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1. INTRODUCTION AND PRELIMINARIES

L. Fejér [4], proved the following integral inequality which is known in the
literature as Fejér inequality.

f(a+b) / x)dr < / f(x)g(x)dx < f(a) ;_ J®) /abg(x)dm, (1.1)

where f : [a;b] — R is convex and g : [a,b] — [0,00) = R is integrable and
symmetric to z = 252 (g(:c) =gla+b—2x),Vz € a, b])

Recently the concept of (11, 72)-convex has been introduced in [15] as a gener-
alization of preinvex functions [1, 7, 9, 12] and 7-convex functions [2, 3, 21, 20].
In the following we can find the definition of (n;, 72)-convex function with some
basic results. For the latest results about the Fejér’s inequality obtained by the
authors see [17, 18].

Definition 1.1. [1, 7] A set I C R is said to be invex with respect to a real
bifunction n : I x I — R, if

r,ye LAe[0,1] = y+ An(z,y) € 1.

Definition 1.2. [15] Let I C R be an invex set with respect ton; : I x I — R.
Consider f : I — R and 7o : f(I) x f(I) = R. The function f is said to be
(M, n2)-convex if

fla+2m(y @) < f@) + M2 (fy), f(2)
for all z,y € I and A € [0,1].

Remark 1.3. An (11, n2)-convex function reduces to
(i) an n-convex function if we consider 7 (x,y) =z — y for all z,y € I.
(ii) a preinvex function if we consider nz(x,y) =  — y for all x,y € f(I).

(iii) a convex function if satisfies (i) and (ii).

ExAMPLE 1.4. [15] Consider the function f: Rt — R™ by

)=
Define two bifunction 7 : Rt x RT — R and 73 : Rt x RT — R¥ by

_ )y 0<y<I
nl(xay){ $+y, y>1’

z, 0<ax<1;
1, z=>1.

and

)y, x < y;
nz(x’y){ 20z +y), z>y.
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Then f is an (11, n2)-convex function. But f is not preinvex with respect to 7,
and it is not convex (consider x =0, y = 2 and A > 0).

Motivated by above works and references therein we use the concept of
(m, n2)-convex functions to obtain Fejér inequality related to this class of func-
tions. Also we give trapezoid and mid-point type inequalities when the absolute
value of derivative of considered function is (1, 72)-convex.

The following characterization of (11, 72)-convex functions is of interest which
we point out it before the main results.

Theorem 1.5. Suppose that I is an invex set with respect to 1 such that for
any z,y € I with ¢ < y we have m(y,z) > 0 and v < x + m(y,z) < y. A
function f : I — R is (n1,n2)-convez if and only if for any x1,x9, x5 € I with
ry < @2 < 21 +Mi(w3,21),

m(zs,z1) m2(f(z3), f(21))
det <0, (1.2)

v—w f(we) = fla) )

and
f(er+m(zs,21)) < fla) +n2(f(2s), fl21)). (1.3)
Proof. Suppose that f is an (11, n2)-convex function. Consider z1,x9,23 € T
with 1 < zo < 1 + n1(x3,71). So from the assumption there is a ¢t € (0,1)
such that x9 = x1 + tn1(x3,21), namely t = From (n7,72)-convexity
of f we get
m(xs, 21)[f (2) — f(21)] — (x2 — z1)n2 (f(2s), f(21)) <0,

which is equivalent to above determinant being nonpositive. Also for t =1,

fzr 4+ m(zs, 1)) < f(@1) +n2(f(xs), f21)) (1.4)

T2—T1
m(zs,z1)”

and for t = 0,
f(@1) < f(aa).
For the inverse implications, consider z,y € I with z < y. Choosing any
t € (0,1) we have z < x + tm (y,z) <z +m(y,z) < y and so
m(y, ) n2(f(y), f(2))
det <O0.
tm(y,z) flz+tmy,z) - fz)

By expanding this determinant we reach the inequality

for any ¢ € (0,1). From the assumption we have

fl+tm(y, @) < flx)+n2(f(), f(z))
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that gives (11, n2)-convexity of f for t = 1. Also f(z) < f(z) gives (m1,72)-
convexity of f for ¢t = 0. g
Remark 1.6. Theorem 1.5 is a generalization of theorem 1 in [21] and generally
extends corresponding results related to the preinvex and convex functions.

2. FEJER INEQUALITY

In this section we give (1, n2)-convex version of Fejér inequality. We separate
this inequality to the left and right type respectively.

Theorem 2.1. Let I C R be an invex set with respect np : I x I — R such that

m (z2 + tom (21, 32), 12 4+ i (z1, T2)) = (t2 — t1)m (w1, 22) (2.1)

for all z1,22 € I and t1,t2 € [0,1] (compare (2.1) with Condition C in [16]).
Also let f : T — R be a (n1,m2)-conver function where 1y is an integrable
bifunction on f(I) x f(I). For any a,b € I with n1(b,a) > 0, suppose that the
functions g : [a,a + n1(b,a)] = RY and f are integrable on [a,a + n1(b,a)].
Then

b a+mn1(b,a) a+mn1(b,a)
f<2+’72<>> [ sy [T (et me.a) - 0,50 st

a+n1(b,a)
< / f(@)g(x)d.

Proof. Using (2.1) and (11, n2)-convexity of f we obtain the following relations:

f<2a+n1(b,a)> :f<2a+771(b,a)+t771(b7a) t ) (2.2)

2 2 _inl(baa)
_ f<261+771(b7a2) +tn1(b’a) + %171 <a+ (I;t)nl(b,a)va"’_ (1;_t)n1(b7a)>>

_f<2a+771(b,a)+tm(b,a) +;m<2a+m(b,a)tm(b,a) 2a+n1(b,a)+tm(b,a)>>

2 2 ’ 2

< f(2a+m(b,a2) +tn1(b,a)>

. %m <f<2a+771(b,a) tm(b,a)>’f<2a+771(b,a2) +tn1(b,a)>>7

2

and with the same argument as above we have

f<2a+7;1(b, a)> < f(2a+n1(b,a2) —tm (b, a)> (2.3)

. %772 <f<2a+771(b,a2) +tn1(b,a)>’f<2a+7]1(b,a2) —tm(b,a)>>'
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Now consider two changes of variable

_ 2a+ni(b,a) —tni(b,a)

2.4
) , (24)
and
_2a+m (b,a) + tn1(b,a) 7 (25)
2
along with (2.2) and (2.3) to obtain the following inequalities:
1 a+n1(b,a)
2.
am | @@ (26)
1 771(’7 a) a+mn1(b,a)
- st / s, T
1 b 2a+n1(b,a) —tn (b, a) 2a—|—771 (b,a) — tn1(b,a)
Sy dt
~2), 2 2
. 1/1 f(2a+171 b,a) + tn1 (b, a > (2a+171 b,a) +t7]1(b,a))dt
2 J, 2 2
1
21/ f<2a+771 bﬂl))g(?wﬂh( a) —tm(ba)
2/, 2
e 2& + 771 ) + “71(}% CL) 2a+m (b7 Cl) —lm (b7 CL)
) 2 B f 9
0
Xg<2a—|—7]1 —tm (b, a)>dt
2
+ 1/1 f(2a+nl(baa>)g(2a+ nl(b7a) +tnl(baa)>dt
2 /s 2 2
1t 2a + m(b,a) — tm (b, a) 2a + m(b,a) + tm (b, a)
- 5 0 2 f 2 af 2

" g(2a—|—n1(b,a2) +t771(b,a))dt.
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Again using the changes of variable (2.4) and (2.5) in the last relations obtained
in (2.6) respectively we have

1 a+n1(b,a)
g S
771(1) a)

(11)’ a)f<2a+7721(b7 a)) /aa+ g(z)dx

1 at MG
2m(b.a) Jo 12 (f (20 +m(b,a) — 2), f(x) ) g(a)da

(

a-+ 711(5@)

1 /a+m(b ) 2 (f(2a +m(b,a) — x),f(gg))g(x)dx

2771 (b, a) ny(b,a)
1 2a 4 m1(b, a) /“W(bv“)
= d
nl(bv a)f< 2 a g(‘r) :
1

a+mn1(b,a)
_ m /a 72 (f(?a + (b, a) — x),f(x))g(gg)d;p_

Thus we arrive at the desired result. O

If in Theorem 2.1 we consider ns(x,y) = x —y for all z,y € f(I), then we have
the following result (see [14] and references therein):

Corollary 2.2. Let I C R be an invexr set with respect to m; : I x I — R
satisfying (2.1) and f : I — R be a preinvexr function. For any a,b € I with
n1(b,a) > 0, suppose that g : [a,a+n1(b,a)] — RT is integrable and symmetric
toa+ im(b,a) and f € L*[a,a+ 1 (b,a)]. Then

a+tni(b,a) a+mn1(b,a)
f(W) / g(w)dr < / f(@)g(z)da.

Also Theorem 2.1 gives a generalization of Theorem 7 in [21]. Furthermore if
we consider 71 (z,y) = x — y for all z,y € I, then we recapture the left side of

(1.1).

Theorem 2.3. Let I C R be an invex set with respect ton : I x I — R and
f:I—= R be a(ni,ne)-conver function where 1y is an integrable bifunction on
F(I)x f(I). For anya,b € I withn (b,a) > 0 suppose that f € L[a, a+ny(b,a)]
and g : la,a + ni(b,a)] — RT is integrable and symmetric with respect to
a+ $m(b,a). Then

a+mn1(b,a) a a+n1(b,a)
[ e < [ LSO T i o
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Proof. From (11, n2)-convexity of f, using the changes of variable z = a +
tn1(b,a) and z = a + (1 — t)n1(a,b) we can obtain two following inequalities.

a+mn1(b,a) 1

/ f(@)g(x)dz < (b, a) / [£(a) + tn2 (), £(a))]g(a+ tm (b, a))dt
‘ (2.8)
= m(b,a) [ / F@)g(a+ tn (b, a))dt + 2 (FB), £(a) / tg(a+ tm(b,a))dt|

and
a+n1(b,a)
/ F(@)g(x)dz (2.9)
1
< m(b, a)/o [f(a)+ (1 =t)n2(f (D), f(a)] g(a+ (1 —t)nu(b,a))dt
=m(b,a) [/0 f(a)g(a + (1 —t)m (b, a))dt
1
(0. 1@) [ (1= tala+ (1= om.a)a].

Now adding (2.8) to (2.9) along with the fact that g is symmetric with respect
to a+ 1m1(b,a) imply that

a+n1(b,a)
2 / f(@)g(x)da

1 1
< m(b,a) [Zf(a)/0 g(a+tn1(b,a))dt+772(f(b)7f(a))/0 g(a+tni(b,a))dt] .

So again by the use of the change of variable x = a+tn; (b, a) in above inequality
we deduce the respected result.

a+n1(b,a) a a+n1(b,a)
[ st < [+ LA [T
g

If in Theorem 2.3 we consider n2(z,y) = = —y for all z,y € f(I), then we
have the following result (see [14] and references therein).

Corollary 2.4. Let I C R be an invexr set with respect to n; : I x I — R
and let f : I — R be a preinvez function. For any a,b € I with n(b,a) >0
suppose that f € Lt[a,a + n1(b,a)] and g : [a,a + n1(b,a)] — RY is integrable
and symmetric with respect to a + 3n1(b,a). Then

atm (b,a) a atm(b.a)
/ f@lgaae < LEID | g(z)dz. (2.10)
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Also Theorem 2.3 gives a generalization of Theorem 6 in [21]. Furthermore if
we consider 7 (x,y) = ¢ — y for all z,y € I, then we recapture the right side
of (1.1). For some recent works about Fejér’s inequality see [6, 10, 11, 12] and
references therein.

3. MiD-PoOINT TYPE INEQUALITIES

In this section we consider the problem of estimating the difference between
the middle and left terms of (1.1), when the absolute value of derivative of
considered function is (7, 12)-convex.

The following lemma is needed to achieve Fejér mid-point type inequali-
ties. By the Fejér mid-point type inequalities we mean the estimation of the
difference between the middle and left terms of (1.1).

Lemma 3.1. [13] Let I° C R be an invex set with respect to ny : I° x I° - R
and a,b € I° with a < a +n1(b,a). Suppose that f: I° — R is a differentiable
mapping on I° such that f' € L'[a,a+n1(b,a)]. If g : [a,a+n1(b,a)] — R is
an integrable mapping, then

1 a+n1(b,a) 1
i felgle)de = s

=n1(b, a)/o k(t)f' (a+ tni(b,a))dt

a+n1(b,a)
f(a + %771 (b, a)) /a g(x)dx

where
/0 g(a—|— sm (b, a))ds t €0, %),
k(t) =
71}'

N|—=

1
7/t g(a+sm(ba))ds te]

By the use of Lemma 3.1, we obtain the following result which is a Fejér mid-
point type inequality.

Theorem 3.2. Let I° C R be an invex set with respect ton; : [° xI° — R and
a,b e I° witha < a+mny1(b,a). Suppose that f : I° — R is a differentiable map-
ping on I° such that f' € L'[a,a + n1(b,a)], the function g : [a,a + n1(b,a)] —
R is integrable and symmetric with respect to a+ 2m1(b,a). If | f'| is (n1,m2)-
convex on 1°, then:

1 @) 1 1 a+m (b,a)
ol f@aa)de = ——f(a+ gm b)) [ 9(z)dz
2 @]+ U OLI@) [rHimeo
= 211 (b, a) /a (11 (b, a) — 2(z — a)] g(z)dz.
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Proof. From lemma (3.1) and (11, 12)-convexity of |f’| on I°, we have

a+n1(b,a)
m / F(@)g(w)dz —

= 771(@@)[/0é (/Otg(avLsm(b,a))ds) f(a+tni(b,a))dt

Ji =

a+n1(b,a)
f(a + %nl(b, a)) /a g(x)dx

1
nl(bv a)

-

+/1 (— /tlg(a+8771(57 a))d5> f'a+tm(, a))dt}

2

< m(b.a) / ’ ( / g(a+sm<b,a>)ds) 1 (@)] + a1 B, | (@) e (3.1)
1 1
+m(b,a) / ( / g(a+sm<b,a>)ds) 1 (@)] + (17 ), | F (@) dt. (3.2)

2

Changing the order of integration in (3.1) we get
ot
/ / o+ s (b, ) [|f(@)] + ta(11 )], |/ (@)))] dsdt (3.3)
/ / " g(at s, @) [|F @) + ta(|F B | (@)))] deds

= [P ot o) [ - als@i+ - D@l

Using the change of variable © = a 4 sn1(b, a) for s € [0,1] in (3.3) we obtain

/OE/O g(a+smi(b,a)) | (@) + tna(|f' B), | £ (a)])] dsdt (3.4)
| (a)] atgm(ba) v —a
" m(b,a) /a (5 - m)g(%")dx

n(f O @) [*FEmeD 11 e —a
+ (b, a) /a <8 - g(m) )g(:c)dx.

Similarly by the change of order of integration in (3.2) and using the fact that
g is symmetric to a + %171 (b,a) we have

1 1
A / g(a + sm (b, ) [|f'(@)] + tra(| 1 B)], | (@)])] dsdt (3.5)
- / /sg(a+sm(b,a))[|f’(a)|+tnz(\f’(b)|7If’(a)l)]dtds

/ / (a+ (1= $)m(b,a) [|f' @] + tna(1f B, |/ (a))] dids

2

2
/( (1= s)m(b,@) [~ DIF @) + (G — )l @)1 (@) ds
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By the change of variable x = a + (1 — s)n1(b, a) it follows from (3.5) that

1 1
ﬂ / g(a+ sm(b,a) 17 (@)] + tna(|f' B, |/ (a)))] dsdt (3.6)

(e perEm®o r—a 1
~ m(b,a) /a (1 ~m(ba) 2) gla)de

(L7 ), 1f (a a+3m(b,a) r—a
0 <fn<1b(>b7a€< >|>/a L _m(b,a)f—l}gmdﬂ

+ 2 8

Substituting (3.4) and (3.6) in (3.1) and (3.2) respectively and then simplifying,
we get

211 (a)| + 2 (lF ), | f'(@)]) [otamba)
Jl = 27721 (b, a) /a [nl(by CL) — 2(.%' — a)}g(w)dm

O
Corollary 3.3 (Theorem 2.3 in [22]). Let f : I° — R be a differentiable
mapping on 1°, a,b € I° with a < b and g : [a,b] — RY be a differentiable
mapping and symmetric with respect to ‘”b If | f'] is convex on [a,b], then the
following inequality holds:

o | Hnteste s () [ ot

§‘ al}tt{ |/ a+b 230] (x)dx.

Also Theorem 3.2 is a generalization of Theorem 3.3 in [19] and Theorem 2 in
[13].

By the use of Holder’s inequality we can obtain another form of Fejér mid-point
type inequality.

Theorem 3.4. Let I° C R be an invex set with respect to mp : I° x I° — R
and a,b € I° with a < a+ n1(b,a). Suppose that f : I° — R is a differentiable
mapping on I1° such that f' € L'([a,a + n1(b,a)]), the function g : [a,a +
m(b,a)] — RT is integrable and symmetric with respect to a + $m1(b,a). If
|f'19, ¢ > 1 is (m1,m2)-convex on I°, then we have the following inequality.

a+n1(b,a)
! / f(@)g(x)d -

1 a+n1(b,a)
.0 Jo flatgma) [ s

nl(bv a)

p—2 N a+gm(b,a) (b, a
< (m(b.0)) 7 ()i M ( / mlo a)}gﬁ(w)dx> ,

where M = (3| (@)|+2m: (/' B)|7, |/ (@)]7)) "+ (317 (@l 1+2n2 (11 )19, |/ (@)]))

1,1 _
and;—l—a—l.

Q=
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Proof. According to the proof of Theorem 3.2, by the use of lemma (3.1) and
changing the order of integration we get

1 a+n1(b,a) 1 1 a+n1(b,a)
m/@ f(z)g(x)dr — mf(a + 5771(177 a)) /a g(w)dx
< ni(b,a) /05 /E g(a+ s (b, a)) ‘f’(a +tm(b,a)) ‘dtds (3.7)

+n1(b, a) /11 /j g(a+ sm(b,a)) ’f’(a + tn1 (b, a)) ‘dtds. (3.8)

If we apply Holder’s inequality in (3.7), then

(b, a) /é /; g(a+ sm (b, a))‘f’(a—&—tm(b,a))’dtds

Wa(// wt (b)) dtds) (A/

Since | f'|7 is (11, m2)-convex on I°, for any a,b € I° and t € [0, 1] we have

q
a +tni (b a))’ dtds)

7o+ tm(b.a)| < 1 @I+t (1S O 1S (@)]7),

which by the use of substitution z = a + sn; (b, a), we deduce that

m(b,a) / / : g(a+ sm (b, )| (a4 tm b, ) v (3.9)

<m(b,a (/ / aJrsm (b a))dtds>
< I / W+ a1 O |f’(a)|‘1)dtds>q

1 a+3n1(b,a) N b,a %
=n(b,a) (W/a {% —(z - G)}gp(x)dJT)

) <3|f'<a>q+2nz(|f'<b>|q,f’<a>|q)>é

==

24
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Also from (3.8) and the fact that g is symmetric with respect to a + 171 (b, a)
we obtain

m(b,a) /11 /: g(a+ smi(b,a)) ‘f’(a + tn1(b,a)) ‘dtds (3.10)

a+3n1(b,a) a
< nl(b, a) ((771(1)];&))2 /a ! {w — ({E — CL):| gp(x)dl'>

) <3|f'<a>q+2nz(|f'<b>|faf'(a)lq)>é
24 '

D=

Using (3.9) and (3.10) in (3.7) and (3.8) respectively we get the required in-
equality. |

Corollary 3.5 (Theorem 2.5 in [22]). Let f : I° C R — R be a differentiable
mapping on I° a,b € I° with a < b, and g : [a,b] — RY be a differentiable
mapping and symmetric with respect to ‘”‘b L If |19 is convex on [a,b],q > 1,
then the following inequality holds:

bla/abf(a:)g(ac x—7f<a+b)/a g(z)dx
<00 (gl [ (550

( Al + 270 >|q)5 . <2f’(a)lq + |f'<b>|q)3
1.

)

24

where % + =

Also Theorem 3.4 gives a generalized form of Theorem 3 in [13].

4. TRAPEZOID TYPE INEQUALITIES

In this section we consider the problem of estimating the difference between
the middle and right terms of (1.1), when the absolute value of derivative of
considered function is (71, n2)-convex. First we prove the following lemma.

Lemma 4.1. Suppose that I° C R is an inver set with respect to mp @ 1° X
I° — R and consider a,b € I° with n1(b,a) > 0. Suppose that f : I° — R
is a differentiable mapping on I° such that f' € L'([a,a + n1(b,a)]). If g :
[a,a + n1(b,a)] = RT is an integrable mapping, then

b, a+n1 (b,a) a+ni(b,a)
f(a)+f(a2+n1( a)) / o(2)dz — / F(2)g(z)da

1 atni(ba) px 1 a+mn1(b,a) patni(b,a)
= 5/ / g(u) f'(z)dudz — 5/ / g(u) f'(x)dudz.
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Proof. By Leibniz integral rule and integration by parts we have

/ T gty = / T ([ g(u)du)ldac (1)

a+n1(b,a)

= f(a+m(b,a)) / g(u)du — /:Hh(bﬂ) /: g(u) f' (x)dudz.

a

with the same argument

a+m1(ba) a+ni(b,a) a+11(b,a) !
/ f@g(oyds = [ 1) ( / g(u)du> dr (42)

a+n1(b,a) a+n1(b,a) a+n1(b,a)
—f@ [ gtwdus [ [ g () dud.

Now it is enough to add relation (4.1) to (4.2). O

The following lemma is needed to obtain Fejér trapezoid type inequalities.
By the Fejér trapezoidal type inequality we mean the estimation of the differ-
ence between the middle and right terms of (1.1).

Lemma 4.2. Suppose that I° C R is an invexr set with respect to mp @ 1° X
I° — R and consider a,b € I° with n(b,a) > 0. Suppose that f : I° — R
is a differentiable mapping on I° such that f' € L'([a,a + n1(b,a)]). If g :
[a,a + n1(b,a)] = RT is an integrable mapping and symmetric with respect to
a+ 3m(b,a), then

a+n1(b,a) atn(b,a)
f(a)+f(a2+771(b,a)) / (e g(x)dx—/ e f(2)g(z)dx

) 771(2’@{/01 </aa+(1§‘)n1(b,a)g(u)du>f/(a+ (%)m(aa))dt

+(+ 5 m(ba)

+/01 </anr(le)nl(b’a)g(“)du)f,(a+ (%)m(b, a))dt}-

+(335)m(ba)

Proof. From Lemma (4.1) we obtain that

a a 1(b,a a+n1 (b,a) a+n1(b,a)
Jy = f( ) + f( 2“1‘ n (b )) / g(x)dl’ — / f(x)g(x)dx (43)

1 atgm(ba) px atni(ba) px
=_ / / g(u) f'(x)dudx + / / g(u) f'(x)dudx
2 a a at+3ni(ba) Ja

at+3ni(ba) patni(ba) atni(b,a) patni(b.a)
—/ / g(u) f'(z)dudx —/ / g(u) f'(z)dudx 3.
a x xT

a+3n1(b,a)
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By applying the changes of variable 2 = a + (351)n1(b,a) and z = a +
(H4)n1(b, a) in (4.3) respectively we have

e 771(3’@{/01 /aa+(2)m(b,u) (w)f" <a+ (1 . )m(b a))dudt (4.4)

. /aﬁ(l;t)m(b,a) o) (a-+ (5" )m (b, ) duds @5)
/ /aa;(m:lib: (b.a) u)f’(a+ (%)m(b,a))dudt (4.6)
/ /arifl;a)b ) u)f’<a+ (T)ﬁl(b,a))dudt}. (4.7)

11 (b,a

Now if we consider (4.4) with (4.6) and consider (4.5) with (4.7) together, then

J2:771(Z’a){/01 [2/:+( )i (b,a) (u)du—/aa-i_m(b’a)g(u)du]f <a+( . )m(b a))d

(4.8)

1 a+(XF)m (b,a) a+n1(b,a) 14+t
+/ {2/ g(u)duf/ g(u)du} f’(aJr( > ) (b, a))dt .
0 a a

Since g is symmetric to a + £71(b, a) then

a+(5)m (ba) atm (b,a) a+ (5 m(be)
2/ g(u)du—/ g(u)duz/ g(u)du, (4.9)
a a a+(374)m (b,a)

and

a+ (4 )m (b.a) atm (b,a) a+(F)mb.a)
2/ g(u)du—/ g(u)du:/ g(u)du. (4.10)

+(35E)m (bya)

Implying (4.9) and (4.10) in (4.8) respectively we have

b, 1 at(H)m (b,a) 1—¢
Jr = 771(4 a){/ (/ (u)du>f (at (=5 )mba))at
0 \Jor(zhmba

1 a+()n(b,a) 14+¢
—|—/ (/ g(u)du)f’(a—i— (—)771(67 a))dt .
0 \Jat(zt)m(b,a) 2

Using Lemma 4.2, the following Fejér trapezoid type inequality holds.

Theorem 4.3. Suppose that I° C R is an invexr set with respect to ny : 1° X
I° — R and consider a,b € I° with n1(b,a) > 0. Suppose that f : I° — R
is a differentiable mapping on I° such that f' € L'([a,a + n1(b,a)]). If g :
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[a,a +n1(b,a)] = RT is an integrable mapping and symmetric with respect to
a-+ sm(b,a) and if |f'| is (n1,n2)-convex on I°, then

a a 1(b,a a+n1(b,a) a+n1(b,a)
/( )+f(2+n(b ))/ ()dx_/ F)a(e)da

a+(H)n1(b,a)
< WO )+ milr o @D] [ Lo, olwdu

18)n1(ba)

Proof. From Lemma (4.2) and (11, n2)-convexity of |f’ \ on I°, we have

|f( >+f(a+m(b a)) /‘Hm(bﬂ)

at+(4E)m(b,a)
/ / L]

a+( F)m1(bsa)
( 771(b a)) H dudt

at+()n(b,a)

a+n1(b,a)
o(e)de — / f(@)g(x)dz

o+ (5 mo.0)]

g(u) {If( )|+ (1 n2(|f'®)1 £ (a)])

a+(155)n1 (b,a)

@]+ (w7 017 @) | dud

b a / /a )mi(b,a) g(u) {Q\f/(a” +n2(|f'(0)], ‘f/(a)l)} dudt.

+(35)m (b,a)
O

Remark 4.4. (i) In Theorem 4.3 if we consider 7 (x,y) = x — y and na(z,y) =
x — y, then we recapture inequality (1.11) in [8].

f()-QFf()/ /f

a a+( 1th)(b a)
(7@}l + 176 / / (u)dudt.
)(b—a)

(ii) In [15], with all assumptions of Theorem 4.3, we can find another pre-

sentation of Fejér trapezoid type inequality as the following:

atm (b,a) a+mni1(b,a)
|f(a)+f(a2+771(baa)) / e g(:c)dxf/ e f(x)g(x)dx

<

a+n1(b,a)

2@+ (5O @) 9(@)(a+m(b,a) - x)de.

a‘+%771 (bva)
By the use of Holder’s inequality we can obtain another form of Fejér trape-
zoidal type inequality.
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Theorem 4.5. Suppose that I° C R is an invex set with respect to ny : 1° X
I° — R and consider a,b € I° with n1(b,a) > 0. Suppose that f : I° — R
is a differentiable mapping on I° such that f' € L'([a,a + n1(b,a)]). If g :
[a,a + m(b,a)] — RT is an integrable mapping and symmetric with respect
to a+ 3mi(b,a) and if | f'|7 is (m1,m2)-convez on I° for q¢ > 1, then we have
following inequality.

a a a a+n1(b,a) a+n1(b,a)
‘f( )+ fla+m(b, ))/ oo )dm_/ R

2

1(b,0) 21 (@)1 + a1 B | (a e ")
b [P SO 1] (/ /H(“m(ba) ()] dt) ,

1 1 _
where;+af1.

Proof. By lemma (4.2) and using Hoélder’s inequality we have

a a 1(b,a atni (b,a) a+n1(b,a)
|f( )+ fla+mn(b ))/ g(x)dx_/ F2)g(a)d

: (4.11)

by ([P perEmee b \7*
<1 (Z ) ( /0 [ / o g(u)du} dt>
X [( 1 <a+(12 )m (b, a))‘th>q+< '(a+(12+t)771(b,a))’th)q1.

By (11, n2)-convexity of | /|7 and power-mean inequality ¢® +d* < 217%(c+d)*
for ¢ > 0, d > 0 and s < 1, we have the following inequality:

( 1 ’<a+(1; )nl(ba))‘th>;—|—( ’(a+(1;r mba )
(4.1

1

1

0 0

1

0 0

»a\)—A~ .

), ’(a+(1Q_t)m(b»a))‘qdw/o1

<274 [{ir@pr+ C5Omr @1 @m + 1 @i+

7(at (5D ymv,) ]th}

q (l—i-t)

Q=

=232l @)+ m (1 O 1 @)]7)]

Now it is enough to apply (4.11) in (4.12). This completes the proof. |
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