[ Downloaded from ijmsi.com on 2026-02-10 ]

[ DOI: 10.52547/ijmsi.18.1.211 ]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 18, No. 1 (2023), pp 211-225
DOL: 10.52547/ijmsi.18.1.211

Inverse and Reverse 2-facility Location Problems with
Equality Measures on a Network

Morteza Nazari, Jafar Fathali*

Faculty of Mathematical Sciences, Shahrood University of Technology,
University Blvd., Shahrood, Iran

E-mail: mnazari ms65@yahoo.com
E-mail: fathali@shahroodut.ac.ir

ABSTRACT. In this paper we consider the inverse and reverse network
facility location problems with considering the equity on servers. The
inverse facility location with equality measure deals with modifying the
weights of vertices with minimum cost, such that the difference between
the maximum and minimum weights of clients allocated to the given
facilities is minimized. On the other hand, the reverse case of facility
location problem with equality measure considers modifying the weights
of vertices with a given budget constraint, such that the difference be-
tween the maximum and minimum weights of vertices allocated to the
given facilities is reduced as much as possible. Two algorithms with time
complexity O(nlogn) are presented for the inverse and reverse 2-facility
location problems with equality measures. Computational results show

their superiority with respect to the linear programming models.
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1. INTRODUCTION

The equity location models have been interested in recent years. These facil-
ity location problems deal with to locate the facilities such that the equality in
serving to the demand points is maximized. This subject has been considered
by many authors. Among them Gavalec and Hudec [18] studied the balancing
function model which its objective function is the maximum difference in the
distance from a demand point to its farthest and nearest facility. Berman et al.
[5] considered the problem of finding the location of p facilities such that the
maximum weight assigned to each facility is minimized. Marin [22] considered
the balanced location problem in which the difference between the maximum
and minimum weights allocated to different facilities is minimized. Fathali and
Zaferanieh [16] presented polynomial algorithms for balanced location models
on tree networks. A trade off between effectiveness and equity has been con-
sidered by Lejeune and Prasad [21]. They presented a bi-criteria model for this
problem. Landete and Marin [20] considered the problem of minimizing the dif-
ferences among the weights that allocated to the facilities. Some properties to
describe the behavior of the equality measures in facility location models have
been presented by Barbati and Piccolo [3]. The interested reader is referred to
[23, 14], two reviews of the literature on equity measurement in location theory.

The p-median and p-center problems are two important classic facility loca-
tion models. These problems ask to find the location of p facilities such that
respectively the sum and maximum weighted distances from clients to the clos-
est facility is minimized. The classical location models deal with to find the
optimal locations of the facilities. However, in some cases the facilities may
already exist and the problem is to improve the given locations by changing
some parameters. If we want to change the parameters with minimum cost such
that the given locations are optimal then the problem is called inverse location
problem. On the other hand, if we should change the parameters to improve
the given locations as much as possible within a given budget constraint, then
the problem is called reverse location problem.

Many authors have been considered the inverse and reverse location models.
Cai et al. [13] showed that the inverse center problem is NP-hard. Burkard et
al. [12] investigated the inverse p-median problems and presented an O(nlogn)
algorithm for the inverse 1-median problem on a tree and in the plane. Then
Galavii [17] improved the time complexity of the inverse 1-median problem on
trees to linear time. Burkard et al. [11] developed an O(n?) algorithm for
the inverse 1-median problem on a cycle. The inverse 1-median problem on
tree networks with variable weights and edge lengths have been considered by
Guan and Zhang [19] and Wu et al. [28], respectively. Baroughi Bonab et
al. [8] showed that the inverse p-median problem with variable edge lengths
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is NP-hard on general graphs. Alizadeh et al. [1] considered the inverse 1-
center location problem with edge length augmentation on trees and presented
an O(nlogn) time algorithm. Later, Alizadeh and Burkard [2] proved that the
inverse absolute and vertex l-center problems can be solved in O(n?) time.
Nazari et al. [25] considered the inverse backup 2-median problem on a tree.
Recently, Omidi et al. [27] proposed an O(nlogn) algorithm for solving the
inverse balanced facility location problem with variable edge lengths. Fathali
[15] developed an algorithm for solving the general case of inverse continuous
location problems with variable weights.

The reverse 1-median and 1-center problems are known to be NP-hard [7, 9].
Berman et al. [6] considered the reverse l-median problem on a tree and
Burkard et al. [9] developed a linear time algorithm for the reverse 1-median
problem on a cycle. Berman et al. [7] and Zhang et al. [29] presented poly-
nomial time algorithms for the reverse 1-center problem. Then Nguyen [26]
developed an O(n?) time algorithm for the 1-center problem on trees. Burkard
et al. [10] developed polynomial time algorithms for reverse 2-median problem
on trees and paths. Recently, Nazari and Fathali [24] considered the reverse
backup 2-median problem on the plane.

In this paper we develop two O(nlogn) algorithms for inverse and reverse
2-facility location problems with equality measures on general networks. In the
inverse model we should change the weights of vertices with minimum cost such
that the difference number of clients that allocated to the two given facilities is
minimized. However, the reverse model investigated the modifying the weights
of vertices to reduce the difference number of clients that allocated to the two
given facilities such that the changing cost of vertices does not exceed a given
budget.

In what follows we define the inverse and reverse equity location problems
in Section 2. The models of these problems and two algorithms with O(nlogn)
time complexity are presented in Sections 3 and 4, respectively. Section 5 con-
tains the computaional results of presented algorithms on some test problems.

2. PROBLEMS DEFINITION

Let G = (V, E) be a graph with |V| = n and |E| = m. The vertex v; € V has
a nonnegative weight w;, which is the demands of clients on vertex v;. For any
pair of vertices, v; and vj, let d;; = d(v;,v;) be the length of a shortest path
between vertices v; and v; in G. For any S C V, let W(S) = >, cgw;. Let my
and mg be two given vertices in G which are assumed the location of facilities
in the network. Let Vi = {v; € V|d(v;,m1) < d(v;,m2)} and Vo = V' \ V1 be
the sets of vertices that assigned to facilities in m; and ms, respectively. In
the inverse equity model of 2-facility location problem we want to modify the
weights of vertices at minimum cost such that the difference of total weights
of vertices in V1 and V5 is minimized. For any vertex v;, suppose that the cost
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of increasing per unit of w; is cj and the cost of decreasing per unit of w; is
c; . Let q;" and g; be the amounts by which the weight w; is increased and

decreased, respectively. We suppose that q;“ obey the upper bounds u;. Let

D+ = {QTaqzra"'aq:}v D™ = {qli7Q27»'~'aq;}v

and fori =1,...,n, let w; = wﬂrqj —q; . Therefore, we consider the minimizing
of the following objective functions:

n

ADT, D7) =Y (cfaf +cia) (2.1)
i=1

(DY, D7) =] Y i — Y . (2.2)

v, €V1 v; €Va

Note that the optimal value of the objective function fs is zero, which is that
W (V1) = W(V3). However, sometimes the limitation on budgeting we can not
adjust the weights of vertices to satisfy this optimal condition. In the following
we consider the problems with limited and unlimited budgeting which called
reverse and inverse models, respectively.

3. THE INVERSE MODEL

In this section we suppose that the budget is unlimited, i.e. we consider
the inverse case model. In the inverse model we want to change the weights of
vertices with minimum cost such that the wights of vertices which assigned to
mq and my are balanced. Therefore, the model can be stated as follows,

n

Py minf; = 2:(c:rql+ +c¢q) (3.1)
i=1
s.t.

| D = Y il =0, (3:2)
v; €V v; EVa
W =wi+q —q, i=1,2..,n. (3.3)
0<q <uy i=1,2,...,n. (3.4)
0<gq; <w;, i=12,..,n (3.5)
0<w;, =12, ..,n. (3.6)

By substitute constraints (3.3) to (3.2) the following model will be obtained.
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n

Py:  minfi=) (cf¢f +ciq;) (3.7)
i=1
s.t.

Y@ —a) =D (@ —g)=WW)-WW) (38

v, €Vq v; EVa
0<q <wuy i=12,..,n. (3.9)
0<gq; <w;, i=12,..,n (3.10)
(3.11)

Which is a bounded variable linear programming model with one constraint.
In the following, we present an O(nlogn) algorithm for this problem.

If W (V1) = W (V2) then the servers are balanced and the weights of vertices
remain unchanged. Otherwise, without loss of generality, let W (V7) > W (V3).
Note that the vertices with the same distances to m; and mqy are assigned to
the set with smaller weight. Then the following property can be stated.

Lemma 3.1. To obtain a feasible solution, either the weights of vertices in V;
should be reduced or the weights of vertices in Vo should be augmented.

Let
C = {’/‘1,7“2, ...,’I“Qn}

where r; is either cj' or ¢; such that
ry <rg <rg < ... <rop.

To find a feasible solution with minimum cost, we start with 1. Then r; may
be either c;r or ¢, . Firstly, consider the case that r; = ckﬂ if v, € V5 then we set
g = min{W (V;)—W (Va), us, }. However, if vj, € V; then we should consider ro.
In the case that r; = ¢, if v, € V) then we set ¢, = min{W (V1)—-W(V2),ws},
and if vy, € V5 then we should consider r5. With continue this method for ro, 73
and at most r9,, we will find the optimal solution.

These ideas lead us the following algorithm.

Algorithm [IE2FLP].

Input: The weighted graph G, two vertices m; and mso of G as location of
facilities and the cost of increasing and decreasing of vertices weights.
Output: The new weights of vertices w; for balancing the weights of vertices
which assigned to the facilities in m; and mso.

Initialization:

Set V] = {Ui S V\d(vi,ml) < d(Ui,mg)} and Vo =V \ V.

If W (Vi) = W(V4) then Stop, the current weights are optimal.

If W (V1) > W (Va) then set Vi = V; and Vy = Vs,
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Else set Vi = V, and Vi = V4.

For each vertex v; € V; that d(vi,m1) = d(v;, mg), move it from V; to Vy and
update W (V;) and W (Vy).

Sort the cost of changing vertices weights, i.e. ¢f,...,c; and ¢],...,c;,, in an
increasing order and call them 71, ..., 72,.

Iteration counter 7 := 0.

(For any vertex v; in Vl or VQ, let w; be the weight of v; in the current iteration.
Let also W1 and Wg be the sum of weights of vertices in Vl and VQ, respectively.)
Set fi:=0and fori=1,...,n, w; =w;.

Iteration step:

While W, # W, do the following:

(1) If r; = ¢f and v; € V, then set
(a) q,‘: = min{Wl — Wg,uk},
(b) U?Ak = W +q,‘:,
(c) Wy =Wa+gq,
(d) fi:=h +7”z'qu-
End if
(2) If ry=c, and v; € V; then set
(a) g, = min{Wl - WQ,Wk},
(b) Wk = wi — g,
(c) Wi =W —qy
(d) f1:=fi+rig,-
End if
(3) Set i:=i+ 1.

end while

Theorem 3.2. The IE2FLP algorithm find an optimal solution of the inverse
2-facility location problem with equality measure.

Proof. Since the algorithm terminates when W (V;) = W (V3), then obviously
the weights that obtained by the algorithm is a feasible solution for model
P;. Moreover, the algorithm starts with an infeasible solution and change the
weights of vertices with minimum cost to improve the feasibility. Therefore,
after finding a feasible solution the minimum costs are used. O

Since the iteration step needs an O(n) time and rq, ..., 79, can be sorted in
O(nlogn) time, therefore the time complexity of the algorithm is O(nlogn).

Theorem 3.3. The inverse 2-facility location problem with equality measure
can be solved in O(nlogn) time.

To illustrate the presented algorithm consider the following example.
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ExampLE 3.4. Consider the tree T depicted in Fig. 2, which is presented by
Berman et al. [5]. The numbers next to the nodes and the links are demand
weights and links lengths, respectively. The costs of increasing and decreasing
the weights of vertices are given in Table 1.

0.05
°
G/'\ o
0.2
T o1 a0
AT
/

\.
3/
|'Il..
f‘l.l
01s( 4
M
1

FIGURE 1. The tree T with 9 verteices.

v | w; [H c | oug
v1 | 0.05 1 0.2 ] 0.5
va | 0.1 10.25]|0.1]04
vy | 0.2 | 0.3 1 102
vg | 0151 0.7 | 0.6 0.3
vs | 0.15 2 0.5] 0.2
ve | 0.1 1.5 | 0.7]0.1
vr | 0.1 04 | 1.5|0.1
vg | 0.05 | 1.5 1 102
vg | 0.1 2 2 101
TABLE 1. The costs of changing weights of vertices in tree T
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Let m1 = v3 and my = vg. Then

‘/1 = {’Ula V2, U3,U47U9}7

V2 — {’05,’06, 'U7,’U8},

where W (V1) = 0.6 and W (V,) = 0.4. By sorting the costs of changing weights
of vertices, we will see,

ri=cy; <ro=c] <rg=c§ <ry=ci <rs=cf <rg=c; <rr=cy
+ o - +

S<rg=cf <rg=cg <rig=cg <riu=c3 <rig=c¢] <riz=c¢f
. — ot + — +

Therefore, we start with r; = ¢; and set ¢; = 0.1, W = 0 and f; = 0.01.
After 3 iterations we will obtained ¢;” = 0.05, w; = 0, q;r = 0.05, wy = 0.15
and f; = 0.04.

4. THE REVERSE MODEL

Let the budget be limited and equal to B > 0. In this section we consider
the case of using the budget in order to change the weights of vertices such
that the difference of total weights of vertices which assigned to m; and mso
becomes as small as possible, i.e we consider the reverse model. The model of
this problem can be written as follows.

Pg:  minfo=|) (wi+qg —q)- > (wi+qg —g)  (41)

vi€W) vi€V2
s.t.
n
> (efaf +eia) < B (4.2)
i=1
0<gq <w;, i=12,..,n
0<q; <w;, i=12,...,n (4.4)

Let

y=1> (wi+q —q)— > (wi+dg —q)l

v €V v; €Va

Then the model can be converted to the following linear programming problem.
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Py: min Yy (
s.t.
y 2 Z(wl+qz _q'L_)_Z(wl+qz _qz) (47)
v; €V1 v, €Va
y>= Y (witqg —g)+ >, (wi+q —q) (4.8)
v, €Vy v, €EVa

> (¢Faf +¢a7) < B, (4.9)
i=1

qu»jgu“ 2_1727 , N 410)
0<q Sw, i=12,..,n 4.11)

In the same as the inverse problem, we can solve the problem by an O(nlogn)
algorithm. The details are given in the following.

If W(Vi) = W(Va) then the solution ¢;" = 0, ¢ = 0 for i = 1,...,n, is
optimal and therefor the weights of vertices remain unchanged. Otherwise,
without loss of generality, let W (V;) > W(V3). Then to find the optimal
solution, either the weights of vertices in V7 should be decreased or the weights
of vertices in V5 should be increased. With the same notation as the Section
3, let C = {ry,rg,...,m2, } be the sorted set of ¢],...,c¢} and cj,...,c;;. Then,
we start with 1 which may either be c;r or ¢, . In the case r| = cﬁ, if v, € Vo
then we set

q,: = min{g, W) — W (Va), ug, }.
k
However, in this case if vy € V; then we consider 7.
In the case that r1 = ¢, , if vy € V; then we set

_ . B
q, = mm{c—f7 W) — W (Va), wg}.
k
and if v, € V5 then we consider ro. With continue this method at most in 2n
iterations we will find the optimal solution.
The following algorithm can be applied to find the optimal solution of reverse
2-facility location problem with equality measure.

Algorithm [RE2FLP].

Input: The weighted graph G, two vertices m; and mo of G as location of
facilities, the total budget B, and the cost of increasing and decreasing of
vertices weights.

Output: The new weights of vertices w; for minimizing the difference weights
of vertices which assigned to facilities in m, and ms.

Initialization:
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Set V] = {Uz’ S V\d(vi,ml) < d(Ui,mg)} and Vo =V \ V.

If W(Vi) = W (V) or B =0 then Stop, the current weights are optimal.

If W (V1) > W (Va) then set V; = V; and Vi = Vs,

Else set Vl = V5 and Vg =V.

For each vertex v; € V; that d(v;,mq) = d(v;, mg), move it from Vi to Vs and
update W (V1) and W (V5).

Sort the cost of changing vertices weights, i.e. ci‘, .o and ¢f,...,c,, in an
increasing order and called them rq, ..., rg,.

Iteration counter 7 := 0.

(For any vertex v; in Vi or Vg, let w; be the weight of v; in the current iteration.
Let also W1 and WQ be the sum of weights of vertices in ‘71 and ‘72, respectively.)
Set fy := W1 — Wg and for i =1,...,n, w; = w;.

Iteration step:

While the W, # Wy and B # 0, do the following:

(1) If r; = ¢f and v; € V, then set
(a‘) qu;_ = mln{%a Wl *W27 uk‘,}a
€k
(b) Wy == wk + q;
(¢c) B=B- czq,‘:,
(d) W2 :W2+q2_,
(€) for=fa—gqy.
End if
(2) If r; = ¢;, and v; € V; then set
(a) g = min{%, Wy — Wg, wy },
(b) wk = WE — q];a
(c) Wy =Wy —gq,,
(d

) B=B-¢.q,
(€) fa:=fa—qy-
End if

(3) Set i:=i+1.

end while

Theorem 4.1. The RE2FLP algorithm find an optimal solution of the reverse
2-facility location problem with equality measure.

Proof. In all iterations of the algorithm feasibility holds. The algorithm tries
to improve the value of objective function by using minimum cost of changing
the weight of vertices. It terminates in the cases that either W (V;) = W (Vz) or
B = 0. If sufficient budgeting exist the algorithm reach a solution with fo =0
(the ideal case), otherwise it reach a feasible solution with minimum value of
objective function. O
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The time complexity of this algorithm is the same as IE2FLP, and we can
stat the following theorem.

Theorem 4.2. The reverse 2-facility location problem with equality measure
can be solved in O(nlogn) time.

ExXAMPLE 4.3. Consider the network G depicted in Fig. 2. The costs of chang-
ing weights of vertices and upper bounds are given in Table 2.

FIGURE 2. The network G with 9 vertices.

Vi V1 V2 V3 V4 Vs Ve vr vs Vg
1 (1512 1 |13 11 121312
c; 1 |15)12 1 (13| 11 |1.2]13]|12
u; {02]01102(0.1(02]0.15]02]03]0.1
TABLE 2. The upper bounds and costs of changing weights of
vertices of network G.

i

The sorted costs are as follows.

rlchgrgch§r3:cj[§r4=c47§r5=c§§r6:cg§r7:c;r
<pe=co <reg=ct < —c7 < =t < =l < e =cF
A Cr = T9 C3 =T10 C3 >T11 Cqg >T12 Cog >T13 Cy
_ - _ .+ _ - _ .+ _ -
Sriu=cy STi5=0 ST =0C STy ==0Cy <T18 =0y

Let B =0.3, my = vy and mg = vs. Then

Vl — {’Ul,'UQ,'UG,'Ug},

Vo = {3, v4,v5, 07,08},
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Linprog IE2FLP

Instance n (m1,ma) W1 Wy Wi = Wy T CPU Tter CPU
(in sec) (in sec)
pmedl 100 (75,20) 407 164 232 635 0.02657 85 0.00064
(40, 60) 519 52 90 1992 0.02020 167 0.00193
pmed?2 100 (60, 80) 353 218 270 247 0.04726 45 0.00062
(15,75) 471 100 152 1349 0.02121 122 0.00093
pmed3 100 (5,95) 346 225 256 192 0.01972 43 0.00037
(70,30) 332 239 267 145 0.01556 39 0.00036
pmed4 100 (70,30) 390 181 230 552 0.02355 82 0.00059
(20,80) 371 200 238 334 0.01750 55 0.00084
pmed5 100 (10,60) 308 263 274 49 0.02026 20 0.00062
(45,55) 377 194 240 383 0.01829 61 0.00046
pmed6 200 (50,150) 995 177 283 3324 0.02437 258 0.00464
(70,180) 879 293 471 1824 0.02210 182 0.00387
pmed7 200 (10,190) 630 542 573 88 0.02093 20 0.00184
(80,120) 899 273 435 2037 0.02196 195 0.00329
pmed8 200 (130,170) 1012 160 294 3608 0.03042 283 0.00439
(50,110) 723 449 526 511 0.02209 91 0.00238
pmed9 200 (30,90) 1025 147 264 3776 0.02996 289 0.00450
(60,160) 1129 43 94 5555 0.02400 363 0.00458
pmed10 200 (65,180) 731 441 554 616 0.02119 111 0.00248
(30,120) 760 412 529 743 0.02232 103 0.00241

TABLE 3. The results of IE2FLP algorithm and linear pro-
gramming model of Ps.

where W (V7)) = 1.1 and W (V2) = 0.7. After 2 iterations all budget will be
spends and we obtain ¢; = 0.2, q;f =0.1, W; =0.9, Wy =0.8 and f; = 0.1.

5. COMPUTATIONAL RESULTS

In this section we examine our proposed algorithms on some test problems
from ORLIB (see Beasley [4]) which were presented for the traditional p-median
problem. The algorithms were written in MATLAB 2014 and run on a PC with
Intel Core i7 processor, 8 GB of RAM and CPU 2.4 GHz.

The proposed algorithms were tested on 10 test problems with varying given
points and the results are compared with those obtained by the linear program-
ming models. All the costs, weights, and upper bounds are randomly generated
in the interval [1, 10].

Tables 3 and 4 contain the results of solving the instances using IE2FLP
and RE2FLP algorithms, respectively and the linear programming models. In
these tables the columns with the heading ”Iter” show the number of last
iteration of the algorithms for finding the optimal solution. The results indicate
that both IE2FLP and RE2FLP algorithms could find the optimal solution for
all instances. The obtained value of objective functions with these methods
are the same as linear programming models. However, IE2FLP and RE2FLP
algorithms are faster than linear programming methods.

6. SUMMARY AND CONCLUSION

In this paper we investigated the inverse and reverse facility location prob-
lems with equality measures. The balancing on the weights of clients allocated
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Linprog TE2FLP
Instance  n B (m1,me) W;  Wh W, Wo fi CPU Tter CPU
(in sec) (in sec)

pmedl 100 700 (75, 20) 407 164 232.00 232.00 0.00 0.01392 85 0.00480
500 (75, 20) 407 164 239.75 206.00 147.00 | 0.07242 68 0.00256
1000 (40, 60) 519 52 214.00 67.00 147.00 | 0.01567 | 136  0.00337

pmed?2 100 250 (60, 80) 353 218 270.00 270.00 0.00 0.02859 45 0.00301
200 (60, 80) 353 218 285.66 270.00 15.66 0.01458 43 0.00301
1000 (15,75) 471 100 197.00 136.20 60.80 0.01683 109  0.00301

pmed3 100 200 (5,95) 346 225 256.00 256.00 0.00 0.02189 43 0.00237
100 (5,95) 346 225 286.00 244.00 42.00 0.01405 21 0.00221
100 (70,30) 332 239  267.00 244.50 22.50 0.01408 27 0.00229
pmed4 100 600 (70,30) 390 181  230.00 230.00 0.00 0.01523 82 0.00301

400 (70,30) 390 181  247.00 209.00 38.00 0.01629 68 0.00343
200 (20,80) 371 200 278.66  234.00 44.66 0.01425 48 0.00238

pmed5 100 100 (10,60) 308 263 274.00 274.00 0.00 0.01569 20 0.00221
40 (10,60) 308 263 278.00 273.00 5.00 0.01333 18 0.00219
200 (45,55) 377 194 284.00 223.00 61.00 0.01527 47 0.00289

pmed6 200 3500 (50,150) 995 177  283.00 283.00 0.00 0.02452 258  0.00826
2000 (50,150) 995 177  479.16  277.00 202.16 | 0.01696 202  0.00736
1500 (70,180) 879 293 514.80 450.00 64.80 0.01816 167  0.00331

pmed7 200 100 (10,190) 630 542 573.00 573.00 0.00 0.01804 20 0.00222
50 (10,190) 630 542  580.00 542.00 38.00 0.01752 13 0.00179
1500 (80,120) 899 273 499.20 393.00 106.20 | 0.02270 163  0.00332

pmed8 200 4000 (130,170) 1012 160  294.00 294.00 0.00 0.01961 283  0.00435
2000 (130,170) 1012 160 507.33 266.00 241.33 | 0.01912 201 0.00609
200 (50,110) 723 449  618.00 496.00 122.00 | 0.01634 44 0.00239

pmed9 200 4000 (30,90) 1025 147  264.00 264.00 0.00 0.01716 289  0.00421
2000 (30,90) 1025 147  504.00 235.00 269.00 | 0.04569 197  0.00392
4000 (60,160) 1129 43 262.75 86.00 176.75 0.01614 291 0.00415

pmed10 200 700 (65,180) 731 441  554.00 554.00 0.00 0.01780 111 0.00289
500 (65,180) 731 441  563.66  525.00 38.66 0.01819 93 0.00277
600 (30,120) 760 412 549.66  502.00 47.66 0.01732 91 0.00272

TABLE 4. The results of RE2FLP algorithm and linear pro-
gramming model of Pj.

to the facilities are considered as the measure of equality. The models for prob-
lems with 2 facilities are presented and O(nlogn) algorithms are developed for
solving these models. The results were compared with those obtained by the
linear programming models. It was shown that for almost all problems the ant
presented algorithms outperforms the linear programming approaches.

Other measuring functions such as maximizing the difference of distances
from a client to nearest and farthest facilities, can be considered as the future
works. Also, presenting polynomial time algorithms on inverse and reverse p
facilities with equality measures are interesting developments of the considered
models in this paper.
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