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Abstract. In this paper, we show that for any BL-general L-fuzzy au-

tomaton (BL-GLFA) there exists a complete deterministic accessible re-

duced BL-general L-fuzzy automaton that recognizing the behavior of the

BL-GLFA. Also, we prove that for any finite realization β, there exists a

minimal complete deterministic BL-GLFA recognizing β. We prove any

complete deterministic accessible reduced BL-GLFA is a minimal BL-

GLFA. After that, we show that for any given finite realization β, the

minimal complete deterministic BL-GLFA recognizing β is isomorphic to

any complete accessible deterministic reduced BL-GLFA recognizing β.

Moreover, we give some examples to clarify these notions. Finally, by

using these notions, we give some theorems and algorithms and obtain

some related results.
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1. Introduction

A general formulation of automata is given which is similar to that of se-

quential machines introduced in [17]. Study of fuzzy automata and languages

was initiated in 1960s by Santos [16, 17, 18], Wee [29], Wee and Fu [27], and

Lee and Zadeh [8].

Fuzzy finite automata have many applications in different branches of sci-

ence, such as in the learning system, pattern recognition, neural networks,

database theory, simulation theory [5, 6, 9, 11, 12, 19, 23, 24, 28].

Note that, state minimization is a fundamental problem in automata theory.

There are many papers on the minimization trend of fuzzy automata, such

as minimization of the mealy type of fuzzy finite automata, minimization of

fuzzy finite automata with crisp final states without outputs, minimization of

deterministic finite automaton with fuzzy (final) states, for more information

see [2, 3, 10, 13, 14, 15, 20, 21, 23, 24, 26].

In 2004, M. Doostfatemeh and S.C. Kremer [4] extended the notion of fuzzy

automata and gave the notion of general fuzzy automata. Their key motivation

of introducing the notion general fuzzy automaton was the insufficiency of the

current literature to handle the applications which rely on fuzzy automaton

as a modeling tool, assigning membership values to active states of a fuzzy

automaton, resolve the multi -membership. Another important insufficiency of

the current literature is the lack of methodologies which enable us to define

and analyze the continuous operation of fuzzy automaton.

Basic logic (BL) has been introduced by Hajek [7] in order to provide a

general framework for formalizing statements of fuzzy nature. Formulas of

propositional BL may be interpreted by means of BL-algebras. With respect

to a semantics defined in this way, BL is complete: formulas proved by BL,

exactly those valid in any BL-algebra.

In 2012, Kh. Abolpour and M. M. Zahedi [1] extended the notion of general

fuzzy automata and gave the notion of BL-general fuzzy automata.

The rest of paper is organized as follows: In Section 2 we give some notions

which will be necessary for Sections 3. In Section 3, we give the the notions of

complete, deterministic, accessible and reduced for BL-general fuzzy automata.

After that, for a BL-general L-fuzzy automata an algorithm to determine the

complete BL-general fuzzy automata is given also we determine the time com-

plexity of it. Moreover, we present an algorithm to determines deterministic

BL-GLFA also, the time complexity of it is presented. After that, for a given

realization β, we present the minimal complete deterministic BL-GLFA, where

the given automaton recognizes β. Also, we present the notion of minimal com-

plete deterministic BL-GLFA. Moreover, we prove that the minimal complete
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Reduction of BL-general L-fuzzy Automata 133

deterministic BL-GLFA recognizing β is isomorphic to any complete accessi-

ble deterministic reduced BL-GLFA recognizing β. Moreover, we give some

examples to clarify these notions.

2. Preliminaries

First, we review some definitions which will be necessary for the next sec-

tions.

Definition 2.1. [4] A general fuzzy automaton (GFA) F̃ is an eight-tuple

machine denoted by F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2), where

• Q is a finite set of states,

• X is a finite set of input symbols,

• R̃ is a set of fuzzy start states, R̃ ⊆ P̃ (Q), where P̃ (Q) is the fuzzy

power set of Q,

• Z is a finite set of output symbols,

• δ̃ : (Q× [0, 1])×X ×Q→ [0, 1] is the augmented transition function,

• ω : Q→ Z is the output function,

• F1 : [0, 1]× [0, 1]→ [0, 1] is called the membership assignment function.

• F2 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function.

Let the set of all transitions of F̃ is denoted by ∆. Now, suppose thatQact(ti)

be the set of every active states at time ti, for every i ≥ 0. We haveQact(t0) = R̃

and Qact(ti) = {(q, µti(q))
∣∣∃q′ ∈ Qact(ti−1),∃a ∈ X, δ(q′, a, q) ∈ ∆}, for every

i ≥ 1, where µti(q) is the membership value of state q at time ti.

Definition 2.2. [7] A BL-algebra is an algebra (L,∧,∨, ∗,→, 0, 1) with four

binary operations ∧,∨, ∗,→ and two constants 0, 1 in which: (i) (L,∧,∨, 0, 1)

is a bounded lattice, (ii) (L, ∗, 1) is a commutative monoid, (iii) ∗ and→ form

an adjoint pair, i.e., x ≤ y → z if and only if x∗y ≤ z, (iv) x∧y = x∗ (x→ y),

(v) (x→ y) ∨ (y → x) = 1, where x, y, z ∈ L.

From now on L = (L,∨,∧, 0, 1) is a bounded complete lattice.

Definition 2.3. [19] Let F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2) be a general fuzzy au-

tomaton and Q̄ = (P (Q),⊆,∩,∪, ∅, Q) be a BL-algebra as in Example 2 of [19].

Then the BL-general L-fuzzy automaton (BL-GLFA) as a ten-tuple machine

denoted by F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2), where

(i) Q̄ = P (Q), where Q is a finite set and Q̄ is the power set of Q,

(ii) X is a finite set of input symbols,

(iii) R̃ is the set of fuzzy start states,

(iv) Z̄ is a finite set of output symbols, where Z̄ is the power set of Z,

(v) ωl : Q̄→ Z̄ is the output function defined by: ωl(Qi) = {ω(q)
∣∣q ∈ Qi},

(vi) δl : Q̄×X×Q̄→ L is the transition function defined by: δl({p}, a, {q}) =

δ(p, a, q) and δl(Qi, a,Qj) = ∨qi∈Qi,qj∈Qjδ(qi, a, qj), for every Qi, Qj ∈
P (Q) and a ∈ X,
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(vii) fl : Q̄ × X → Q̄ is the next state map defined by: fl(Qi, a) =

∪qi∈Qi{qj
∣∣δ(qi, a, qj) ∈ ∆},

(viii) δ̃l : (Q̄×L)×X × Q̄→ L is the augmented transition function defined

δ̃l((Qi, µ
t(Qi)), a,Qj) = F1(µt(Qi), δl(Qi, a,Qj)),

(ix) F1 : L× L→ L is called membership assignment function,

(x) F2 : L∗ → L is called multi-membership resolution function.

Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) be a BL-GLFA.

Then the cardinality of F̃l is defined by |F̃l| = |Q̄|.

Definition 2.4. [24] Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be a BL-GLFA. The run map of the BL-GLFA F̃l is the map ρ : X∗ → Q̄ defined

by the following induction: ρ(Λ) = {q0} and ρ(a1a2...an) = Qin , ρ(a1a2...anan+1)

= fl(Qin , an+1), where (Qin , µ
t0+n(Qin)) ∈ Qact(a1a2...an), for every a1, ..., an ∈

X.

The behavior of F̃l is the map β = ωl ◦ ρ : X∗ → Z̄.

Definition 2.5. [24] Given (Q̄, fl, δl) and (Q̄′, f ′l , δ
′
l), we say that

g : (Q̄, fl, δl)→ (Q̄′, f ′l , δ
′
l),

is a homomorphism with threshold τ1
τ2

if there is a map of Q̄ into Q̄′ such that

for every Qi, Qj ∈ Q̄ the following hold:

(i) g ◦ fl = f ′l ◦ (g × idX),

(ii) τ1 ≤ δl(fl(Qi, a1), a2, Qj) ≤ τ2 if and only if τ1 ≤ δ′l(g(fl(Qi, a1)), a2, g(Qj))

≤ τ2,

where idX is called the identity map on X.

We say that g : (Q̄, fl, δl) → (Q̄′, f ′l , δ
′
l) is homomorphism if and only if

g : (Q̄, fl, δl)→ (Q̄′, f ′l , δ
′
l) is homomorphism with threshold 0

1 .

Definition 2.6. [24] Let

F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1, F2), i = 1, 2,

be two BL-GLFAs. We say that (g, gout) : F̃l → F̃ ′l is a morphism with thresh-

old τ1
τ2

if and only if the following hold:

(i) g : (Q̄, fl, δl)→ (Q̄′, f ′l , δ
′
l) is a homomorphism with threshold τ1

τ2
.

(ii) gout ◦ ωl = ω′l ◦ g,
(iii) g({q0}) = {q′0}.

We say that (g, gout) : F̃l → F̃ ′l is a morphism if and only if (g, gout) : F̃l → F̃ ′l
is morphism with threshold 0

1 .

Definition 2.7. [25] Let β : X∗ → Z̄. Then we say that the behavior β has a

finite realization if there exists a BL-GLFA F̃l, where βF̃l = β.
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Definition 2.8. [25] Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be a BL-GLFA. Then we say that F̃l is a complete BL-GLFA if for any

∅ 6= Q′ ∈ Q̄ and a ∈ X there exists ∅ 6= Q′′ ∈ Q̄ such that fl(Q
′, a) = Q′′.

3. Minimization and reduction of BL-general L-fuzzy automata

In this section, we present the definition of complete, deterministic, accessi-

ble and reduced for BL-general L-fuzzy automaton (BL-GLFA). After that, for

a given realization β, we present the minimal complete deterministic BL-GLFA,

where the given automaton recognizes β. Also, we prove that the minimal com-

plete deterministic BL-GLFA recognizing β is isomorphic to any complete ac-

cessible deterministic reduced BL-GLFA recognizing β. Moreover, we present

two algorithms to determine complete and deterministic BL-GLFA and also we

obtain the complexity of them.

Theorem 3.1. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) be

a BL-GLFA. Then there exists a complete BL-GLFA F̃ cl such that βF̃l = βF̃ cl
.

Proof. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) does not be

a complete BL-GLFA. Consider

F̃ cl = (Q̄c, X, R̃ = ({q0}, µt0({q0})), Z̄, ωcl , δcl , f cl , δ̃cl , F1, F2)

, where Q̄c = P (Q ∪ t), t is an element such that t /∈ Q. If fl(Q
′, a) = ∅, then

δcl (Q
′, a, P ′) = d, for some fixed d ∈ L, where ∅ 6= Q′ ∈ Q̄, t ∈ P ′ ∈ Q̄c. If

fl(Q
′, a) 6= Q′, then δcl (Q

′, a,Q′′) = δl(Q
′, a,Q′′), where t /∈ Q′, Q′′ ∈ Q̄. Also,

let δcl ({t}, a,Q′) = d, where t ∈ Q′, and consider δcl (Q
′, a,Q′′) = δl(Q

′, a, P ′′),

where t /∈ Q′, Q′′ = P ′′ ∪ {t} and P ′′ 6= ∅. If Q′ = P ′ ∪ {t}, P ′ 6= ∅ and t /∈ Q′′,
then consider δcl (Q

′, a,Q′′) = δl(P
′, a,Q′′). If Q′ = P ′ ∪ {t}, Q′′ = P ′′ ∪ {t}

and P ′, P ′′ 6= ∅, then consider δcl (Q
′, a,Q′′) = δl(P

′, a, P ′′) ∨ d. Finally, If

Q′ = P ′ ∪ {t} and P ′ 6= ∅, then δcl (Q
′, a, {t}) = d. Also, let ωcl (Q

′) = ωl(Q
′),

for every Q′ ∈ Q̄.

It is easy to see that the BL-GLFA

F̃ cl = (Q̄c, X, R̃ = ({q0}, µt0({q0})), Z̄, ωcl , δcl , fcl , δ̃cl , F1, F2),

is complete and βF̃l = βF̃ cl
. �

1. Algorithm for computing the complete BL-general L-fuzzy au-

tomata

Step 1. Input: an incomplete BL-GLFA

F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2),

and a bounded complete lattice (L,∨,∧, 0, 1).

Step 2. Q̄′ = ∅.
Step 3. If P ′ ∈ Q̄, then P ′ ∪ {t} ∈ Q̄′.
Step 4. Q̄c = Q̄ ∪ Q̄′.
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Step 5. Let d ∈ L.

Step 6. If ∅ 6= Q′ ∈ Q̄ and fl(Q
′, a) = ∅, then δcl (Q

′, a, P ′) = d, where P ′ ∈ Q̄′.
Step 7. If Q′ ∈ Q̄ and fl(Q

′, a) 6= ∅, then δcl (Q
′, a,Q′′) = δl(Q

′, a,Q′′), where

Q′′ ∈ Q̄.

Step 8. If Q′ ∈ Q̄′, then δcl ({t}, a,Q′) = d.

Step 9. If t /∈ Q′, Q′′ = P ′′ ∪ {t}, P ′′ 6= ∅, then δcl (Q
′, a,Q′′) = δl(Q

′, a,Q′′).

Step 10. If Q′ = P ′∪{t}, P ′ 6= ∅ and Q′′ ∈ Q̄, then δcl (Q
′, a,Q′′) = δl(P

′, a,Q′′).

Step 11. If Q′ = P ′ ∪ {t}, Q′′ = P ′′ ∪ {t} and P ′, P ′′ 6= ∅, then δcl (Q
′, a,Q′′) =

δl(P
′, a, P ′′) ∨ d.

Step 12. If Q′ = P ′ ∪ {t} and P ′ 6= ∅, then δcl (Q
′, a, {t}) = d.

Step 13. If Q′ ∈ Q̄, then ωcl (Q
′) = ωl(Q

′).

Step 14. Output: F̃ cl = (Q̄c, X, R̃ = ({q0}, µt0({q0})), Z̄, ωcl , δcl , f cl , δ̃cl , F1, F2).

Steps 6, 7, 9, 10 and 11 of Algorithm 1, must be repeated at most |Q̄|2 also,

Steps 3, 8, 12 and 13 must be repeated at most be repeated at most |Q̄|. Then

the order of time complexity of this algorithm is at most O(|Q̄|2).

By considering Algorithm 1, we can obtain a complete BL-general L-fuzzy

automata.

Example 3.2. Let (L,∧,∨, 0, 1) be a complete lattice as in Figure 1. Now,

Figure 1. The complete lattice L of Example 3.2.

consider the general L-fuzzy automaton F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2), where

Q = {q0, q1}, R̃ = {(q0, 1)}, X = {σ}, Z = {z1, z2}, ω(q0) = z1, ω(q1) = z2 and

δ(q0, σ, q0) = a, δ(q0, σ, q1) = b.

Now, we have BL-general L-fuzzy automaton F̃l as follow: F̃l = (Q̄,X, R̃ =

({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2), where

Q̄ = {{q0}, {q1}, {q0, q1}, ∅},
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ωl({q0}) = {z1}, ωl({q1}) = {z2}, ωl({q0, q1}) = {z1, z2}and

δ({q0}, σ, {q0}) = a, δ({q0}, σ, {q1}) = b,

δ({q0}, σ, {q0, q1}) = b, δ({q0, q1}, σ, {q0}) = a,

δ({q0, q1}, σ, {q1}) = b, δ({q0, q1}, σ, {q0, q1}) = b.

It is obvious that F̃l is not complete, because fl({q1}, σ) = ∅. Then by Theorem

3.1, we have Q̄c = P (Q∪t) = {{q0}, {q1}, {t}, {q0, q1}, {q0, t}, {q1, t}, {q0, q1, t}, ∅}
and

δcl ({q0}, σ, {q0}) = a, δcl ({q0}, σ, {q1}) = b,

δcl ({q0}, σ, {q0, q1}) = b, δcl ({q0}, σ, {q0, t}) = a,

δcl ({q0}, σ, {q1, t}) = b, δcl ({q0}, σ, {q0, q1, t}) = b,

δcl ({q1}, σ, {t}) = d, δcl ({q1}, σ, {q0, t}) = d,

δcl ({q1}, σ, {q1, t}) = d, δcl ({q1}, σ, {q0, q1, t}) = d,

δcl ({q0, q1}, σ, {q0}) = a, δcl ({q0, q1}, σ, {q1}) = b,

δcl ({q0, q1}, σ, {q0, q1}) = b, δcl ({q0, q1}, σ, {q0, t}) = a,

δcl ({q0, q1}, σ, {q1, t}) = b, δcl ({q0, q1}, σ, {q0, q1, t}) = b,

δcl ({t}, σ, {t}) = d, δcl ({t}, σ, {q0, t}) = d,

δcl ({t}, σ, {q1, t}) = d, δcl ({t}, σ, {q0, q1, t}) = d,

δcl ({q0, t}, σ, {q0}) = a, δcl ({q0, t}, σ, {q1}) = b,

δcl ({q0, t}, σ, {t}) = d, δcl ({q0, t}, σ, {q0, q1}) = b,

δcl ({q0, t}, σ, {q0, t}) = d, δcl ({q0, t}, σ, {q1, t}) = d,

δcl ({q0, t}, σ, {q0, q1, t}) = d, δcl ({q1, t}, σ, {t}) = d,

δcl ({q1, t}, σ, {q0, t}) = d, δcl ({q1, t}, σ, {q1, t}) = d,

δcl ({q1, t}, σ, {q0, q1, t}) = d, δcl ({q0, q1, t}, σ, {q0}) = a,

δcl ({q0, q1, t}, σ, {q1}) = b, δcl ({q0, q1, t}, σ, {t}) = d,

δcl ({q0, q1, t}, σ, {q0, q1}) = b, δcl ({q0, q1, t}, σ, {q0, t}) = d,

δcl ({q0, q1, t}, σ, {q1, t}) = d, δcl ({q0, q1, t}, σ, {q0, q1, t}) = d,

It is clear that F̃ cl = (Q̄c, X, R̃ = ({q0}, µt0({q0})), Z̄, ωcl , δcl , f cl , δ̃cl , F1, F2) is a

complete BL-GLFA.

Definition 3.3. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be a max-min BL-GLFA.Then we say that F̃l is deterministic if for any ∅ 6=
Q′ ∈ Q̄ and a ∈ X there exists at most one Q′′ ∈ Q̄ such that δl(Q

′, a,Q′′) > 0.

Theorem 3.4. Let F̃ be a BL-GLFA. Then there exists a deterministic BL-

GLFA F̃d such that β(F̃ ) = β(F̃d).
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Proof. Let

Dx = {Q′ ∈ Q̄
∣∣∃Q1, ..., Qn−1 ∈ Q̄, where

δl({q0}, a1, Q1) > 0, δl(Q1, a2, Q2) > 0, ..., δl(Qn−1, an, Q
′) > 0},

(3.1)

for every x = a1a2...an ∈ X∗. Then DΛ = {Q′ ∈ Q̄
∣∣Q′ ∈ R̃} = {{q0}}. Let

Q̄d = {Dx

∣∣x ∈ X∗} ⊆ Q̄. Define δld : Q̄d ×X × Q̄d → L, where

δld(Dy, a,Dx) =

{
1 if Dx = Dya

0 otherwise
,

and ωld : Q̄d → Z̄d, by ωld(Dx) = ∪Q′∈Dxωl(Q
′), where Z̄d = Z̄. Consider

F̃d = (Q̄d, X, R̃ = ({q0}, µt0({q0})), Z̄, ωld, δld, fld, δ̃ld, F1, F2).

Now, we show that δld is well defined. Let Dy = Du, Dx = Dv. If Dx = Dya

or Dua = Dv, then we have Dua = Dya = Dx = Dv. So, δld(Dy, a,Dx) =

δld(Du, a,Dv). It is clear that ωld is well-defined. Now, we show that βld = βl.

By considering (3.1), clear that fld = fl. Therefore, ρld = ρl. Hence, βld(x) =

ωl(ρld(x)) = ωl(ρl(x)) = βl(x). �

2. Algorithm for computing deterministic BL-general L-fuzzy au-

tomata

Step 1. Input: a nondeterministic BL-GLFA

F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2),

and a bounded complete lattice (L,∨,∧, 0, 1).

Step 2. Let DΛ = {{q0}}.
Step 3. For x ∈ X∗ and a ∈ X, let Dx.a = {Q′′|δl(Q′, a,Q′′) > 0, Q′ ∈ Dx}.
Step 4. Let Dxa := Dx.a.

Step 5. Let Q̄d = {Dx|x ∈ X∗}.
Step 6. If Dx = Dya, then δld(Dy, a,Dx) = 1,

else δld(Dy, a,Dx) = 0.

Step 7. Consider ωld(Dx) = ∪Q′∈Dxωl(Q
′).

Step 8. Z̄d = Z̄.

Step 9. Output: F̃d = (Q̄d, X, R̃ = ({q0}, µt0({q0})), Z̄, ωld, δld, fld, δ̃ld, F1, F2).

Step 3 of Algorithm 2, must be repeated at most 2|Q̄| also, time complexity

of Step 7 is at most 2|Q̄| × |Q̄|. Then the order of time complexity of this

algorithm is at most O(2|Q̄| × |Q̄|).
By using Algorithms 1 and 2, we can obtain a complete and deterministic

BL-general L-fuzzy automata.

Example 3.5. Let F̃l be as defined in Example 3.2. Clearly, F̃l is deterministic.

Also, F̃ cl defined in Example 3.2, is deterministic, too.

Definition 3.6. Let F̃l be a BL-GLFA. Then we say that

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

8.
1.

13
1 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

26
-0

2-
10

 ]
 

                             8 / 14

http://dx.doi.org/10.52547/ijmsi.18.1.131
https://ijmsi.com/article-1-1528-en.html


Reduction of BL-general L-fuzzy Automata 139

1. Q′ ∈ Q̄ is accessible if there exist x ∈ X∗ such that δ̃∗l ({q0}, µt0({q0}), x,
Q′) > 0.

2. F̃l is accessible if for every ∅ 6= Q′ ∈ Q̄, Q′ is an accessible state.

Theorem 3.7. Let F̃ be a BL-GLFA. Then there exists a BL-GLFA F̃a such

that β(F̃ ) = β(F̃a).

Proof. By Theorem 3.4 and without loss of generality we assume that F̃ be

deterministic. Let S = {Q′ ∈ Q̄
∣∣Q′ be an accessible state}, Za = Z, δa =

δ|S×X×S , ωa = ω|S and fa = f |S×X , i.e., δa is the restriction of δ to S×X×S
and ωa is the restriction of ω to S. Then the BL-GLFA

F̃a = (S,X, R̃, Z̄, ωa, δa, fa, δ̃a, F1, F2),

is an accessible BL-GLFA. Now, we show that βa(F̃a) = β(F̃ ). We have ρa(x) =

ρa(a1...an+1) = fld(Qin, an+1) = fl(Qin, an+1) = ρ(x), where ρ(a1...an) = Qin.

Hence, βa(x) = ωla(ρa(x)) = ωla(ρ(x)) = ωl(ρ(x)) = β(x).

�

Example 3.8. Let F̃l be as defined in Example 3.2. States {q0}, {q1} and

{q0, q1} are accessible. Then F̃l is accessible.

Definition 3.9. Let F̃ be a deterministic, accessible BL-GLFA. We define a

relation on Q̄ by Q′ϕQ′′, if and only if ωl(f(Q′, x)) = ωl(f(Q′′, x)), for every

x ∈ X∗.

Example 3.10. Let F̃l be as defined in Example 3.2. By considering Examples

3.5 and 3.8 and Definition 3.9, F̃l is complete and deterministic. Then ϕ =

{{q0}, {q1}, {q0, q1}}.

Lemma 3.11. Let F̃ be an accessible complete deterministic BL-GLFA. Then

ϕ is an equivalence relation on Q̄.

Proof. It is clear that Q′ϕQ′ and if Q′ϕQ′′, then Q′′ϕQ′. Now, let Q′ϕQ′′

and Q′′ϕQ′′′. Then for every x ∈ X∗ we have ωl(f(Q′, x)) = ωl(f(Q′′, x)) =

ωl(f(Q′′, x)). Hence, ϕ is an equivalence relation. �

Definition 3.12. An accessible complete deterministic max-min BL-GLFA F̃

is called reduced if for every Q′ϕQ′′ implies that Q′ = Q′′, for any Q′, Q′′ ∈ Q̄.

Example 3.13. Let F̃l be as defined in Example 3.2. By Examples 3.5, 3.8,

3.10 and Definition 3.12, F̃l is reduced.

Definition 3.14. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be an accessible complete deterministic BL-GLFA and ϕ be the equivalence

relation defined in Definition 3.9. Suppose that Q̄/ϕ = {Q′ϕ
∣∣Q′ ∈ Q̄}, and
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R̃/ϕ = {q0}ϕ, µt0({q0}ϕ) = µt0({q0}). Now, define δlϕ : Q̄/ϕ×X × Q̄/ϕ→ L

by:

δlϕ(Q′ϕ, a,Q′′ϕ) =

{
γ iffl(Q

′, a) = Q′′′, where Q′′′ϕQ′′

0 otherwise
,

where γ ∈ L. Also, consider ωlϕ : Q̄/ϕ→ Z, where ωlϕ(Q′ϕ) = ωl(Q
′).

Lemma 3.15. δlϕ and ωlϕ are well-defined.

Proof. Let Q′ϕ,Q′′ϕ, P ′ϕ, P ′′ϕ ∈ Q̄/ϕ, Q′ϕ = P ′ϕ and Q′′ϕ = P ′′ϕ. If

δlϕ(Q′ϕ, a,Q′′ϕ) = γ, then there exists Q′′′ ∈ Q̄ such that Q′′′ϕQ′′ and fl(Q
′, a)

= Q′′′. So, Q′′′ϕP ′′ϕQ′′. By considering Definition 3.14, ωl(fl(Q
′, ax)) =

ωl(fl(P
′, ax)), for every x ∈ X∗. Therefore, ωl(fl(Q

′′, x)) = ωl(fl(P, x)), where

fl(P
′, a) = P and PϕQ′′. So, PϕQ′′ϕP ′′ and δlϕ(P ′ϕ, a, P ′′ϕ) = γ. Hence, δlϕ

is well-defined.

Now, we show that ωϕ is well-defined. Let Q′ϕ,Q′′ϕ ∈ Q̄ ϕ and Q′ϕ = Q′′ϕ.

Then Q′ϕQ′′. So, ωl(Q
′ϕ) = ωl(Q

′) = ωl(Q
′′) = ωl(Q

′′ϕ). Hence, the claim

holds. �

Theorem 3.16. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be an accessible complete deterministic BL-GLFA. Then

F̃l
ϕ

= (Q̄ϕ,X, R̃/ϕ, Z̄, ωlϕ, δlϕ, flϕ, δ̃ϕl, F1, F2),

is a reduced BL-GLFA.

Proof. Let Q′ϕϕQ′′ϕ. We have to prove that Q′ϕ = Q′′ϕ. It is suffices to

show that Q′ϕQ′′. For every x ∈ X∗, ωlϕ(fl(Q
′ϕ, x)) = ωlϕ(fl(Q

′′ϕ, x)). Also,

ωl(fl(Q
′, x)) = ωlϕ(fl(Q

′ϕ, x)) = ωlϕ(fl(Q
′′ϕ, x)) = ωl(fl(Q

′′, x)), for every

x ∈ X∗. Hence, the claim holds. �

Theorem 3.17. Let F̃l be a BL-GLFA. Then β F̃
ϕ

= βF̃ .

Proof. By considering Theorem 3.16, β F̃
ϕ

= ωlϕ(fl({q0})ϕ, x) = ωl(fl({q0}), x) =

βF̃ , for every x ∈ X∗.
�

Definition 3.18. Let β be a finite realization. A relation Rβ on X∗ is defined

by:

For every two strings x and y in X∗, xRβy if for every z ∈ X∗ we have

β(xz) = β(yz).

Definition 3.19. Let F̃ be a deterministic BL-GLFA. Then for every string

x, y ∈ X∗, xRF y if and only if there existsQ′ ∈ Q̄ such that δ̃∗l (({q0}, µt0({q0})),
x,Q′) > 0 if and only if δ̃∗l (({q0}, µt0({q0})), y,Q′) > 0.
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Lemma 3.20. Let F̃ be a deterministic BL-GLFA. Then Rβ is an equivalence

relation, where βF̃ = β.

Proof. It is clear that xRβx and if xRβy, then yRβx, for every x, y ∈ X∗. Now,

let xRβy and yRβz, for every x, y, z ∈ X∗. Then β(xw) = β(yw) = β(zw), for

every w ∈ X∗. Hence, Rβ is an equivalence relation. �

Lemma 3.21. RF is an equivalence relation.

Proof. It is clear that xRFx and if xRF y, then yRFx, for every x, y ∈ X∗. Now,

let xRF y and yRF z, for every x, y, z ∈ X∗. If there exists Q′ ∈ Q̄ such that

δ̃∗l (({q0}, µt0({q0})), x,Q′) > 0, then δ̃∗l (({q0}, µt0({q0})), y,Q′) > 0. Also, by

considering yRF z, we have δ̃∗l (({q0}, µt0({q0})), Z,Q′) > 0. Therefore, xRF z.

Similarity, we can obtain the converse. Hence, the claim holds. �

Corollary 3.22. By considering Definitions 3.19, for any complete determin-

istic BL-GLFA F̃ , the number of classes of equivalence relation RF is not more

than the number of states of F̃ .

Theorem 3.23. Let F̃ be a complete deterministic BL-GLFA. Then for a given

equivalence class [w]RF of RF , there exists an equivalence class [w]Rβ of Rβ
in which [w]RF ⊆ [w]Rβ . Every equivalence class [w]Rβ of the relation Rβ is a

finite union of equivalence classes of RF .

Proof. Let [w]RF be an equivalence class of RF and x ∈ [w]RF . Since, F̃ is com-

plete, then there is Q′ ∈ Q̄ such that δ̃l(({q0}, µt0(q0)), x,Q′) > 0. Then by con-

sidering Definition 3.19, δ̃∗l (({q0}, µt0({q0})), w,Q′) > 0. Since, F̃ is a complete

BL-GLFA, then there exists Q′′ ∈ Q̄ such that δ̃∗l (({q0}, µt0(q0)), xz,Q′′) > 0

and δ̃∗l (({q0}, µt0(q0)), wz,Q′′) > 0, for every z ∈ X∗. Therefore, β(xz) =

β(wz). So, xRβw. Then x ∈ [w]Rβ and [w]RF ⊆ [w]Rβ . Clearly, β(x) = β(w),

for every x ∈ [w]Rβ . Consider S = {Q′ ∈ Q̄|δ̃∗l (({q0}, µt0(q0)), x,Q′) > 0, x ∈
[w]Rβ}. Hence, the equivalence class [w]Rβ of Rβ is a finite union of the equiv-

alence classes [w]RF of RF . �

Theorem 3.24. Let β be a finite realization. Then there exists a complete

deterministic BL-GLFA F̃m such that β(F̃m) = β and F̃m is a minimal au-

tomaton.

Proof. Let F̃ be a complete deterministic BL-GLFA such that β(F̃ ) = β. By

considering Theorem 3.23, the number of equivalence classes of Rβ is finite.

Let Q̄m be the set of equivalence classes of Rβ i.e.,

Q̄m = {[w]
∣∣[w] is an equivalence class of Rβ}.

Consider R̃m = {([Λ], 1)}. Define δm : Q̄m ×X × Q̄m → L by

δlm([z], a, [x]) =

{
α if [za] = [x]

0 otherwise
, (3.2)
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Also, define ωlm : Q̄m → Z by ωlm([z]) = ωl(ρ(z)). It is obvious that,

δm is well-defined. Now, we show that ωlm is well-defined. Let [z] = [w].

Then zRβw. Therefore, ωlm([z]) = ωl(ρ(z)) = ωl(ρ(w)) = ωlm([w]). Clearly,

F̃m = (Q̄m, X, R̃m, Z̄, ωlm, δlm, flm, δ̃lm, F1, F2) is a complete deterministic BL-

GLFA. Now, we show that β(F̃ ) = β(F̃m). Then β(F̃m)(x) = ωlm(ρm(x)) =

ωlm([x]) = ωl(ρ(x)) = β(F̃ )(x). �

Definition 3.25. Let F̃1 = (Q̄1, X, R̃1, Z̄1, ωl1, δl1, fl1, δ̃l1, F1, F2) and F̃2 =

(Q̄2, X, R̃2, Z̄2, ωl2, δl2, fl2, δ̃l2, F1, F2) be two BL-GLFA. A homomorphism from

F̃1 onto F̃2 is a function ξ from Q̄1 onto Q̄2 such that for every Q′, Q′′ ∈ Q̄1

and u ∈ X the following conditions hold:

(1) δl1(Q′, a,Q′′) > 0 if and only if δl2(ξ(Q′), a, ξ(Q′′)),

(2) ωl1(Q′) = B implies that ωl2(ξ(Q′)) = B.

We say that ξ is isomorphism if and only if ξ is homomorphism, one-one and

ωl1(Q′) = B if and only if ωl2(ξ(Q′)) = B.

Theorem 3.26. Let β be a finite realization and F̃m be the BL-GLFA defined

in the proof of Theorem 3.24, and F̃ be a complete accessible deterministic

reduced BL-GLFA. Then F̃m and F̃ are isomorphic.

Proof. Let F̃ = (Q̄,X, R̃, Z̄, ωl, δl, fl, δ̃l, F1, F2) be a complete accessible deter-

ministic reduced BL-GLFA and F̃m = (Q̄m, X, R̃m, Z̄, ωlm, δlm, flm, δ̃lm, F1, F2)

be the BL-GLFA defined in the proof of Theorem 3.24. Define ξ : Q̄ →
Q̄m by ξ(Q′) = [u], where fl({q0}, u) = Q′. First, let Q′ = Q′′, where

Q′, Q′′ ∈ Q̄. Then Q′ϕQ′′. Therefore, ωl(f(Q′, x)) = ωl(f(Q′′, x)), for ev-

ery x ∈ X∗. Since F̃ is accessible, then there exists u, v ∈ X∗ such that

δ̃1(({q0}, µt0({q0})), u,Q′) > 0. Since, F̃ is complete and deterministic, so

fl({q0}, u) = Q′. Also, fl({q0}, v) = Q′′. Therefore,

β(ux) = ωl(fl({q0}, ux))

= ωl(fl(fl({q0}, u), x))

= ωl(fl(fl({q0}, v), x)) = β(vx).

Then [u] = [v]. Hence, ξ(Q′) = ξ(Q′′) and ξ is well-defined.

Now, let [u] ∈ Q̄m. Since F̃ is complete, then there is Q′ ∈ Q̄ such that

fl({q0}, u) = Q′. So, ξ(Q′) = [u]. Hence, ξ is onto.

Let δ̃∗(({q0}, µt0({q0})), u,Q′) > 0. Then δ̃∗(({q0}, µt0({q0})), ua,Q′′) > 0.

Therefore, ξ(Q′) = [u], ξ(Q′′) = [ua] and δlm([u], a, [ua]) > 0. So, δlm(ξ(Q′), a,

ξ(Q′′)) > 0.

Now, let δlm(ξ(Q′), a, ξ(Q′′)) > 0, where ξ(Q′) = [u] and ξ(Q′′) = [v]. Then

[ua] = [v]. So, fl({q0}, u) = Q′ and fl({q0}, ua) = Q′′. Hence, δl(Q
′, u,Q′′) >

0.

Let ξ(Q′) = [u]. Then

ωl(ξ(Q
′)) = ωl([u]) = ωl(ρ(u)) = ωl(fl({q0}, u)) = ωl(Q

′).
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Let Q′, Q′′ ∈ Q̄ and ξ(Q′) = ξ(Q′′). Then there exist u, v ∈ X∗ such that

[u] = ξ(Q′) = ξ(Q′′) = [v]. So, β(uz) = β(vz), for every z ∈ X∗. Therefore,

Q′ϕQ′′. Since, F̃ is reduced, then Q′ = Q′′. So, ξ is one-to-one. Hence, F̃m
and F̃ are isomorphic.

�

4. Conclusion

In this note, the notions of complete, deterministic, accessible and reduced

for a BL-general L-fuzzy automaton is presented. After that, an algorithm

for computing the complete BL-general L-fuzzy automata is given. Also, it

is proved that for any finite realization β, there exists a minimal quotient

complete deterministic BL-GLFA, where recognize β. After that, it is shown

that any complete deterministic accessible reduced BL-GLFA is a minimal BL-

GLFA. Moreover, it is proved that for any given finite realization β, the minimal

quotient complete deterministic BL-GLFA recognizing β is isomorphic to any

complete accessible deterministic reduced BL-GLFA recognizing β. For an

accessible complete deterministic BL-GLFA F̃ , an equivalence relation on states

of F̃ is presented. Also, an algorithm for computing deterministic BL-general

L-fuzzy automata is presented.
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