = ϕ(b) ∈ ϕ(B1).

Thus

G-clϕ(B1)A = (G-clB1A) ∩ ϕ(B1) = G-clB1A.
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Further, since ψ is a G-isomorphism and ψ|A = idA, we have ψ(A1) = G −
clϕ(B1)A, and so ψ(A1) = G − clB1

A. First we assume that y ∈ ψ(A1), then

there is a a1 ∈ A1 such that y = ψ(a1) ∈ ϕ(B1). On the other hand, since A1

is a G-closure of A, f · a1 ∈ A for all f ∈ L1(G), and since ψ|A = idA, we have

f · y = f · ψ(a1) = ψ(f · a1) = f · a1 ∈ A.

Hence, y ∈ G-clϕ(B1)A.

Now, let y ∈ G − clϕ(B1)A. By definition, we have f · y ∈ A and y ∈ ϕ(B1).

Suppose that b1 ∈ B1, with y = ϕ(b1). Since ψ is a G-isomorphism, there exists

a1 ∈ IG(A) such that y = ϕ(b1) = ψ(a1). On the other hand, since A1 is a

G-closure of A in IG(A),

ψ(f ·a1) = f ·ψ(a1) = f ·y ∈ A⇒ f ·a1 ∈ A⇒ a1 ∈ A1 ⇒ y = ψ(a1) ∈ ψ(A1).

If A1 = A, namely, A is G-closed in IG(A). Then so is A in ϕ(B1), and A =

G-clB1
A. Hence, A = G-clBA, that is, A is G-closed in B. Since A ⪯ B ⪯ B1,

G-clBA ⪯ G-clB1
A. As B is arbitrary, this means that A is G-complete.

Next, suppose that A is arbitrary, but B is G-complete. Since IG(A1) =

IG(A) and A1 is G-closed in IG(A), it follows from the foregoing argument

that A1 is G-complete. As B is G-complete, G-clB1
A ⪯ G-clB1

B = B, and

ψ(A1) = G-clB1
A ⪯ B with ψ(A1) ∼= A1. Therefore, A1 is the G-regular

completion of A.

Finally, let only that A ⪯ B. By the above argument to A ⪯ B ⪯ BG,

there is a G-isomorphism ψ of A1 onto G-clBG
A with ψ|A = idA. Hence,

since A ⪯ G-clBA ⪯ G-clBG
A, G-clBA is isomorphic to the G-C∗-subalgebra

ψ−1(G-clBA) of A1. □

3. Separable C∗-algebra of a discrete group

The main result of this paper is Theorem (3.4) on separable discrete C∗-

dynamics. Before turning to the proof of Theorem (3.4), we prove some prelim-

inary results. We need the notion of covariant representation and the relation

between G-local multiplier algebra and G-regular completion of G-C∗-algebras.

Definition 3.1. A C∗-algebra A is called elementary if A ∼= K(H) for some

Hilbert space H.

The separable elementary C∗-algebras are the finite-dimensional matrix alge-

bras and the C∗-algebras of compact operators of separable infinite-dimensional

Hilbert space. Every elementary C∗-algebra is simple and the converse is true

when the C∗-algebra is of type I. If A is a C∗-subalgebra of K(H) acting

irreducibly on Hilbert space H, then A is elementary.

Definition 3.2. A covariant representation of a G-C∗-algebra A is a pair (π, σ)

where (π,H) is a representation of A , (σ,H) is a unitary representations of G,
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such that

σ(g)π(a)σ(g)−1 = π(θg(a)) = π(g · a)
for every a ∈ A, g ∈ G.

A covariant representation (π, σ) of a G-C∗-algebra A on a Hilbert space H is

normal if (π,H) is normal.

Proposition 3.3. M loc
G (A) = AG for every G-C∗-algebra A.

Proof. Since M loc
G (A) is G-equivariant *-isomorphically embedded into IG(A),

extending the canonical G-equivariant *-monomorphism of A into IG(A), the

G-C∗-algebra IG(A) serves as an injective G-extension of the G-C∗-algebra

M loc
G (A). Therefore, the identity map onM loc

G (A) admits a unique G-extension

to a G-equivariant completely positive map of IG(A) into itself with the same

completely bounded norm one. Since AG ⪯M loc
G (A) ⪯ IG(A) by construction

and IG(A) is the G-injective envelope of A, IG(A) has to be the G-injective

envelope of M loc
G (A). Since the G-regular completion of a G-C∗-algebra B is

the G-monotone closure of B in the G-injective envelope IG(A),

AG ⪯M loc
G (A) ⪯ AG ⪯ IG(A) = I(M loc

G (A))

implies that AG ⪯M loc
G (A) ⪯ AG. Thus, M loc

G (A) = AG. □

Theorem 3.4. The following statements are equivalent for a separable G-C∗-

algebra A:

(i) AG is a G-W ∗-algebra.

(ii) IG(A) is a G-W ∗-algebra.

(iii) A contains a G-invariant minimal essential ideal that is G-isomorphic to

a direct sum of elementary G-C∗-algebras.

Proof. By Lemma (2.1), the proof of (ii)⇒(i) is clear.

(ii)⇒(iii): We have divided the proof into two stages. In the first stage, let us

first show that there exists a faithful representation π : AG −→ B(H) such that

the von Neumann algebra π(AG)
′′ is generated by its minimal projections, each

of which is contained in π(AG). For this, let IG(A) be a G-W
∗-algebra. By [11,

lemma 7.4.9], there is a faithful G-equivariant representation π̃ : IG(A) −→
B(H) such that π(AG) is a G-C∗-subalgebra of π̃(IG(A)), with π = π̃|(AG).

Without loss of generality, suppose that IG(A) is a von Neumann algebra acting

on a Hilbert space. Since the G-regular completion AG of AG is G-monotone

closed in IG(A) and because IG(A) is a von Neumann algebra, AG is a von

Neumann algebra by Lemma (2.1). Thus, A′′
G ⊆ A

′′
G = AG, A

′′
G being the

double commutant of AG.

Now, let ω be a normal state on von Neumann algebra A′′
G that is faithful on

AG. Assume that ω(h) = 0, where h ∈ A′′+
G . Because h = sup{k ∈ A+; k ≤ h},

we have 0 ≤ ω(k) ≤ ω(h) = 0, for each k ∈ A+
G with k ≤ h. Thus ω(k) = 0,

which implies that k = 0 because ω is faithful on A. Hence, h = 0 and so
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ω is faithful on A′′
G. Namely, any normal state ω ∈ A′′

G is faithful precisely

when its restriction ω|AG
to AG is faithful. By [13, P. 139], because AG is

separable and order dense in A′′
G, A

′′
G is generated by its minimal projections,

each of which is contained in AG. Furthermore, since A′′
G is a direct product of

type I factors by [3, lemma 2.2], A′′
G is injective by [3, corollory 2.3]. Because

AG ⊆ A′′
G ⊆ IG(A), we conclude that A′′

G = AG = IG(A), by minimality of the

injective envelope.

The second stage, without loss of generality, assumes that AG is already

represented as a subalgebra of B(H) and that M = A′′
G is generated by its

minimal projections, each of with lie in AG. Let K ⊆ AG be the ideal of AG

generated by the minimal projections of M . We claim that K is an essential

ideal, minimal among all essential ideals of AG. Suppose that J ⊆ AG is a

nonzero ideal. Choose any nonzero h ∈ J+. There is a strictly positive λ in

the spectrum σ(h) of h. Let e ∈M be the spectral projection e = eh([λ,+∞)),

where eh denotes the spectral resolution of h. Thus, 0 ̸= λe ≤ he, and there is

a minimal projection p of M such that ep = pe = p and 0 ̸= λp = λp2 = pλp ≤
php ∈ J ∩K. Then J ∩K ̸= {0}.

By [3, lemma 2.2], since M = A′′
G is generated by its minimal projections,

M is a discrete type I von Neumann algebra. Therefore, there is a faithful

normal covariant *-representation γ of M on a Hilbert space H of the form

H =
⊕

nHn by [11, lemma 7.4.9], such that

γ(K) ⊆ γ(AG) ⊆ γ(M) =
∏
n

B(Hn)

It fact, the minimal projections of any B(Hn) are minimal projection of γ(M).

Hence, elements of γ(K). Moreover, if e is a minimal projection of
∏

nB(Hn),

e ∈ B(Hn), for some n ∈ N . Therefore,
⊕

nK(Hn) ⊆ γ(K). Since γ(K) is

the smallest G-C∗-algebra that contains the minimal projections of γ(M), it

follows that γ(K) =
⊕

nK(Hn). Since, K ∼=
⊕

nK(Hn), K is G-invariant

minimal essential ideal of AG.

(iii)⇒(ii): Suppose that AG has a G-invariant minimal essential ideal K

such that K ∼=
⊕

nK(Hn). Thus, by [1, Lemma 1.2.21],

M(K) =M(
⊕
n

K(Hn)) =
∏
n

M(K(Hn)) =
∏
n

B(Hn),

and this shows that M(K) is a type I W ∗-algebra. Since K is a G-invariant

minimal essential ideal of AG, by [1, Remark 2.3.7] M(K) =M loc
G (A). Hence,

M loc
G (A) is an injective G-W ∗-algebra. We know that AG ⊆M loc

G (A) ⊆ IG(A)

asG-C∗-subalgebras, it must be thatM loc
G (A) = IG(A) by definition of injective

envelope, and this is precisely the proof of the G-W ∗-algebra of IG(A).

(i)⇒(ii): For the G-W ∗-algebra AG, AG = A′′
G by the proof of (ii)⇒(iii).

Since A′′
G is a direct product of type I factors, so A′′

G is injective. Therefore,
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AG is injective. Hence, AG = IG(A), which yields that IG(A) is a G-W ∗-

algebra. □

Example 3.5. by [8, lemma 2.2], A = ℓ∞(G,B(H)) is G-injective, where G

acts trivially on B(H). Thus IG(A) = A which is a G-W ∗-algebra. Now the

minimal essential ideal of A is c0(G)⊗K(H) which is essential ideal and dense

and is direct sum of |G|-copies of elementary C∗-algebras C ⊗ K(H) [This

is an infinite direct sum if the cardinal |G| is not finite]. Also A is already

G-complete, so the G-closure of A is A itself, which is a G-W ∗-algebra.
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