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ABSTRACT. In this paper, we show that for any BL-general L-fuzzy au-
tomaton (BL-GLFA) there exists a complete deterministic accessible re-
duced BL-general L-fuzzy automaton that recognizing the behavior of the
BL-GLFA. Also, we prove that for any finite realization 8, there exists a
minimal complete deterministic BL-GLFA recognizing 3. We prove any
complete deterministic accessible reduced BL-GLFA is a minimal BL-
GLFA. After that, we show that for any given finite realization 3, the
minimal complete deterministic BL-GLFA recognizing 8 is isomorphic to
any complete accessible deterministic reduced BL-GLFA recognizing /.
Moreover, we give some examples to clarify these notions. Finally, by
using these notions, we give some theorems and algorithms and obtain

some related results.
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1. INTRODUCTION

A general formulation of automata is given which is similar to that of se-
quential machines introduced in [17]. Study of fuzzy automata and languages
was initiated in 1960s by Santos [16, 17, 18], Wee [29], Wee and Fu [27], and
Lee and Zadeh [8].

Fuzzy finite automata have many applications in different branches of sci-
ence, such as in the learning system, pattern recognition, neural networks,
database theory, simulation theory [5, 6, 9, 11, 12, 19, 23, 24, 28].

Note that, state minimization is a fundamental problem in automata theory.
There are many papers on the minimization trend of fuzzy automata, such
as minimization of the mealy type of fuzzy finite automata, minimization of
fuzzy finite automata with crisp final states without outputs, minimization of
deterministic finite automaton with fuzzy (final) states, for more information
see [2, 3, 10, 13, 14, 15, 20, 21, 23, 24, 26].

In 2004, M. Doostfatemeh and S.C. Kremer [4] extended the notion of fuzzy
automata and gave the notion of general fuzzy automata. Their key motivation
of introducing the notion general fuzzy automaton was the insufficiency of the
current literature to handle the applications which rely on fuzzy automaton
as a modeling tool, assigning membership values to active states of a fuzzy
automaton, resolve the multi -membership. Another important insufficiency of
the current literature is the lack of methodologies which enable us to define
and analyze the continuous operation of fuzzy automaton.

Basic logic (BL) has been introduced by Hajek [7] in order to provide a
general framework for formalizing statements of fuzzy nature. Formulas of
propositional BL may be interpreted by means of BL-algebras. With respect
to a semantics defined in this way, BL is complete: formulas proved by BL,
exactly those valid in any BL-algebra.

In 2012, Kh. Abolpour and M. M. Zahedi [1] extended the notion of general
fuzzy automata and gave the notion of BL-general fuzzy automata.

The rest of paper is organized as follows: In Section 2 we give some notions
which will be necessary for Sections 3. In Section 3, we give the the notions of
complete, deterministic, accessible and reduced for BL-general fuzzy automata.
After that, for a BL-general L-fuzzy automata an algorithm to determine the
complete BL-general fuzzy automata is given also we determine the time com-
plexity of it. Moreover, we present an algorithm to determines deterministic
BL-GLFA also, the time complexity of it is presented. After that, for a given
realization 3, we present the minimal complete deterministic BL-GLFA, where
the given automaton recognizes 3. Also, we present the notion of minimal com-
plete deterministic BL-GLFA. Moreover, we prove that the minimal complete
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deterministic BL-GLFA recognizing [ is isomorphic to any complete accessi-
ble deterministic reduced BL-GLFA recognizing . Moreover, we give some
examples to clarify these notions.

2. PRELIMINARIES

First, we review some definitions which will be necessary for the next sec-
tions.

Definition 2.1. [4] A general fuzzy automaton (GFA) F is an eight-tuple
machine denoted by F = (Q, X, R, Z,0, w, F|, F5), where

Q is a finite set of states,

X is a finite set of input symbols,

R is a set of fuzzy start states, R C P(Q), where P(Q) is the fuzzy

power set of @,

Z is a finite set of output symbols,

6:(Qx[0,1]) x X x Q — [0,1] is the augmented transition function,

w : @ — Z is the output function,

Fy :[0,1] x[0,1] — [0, 1] is called the membership assignment function.

F5:[0,1]* — [0,1] is called the multi-membership resolution function.
Let the set of all transitions of F' is denoted by A. Now, suppose that Qe (¢;)

be the set of every active states at time t;, for every i > 0. We have Qqet(to) = R

and Qct(t;) = {(q, u* (q))’ﬂq’ € Quet(ti—1),3a € X,8(¢',a,q) € A}, for every

i > 1, where pu'i(q) is the membership value of state g at time ¢;.

Definition 2.2. [7] A BL-algebra is an algebra (L, A, V,*,—,0,1) with four
binary operations A, V, *, — and two constants 0,1 in which: (¢) (L, A,V,0,1)
is a bounded lattice, (it) (L, *,1) is a commutative monoid, (iii) * and — form
an adjoint pair, i.e., x <y — zifand only if zxy < z, (iv) x Ay = z*x(x — y),
(v) (x = y) VvV (y — z) =1, where z,y,z € L.

From now on L = (L, V, A,0,1) is a bounded complete lattice.

Definition 2.3. [19] Let F=(Q,X,R,Z,0,w, F,F;) be a general fuzzy au-
tomaton and Q = (P(Q), C,N, U, ), Q) be a BL-algebra as in Example 2 of [19].
Then the BL-general L-fuzzy automaton (BL-GLFA) as a ten-tuple machine
denoted by Fi = (Q,X, R = ({qo}, " ({q0})), Z, w1, 81, f1, 61, F1, F»), where
(i) Q = P(Q), where Q is a finite set and @ is the power set of Q,
(ii) X is a finite set of input symbols,
(iif) R is the set of fuzzy start states,
(iv) Z is a finite set of output symbols, where Z is the power set of Z,
(v) wi : Q — Z is the output function defined by: w;(Q;) = {w(q)|q € Qi},
(vi) & : @Qx X xQ — L is the transition function defined by: §,({p}, a, {q}) =
3(p,a,q) and 0;(Qs, a, Q5) = Vg,eqi,q;€Q,;0(4i; a, q;), for every Q;,Q; €
P(Q)and a € X,
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(vii) fi : Q@ x X — @Q is the next state map defined by: f(Q;,a) =
EJZL‘,GQ_i{qj ’5(% a, Qj_) € A}v
(viii) &;: (@ x L) x X x Q — L is the augmented transition function defined

Sl((Qi7 .ut(Qi))7 a, Q_]) = Fl(:ut(Qi)v 5Z(Qi7 a, QJ))a
(ix) Fy: L x L — L is called membership assignment function,
(x) Fy:L* — L is called multi-membership resolution function.

Let Fi = (@, X, R = ({g0}, 1'°({a0})), Z, w161, f1, 1, F, F5) be a BL-GLFA.
Then the cardinality of Fj is defined by |Fj| = |Q)].

Definition 2.4. [24] Let ﬁ‘l = (Q7 X7 R = ({q{)}; ’uto ({qO}))v Za Wi, 5l7 fla 5l7 F17 FQ)
be a BL-GLFA. The run map of the BL-GLFA F} is the map p : X* — Q defined
by the following induction: p(A) = {qo} and p(ajaz...a,) = Q;, , p(aras...anan+1)

= fi(Qi,, ant1), where (Q;, , p'oT™(Q;,)) € Quet(aras...ay), for every aq, ..., an, €
X

The behavior of F} is the map 8 = w; op: X* = Z.
Definition 2.5. [24] Given (Q, fi,6;) and (Q', f/,4]), we say that
g : (Q7 fl7 6l) — (Q_/a fl/a 62))

is a homomorphism with threshold :—; if there is a map of Q) into Q' such that
for every Q;,Q; € Q the following hold:

(i) go fi= fjo(g xidx),
(i) 71 <6 (fi(Qi,a1),a2,Q;) < mifand only if 7y < 6;(g(fi(Q4,a1)), a2, 9(Q;))
S T2,

where idx is called the identity map on X.

We say that g : (Q, f1,6) — (Q', f/,8]) is homomorphism if and only if
g:(Q, f1,8) = (Q', f/,8]) is homomorphism with threshold %

Definition 2.6. [24] Let

Fyi = (Qi, X, Ri = ({qoi}, 1 ({q0:}))s Z, wiis iy fris Oy Fr, Fo)yi = 1,2,
be two BL-GLFAs. We say that (g, gout) : F— Fl’ is a morphism with thresh-
old % if and only if the following hold:

(1) g:(Q, f1,6) — (Q', f{,0)) is a homomorphism with threshold =

(ll) Gout © W = wl/ °g,

(iil) 9({a0}) = {a0}-

We say that (g, gout) : F— Fl’ is a morphism if and only if (g, gout) : F, — Fl’
is morphism with threshold %

Definition 2.7. [25] Let 3 : X* — Z. Then we say that the behavior 3 has a
finite realization if there exists a BL-GLFA F, where 5 = 3.
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Definition 2.8. [25] Let E = (Qv X7 R = ({qo}a ,uto ({qo}))7 Za wi, 6la .fl7 Sla F17 F2)
be a BL-GLFA. Then we say that F; is a complete BL-GLFA if for any
0+ Q" €Q and a € X there exists § # Q" € Q such that f;(Q',a) = Q".

3. MINIMIZATION AND REDUCTION OF BL-GENERAL L-FUZZY AUTOMATA

In this section, we present the definition of complete, deterministic, accessi-
ble and reduced for BL-general L-fuzzy automaton (BL-GLFA). After that, for
a given realization (3, we present the minimal complete deterministic BL-GLFA,
where the given automaton recognizes 8. Also, we prove that the minimal com-
plete deterministic BL-GLFA recognizing S is isomorphic to any complete ac-
cessible deterministic reduced BL-GLFA recognizing 5. Moreover, we present
two algorithms to determine complete and deterministic BL-GLFA and also we
obtain the complexity of them.

Theorem 3.1. Let F; = (Q, X, R = ({qo}, ' ({qo})), Z, w1, &1, f1, 01, F1, Fa) be
a BL-GLFA. Then there exists a complete BL-GLFA FY° such that B, = Bﬁlc.

Proof. Let F; = (Q, X, R = ({qo}, " ({q0})), Z, w1, 01, f1, 01, F1, F3) does not be
a complete BL-GLFA. Consider
Flc = (QC7X> R = ({QO}7MtO({QO}))7 27‘*)?7 510’ flcv 6f7 F17F2)
, where Q¢ = P(Q U't), t is an element such that ¢t ¢ Q. If f;(Q’,a) = 0, then
5¢(Q',a, P') = d, for some fixed d € L, where ) # Q' € Q,t € P' € Q°. If
fi(Q',a) # Q', then §¢(Q',a,Q") = §,(Q’,a,Q"), where t ¢ Q',Q" € Q. Also,
let 67({t},a,Q’) = d, where t € Q’, and consider 67 (Q’, a, Q") = §;(Q’,a, P"),
where t ¢ Q',Q" = P U{t} and P" £ 0. If Q' = P'U{t}, P’ # 0 and t ¢ Q",
then consider 6f(Q’,a,Q") = §;(P',a,Q"). If Q' = P'U{t},Q" = P" U {t}
and P',P" # (), then consider 6{(Q’,a,Q") = 6;(P',a,P") V d. Finally, If
Q' = P ' U{t} and P" # 0, then 6/(Q’, a,{t}) = d. Also, let wf(Q") = wi(Q’),
for every Q' € Q.
It is easy to see that the BL-GLFA

Flc = (QCaXvé = ({qo}aHto({qo}))7Z7wlca6lc7flC7SlCaFl7F2)7
is complete and Sz = 8 e O

1. Algorithm for computing the complete BL-general L-fuzzy au-
tomata

Step 1. Input: an incomplete BL-GLFA

E = (Q7Xa R = ({QO}vﬂ'to({QO}))’ valv o1, fi, SlvFlaFQ)a
and a bounded complete lattice (L, V, A,0,1).
Step 2. Q' = 0.
Step 3. If P’ € Q, then P' U {t} € Q'.
Step 4. Q°=QUQ'.
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Step 5. Let d € L.

Step 6. If ) # Q' € Q and f,(Q’,a) = 0, then §¢(Q’,a, P') = d, where P’ € Q'.

Step 7. If Q' € Q and f,(Q',a) # 0, then 65(Q’,a,Q") = 6/(Q',a,Q"), where

Q// c Q

Step 8. If Q' € @', then 6¢({t},a,Q’) = d.

Step 9. If t ¢ Q', Q" = P" U{t}, P" # 0, then 6;(Q',a,Q") = 6,(Q’,a,Q").
Step 10. If Q" = P'U{t}, P’ # § and Q" € Q, then §¢(Q’,a,Q") = §;(P',a,Q").
Step 11. If Q" = P U {t},Q" = P" U{t} and P’, P" # 0, then 67(Q’,a,Q") =

8i(P',a, P")Vd.
Step 12. If Q' = P’ U {t} and P’ # 0, then 67 (Q’,a, {t}) = d.
Step 13. If Q' € Q, then wf(Q') = w;(Q").
Step 14. OUtPUt: Ff = (Qca Xa R= ({qO}’ Mto({QO}))v valc7 5167 f[ca 616; Fi, F2)'
Steps 6, 7, 9, 10 and 11 of Algorithm 1, must be repeated at most |Q|? also,

Steps 3, 8, 12 and 13 must be repeated at most be repeated at most |Q|. Then

the order of time complexity of this algorithm is at most O(|Q|?).

By considering Algorithm 1, we can obtain a complete BL-general L-fuzzy
automata.

ExAMPLE 3.2. Let (L,A,V,0,1) be a complete lattice as in Figure 1. Now,

FIGURE 1. The complete lattice L of Example 3.2.
consider the general L-fuzzy automaton F = (@, X, R, Z, S,W,Fl,Fg), where
Q = {QOaQI}v R= {(QOa 1)}7X = {0}72 = {2'1,22},‘«0(‘]0) - Zlvw(ql) = z2 and
5((]0707 QO) = a, 5((]0707 ql) =b.

Now, we have BL-general L-fuzzy automaton F, as follow: F = (Q, X R =
({qo}a /j/to ({qo}))a Za Wi, 6l7 fl7 6la F17 F2)7 where

Q = {{e} {a1},{q0, a1}, (Z)}v


http://dx.doi.org/10.52547/ijmsi.18.1.131
https://ijmsi.com/article-1-1528-en.html

[ Downloaded from ijmsi.com on 2026-02-10 ]

[ DOI: 10.52547/ijmsi.18.1.131 ]

Reduction of BL-general L-fuzzy Automata 137

wi{go}) = {z1},wi{ar}) = {22}, wi({q0, @1 }) = {21, 22 }and

5({(]0}707 {qO}) = a, 6({(]0}707 {ql}) =D,
d({a},0,{q0,a1}) = b, 6({q0, 01}, 0,{a0}) = a,
6({QO7QI}707 {(h}) =", 5({%,(11}70’ {CIo,(h}) =b.

It is obvious that F} is not complete, because f;({q1},0) = 0. Then by Theorem
3'1a we have QC = P(QUt) = {{qo}7 {QI}v {t}v {QO7 Q1}a {QO7 t}7 {QIa t}a {QO7 qi1, t}7 w}

and
6/ ({a0},0.{a0}) = a, &6 ({ao},0.{a1}) =0,
6{({ao} 0, {0, a1}) =b, 6;({ao}, 0, {q0.t}) = a,
6/ ({ao}, 0. {a1,t}) = b, &({ao},0.{q0,q1,t}) =",
6 ({art o {t}) =d, 6({a1},0.{q,t}) =d,
si{m},oda,t}) =d, 5i({ar} 0,{q0,q1.t}) =,
({0, a1}, 0,{a0}) = a, 6i({q0, a1}, 0. {q1}) = b,
i{go, a1} 0. {0, a1}) =0, 67({q0, 1}, 0. {q0,t}) = a,
[{ao, a1} 0. {ar,t}) = b, 67({q0, a1}, 0,{q0, q1,t}) = b,
o ({t}h o {t}) =d, 67({t},0.{q,t}) =d,

5 ({t} o {ar,t}) =d, 67({t},0,{q0. 1. 1}) = d,
i(

i(

i(

i(

i(

i(

i(

i(

i(

S >

6 ({q0,t},0.{a0}) = a, 6{({qo.t}, 0, {1 }) =,

5 ({qo, t} 0. {t}) =d, 6;({qo,t},0,{q0, m1}) =,
6;({q0,t},0.{q0,t}) = d, 6{({qo.t}, 0, {q1,t}) = d,

61 ({q0:t},0.{q0, q1,t}) = d, &7({q1,t},0,{t}) = d,

6 ({a1,t},0.{qo, t}) =d, of({a,t}, 0, {q1,t}) = d,

6 ({ar1, t}, 0.{q0, a1, t}) = d, 67({q0, 1, t},0,{q0}) = a,

6 ({0, @1, t} o {}) = b, 67({qo, a1, 1}, 0, {t}) = d,

6; ({q0, a1, t}, 0, {q0, 1 }) = b, 6;({qo0,q1,t},0,{qo0,t}) = d,

6 ({q0, @1t} 0, {a1, t}) = d, 67({qo, a1, 1}, 0.{q0, @1, t}) = d,

It is clear that Ff =(Q% X, R = ({qo}, 1" ({q0})), Z,wlc,éf,flc,glc,Fl,Fg) is a
complete BL-GLFA.

Definition 3.3. Let [} = (Q, X, R = ({qo},,uto({qo})),Z,wl,(Sl,fl,Sl,Fl,Fg)
be a max-min BL-GLFA.Then we say that F} is deterministic if for any § #
Q' € Q and a € X there exists at most one Q" € @ such that §;(Q’,a, Q") > 0.

Theorem 3.4. Let I be a BL-GLFA. Then there exists a deterministic BL-
GLFA Fy such that B(F') = B(Fy).
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Proof. Let
Dm = {QI € Q|EIQ17 "'7Qn71 € Qv where

5l({Q0},a1>Q1) > Oaél(Ql7a27Q2> > 07 "'aél(anha’rqu) > O},
(3.1)

for every @ = ajas...a, € X*. Then Dy = {Q' € Q|Q’ € R} = {{q}}. Let
Qa = {D|r € X*} C Q. Define 64 : Q4 x X x Qq — L, where

1 if Dy = Dy,

0 otherwise

01a(Dy,a,Dy) = {

and wyg : Qq — Zg, by wia(Dz) = Ugrep,wi(Q"), where Z4 = Z. Consider

Fi=(Qa, X, R= ({ao}, 1" ({ao})), Z, wia, d1a, fras dra, Fi, Fo).

Now, we show that d;q is well defined. Let D, = D,,D, = D,. If D, = Dy,
or Dyq = D,, then we have Dy, = Dy, = D, = D,. So, 84(Dy,a,D,;) =
81a(Du, a, Dy). Tt is clear that wyg is well-defined. Now, we show that 8,4 = 5.
By considering (3.1), clear that fiq = f;. Therefore, pjq = p;. Hence, Biq(x) =

wi(pa()) = wi(pi(w)) = Bi(z). O

2. Algorithm for computing deterministic BL-general L-fuzzy au-
tomata

Step 1. Input: a nondeterministic BL-GLFA

E = (Q7 Xa R = ({qO}v Mto({QO}))’ vala 5l7 fla Sl, F, FQ);
and a bounded complete lattice (L, V, A,0,1).
Step 2. Let Dy = {{qo}}-
Step 3. For x € X* and a € X, let D,.a = {Q"]6,(Q',a,Q") > 0,Q" € D, }.
Step 4. Let Dy, := D, .a.
Step 5. Let Qg = {D,|x € X*}.
Step 6. If D, = Dy, then 6;4(Dy,a, D;) =1,
else 0;q(Dy,a, D,) = 0.
Step 7. Consider wig(Dy) = Ugrep,wi(Q').
Step 8. Zy = Z.
Step 9. Output: Fd = (Qd, X, R = ({qO}, ,LLtO({qO})), Z, Wid, 5ld7 fld7 Sld, Fl, FQ).
Step 3 of Algorithm 2, must be repeated at most 21@Ql also, time complexity
of Step 7 is at most 219 x |@|. Then the order of time complexity of this
algorithm is at most O(21Q! x |Q|).
By using Algorithms 1 and 2, we can obtain a complete and deterministic
BL-general L-fuzzy automata.

EXAMPLE 3.5. Let F) be as defined in Example 3.2. Clearly, F) is deterministic.
Also, FY defined in Example 3.2, is deterministic, too.

Definition 3.6. Let F} be a BL-GLFA. Then we say that
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1. Q' € Qisaccessible if there exist # € X* such that 07 ({qo}, u** ({go}), =
Q") >0.
2. I is accessible if for every () # Q' € Q, Q' is an accessible state.

Theorem 3.7. Let F' be a BL-GLFA. Then there exists a BL-GLFA F, such
that B(F ) B(Fa)

Proof. By Theorem 3.4 and without loss of generality we assume that F be
deterministic. Let S = {Q’ € Q|Q’ be an accessible state}, Z, = Z, 6, =
dsxxxs, we =wl|s and f, = flsxx, i-e., I, is the restriction of § to S x X x §
and w, is the restriction of w to S. Then the BL-GLFA

ﬁa = (57X7R7Z,wavéaafmgavFlaFQ);

is an accessible BL-GLFA. Now, we show that 3, (F,) = B(F). We have p,(z) =

pa(al-"an—i-l) = fld(anvan+1) fl(anvan—H) = ( ) where p(6l1 an) = Qin-

Hence, f,(z) = wia(pa(x)) = wia(p(x)) = wi(p(x)) = B(x).
O

EXAMPLE 3.8. Let F) be as defined in Example 3.2. States {qo},{q:} and
{qo,q1} are accessible. Then F} is accessible.

Definition 3.9. Let F be a deterministic, accessible BL-GLFA. We define a

relation on Q by Q'Q", if and only if w;(f(Q', 7)) = wi(f(Q",z)), for every
e X*.

EXAMPLE 3.10. Let F} be as defined in Example 3.2. By considering Examples
3.5 and 3.8 and Definition 3.9, F} is complete and deterministic. Then ¢ =

{H{ao} Aar} {a0, ar}}-

Lemma 3.11. Let F be an accessible complete deterministic BL-GLFA. Then
@ is an equivalence relation on Q.

Proof. Tt is clear that Q' Q" and if Q' pQ"”, then Q"¢Q’. Now, let Q'pQ"
and Q"¢Q"'. Then for every x € X* we have w;(f(Q',z)) = w(f(Q",z)) =
wi(f(Q",x)). Hence, ¢ is an equivalence relation. O

Definition 3.12. An accessible complete deterministic max-min BL-GLFA F
is called reduced if for every Q’p@Q" implies that Q' = Q", for any Q', Q" € Q.

EXAMPLE 3.13. Let F} be as defined in Example 3.2. By Examples 3.5, 3.8,
3.10 and Definition 3.12, Ej is reduced.

Definition 3.14. Let F; = (Q, X, R = ({qo}, "> ({q0})), Z,wi, 0, f1,01, Fy, Fy)
be an accessible complete deterministic BL-GLFA and ¢ be the equivalence
relation defined in Definition 3.9. Suppose that Q/¢ = {Q’@|Q’ € Q}, and
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R/o = {ao}te, 1 ({q0}e) = p'o({go}). Now, define dj, : Q/p x X x Q/¢p — L
by:

v iffi(@Qa) = Q" where Q"pQ"

0 otherwise

61%’(Q/§07 a, QI/SO) = {

where v € L. Also, consider wy, : Q/¢ — Z, where wi,(Q'¢) = wi(Q').

Lemma 3.15. 6;, and wy, are well-defined.

Proof. Let Q'¢,Q"¢,P'o,P"p € Q/p, Q¢ = P'v and Q"p = P'p. If
815(Q'p, a, Q" p) = 7, then there exists Q" € @ such that Q"”'¢Q" and f,(Q’, a)
= Q". So, Q"pP"pQ". By considering Definition 3.14, w;(f;(Q’,az)) =
wi(fi(P’, az)), for every & € X*. Therefore, wi(f1(Q",z)) = wi(fi(P,x)), where
fi(P';a) = P and PpQ". So, PpQ"pP" and 0;,(P’¢,a, P"¢) = . Hence, 6,
is well-defined.

Now, we show that w,, is well-defined. Let Q'¢, Q" € Q ¢ and Q"¢ = Q" ¢.
Then Q'¢Q". So, w(Q'¢) = w(Q') = w(Q") = wi(Q"y). Hence, the claim
holds. (]

Theorem 3.16. Let Fi = (Q, X, R = ({qo}, " ({00})), Z,wi, 61, f1,01, F1, )
be an accessible complete deterministic BL-GLFA. Then

j = (Qp, X, R/, Z,wig, S, fros 001, Fi, ),

1s a reduced BL-GLFA.

Proof. Let Q' opQ"p. We have to prove that Q¢ = Q"¢. It is suffices to
show that Q'¢Q". For every € X*, wi,(fi(Q'¢,x)) = wix(fi(Q" ¢, x)). Also,

wi(fil(Q, 7)) = wip(fi(Q'p, 7)) = wiu,(filQ"¢,z)) = wi(fi(Q",x)), for every
x € X*. Hence, the claim holds. O

Theorem 3.17. Let Iy be a BL-GLFA. Then 35 = Bp.
@

Proof. By considering Theorem 3.16, 8z = wi,(fi({q0})p, ) = wi(fi{qo}), x)
B, for every x € X*. ’
(I

Definition 3.18. Let 8 be a finite realization. A relation Rg on X* is defined
by:
For every two strings # and y in X*, xRgy if for every z € X* we have

Blaz) = Blyz).

Definition 3.19. Let F be a deterministic BL-GLFA. Then for every string
z,y € X*, v Rpy if and only if there exists Q' € @ such that 67 (({go}, p° ({q0})),
x,Q') > 0 if and only if 67 ({0}, 1" ({g0})), ¥, Q") > 0.
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Lemma 3.20. Let F be a deterministic BL-GLFA. Then R is an equivalence
relation, where Bz = f3.

Proof. It is clear that x Rgx and if zRgy, then yRgz, for every 2,y € X*. Now,
let xRgy and yRgz, for every x,y,z € X*. Then B(zw) = f(yw) = B(zw), for
every w € X*. Hence, Rg is an equivalence relation. ([l

Lemma 3.21. Rp is an equivalence relation.

Proof. Tt is clear that t Rpx and if e Rpy, then yRpz, for every z,y € X*. Now,
let 2Rpy and yRpz, for every x,y,z € X*. If there exists Q' € @ such that
07 (({ao}, n"*({g0})), z, Q") > 0, then o7 (({ao}, n*({q0})), ¥, Q") > 0. Also, by
considering yRpz, we have 67 (({qo}, u**({q0})), Z,Q’) > 0. Therefore, zRpz.
Similarity, we can obtain the converse. Hence, the claim holds. ([

Corollary 3.22. By considering Definitions 3.19, for any complete determin-
istic BL-GLFA F, the number of classes of equivalence relation Rp is not more
than the number of states of F.

Theorem 3.23. Let F be a complete deterministic BL-GLFA. Then for a given
equivalence class [w|r, of Rp, there exists an equivalence class [w]r, of Rp
in which [w]g, C [w]r,. Bvery equivalence class [w]r, of the relation Rg is a
finite union of equivalence classes of Rp.

Proof. Let [w]r, be an equivalence class of Rp and & € [w]g,.. Since, F is com-
plete, then there is Q' € Q such that & (({go}, 1 (q0)), z, Q') > 0. Then by con-
sidering Definition 3.19, 67 (({qo}, 1% ({g0})), w, Q") > 0. Since, F' is a complete
BL-GLFA, then there exists Q" € Q such that Sl"(({qo},uto (90)),22,Q") >0
and 6 (({qo}, 1 (q0)), wz, Q") > 0, for every z € X*. Therefore, f(zxz) =
B(wz). So, xRsw. Then x € [w]r, and [w]|g, C [w]r,. Clearly, 3(x) = B(w),
for every x € [w]g,. Consider S = {Q" € Q16 (({qo}, pto (o)), z,Q") > 0,z €
[w]r, }. Hence, the equivalence class [w]g, of R is a finite union of the equiv-
alence classes [w]g,. of Rp. O

Theorem 3.24. Let B be a finite realization. Then there exists a complete
deterministic BL-GLFA F,,, such that B(F,,) = B and F,, is a minimal au-
tomaton.

Proof. Let F be a complete deterministic BL-GLFA such that 3(F) = 8. By
considering Theorem 3.23, the number of equivalence classes of Rg is finite.
Let @,, be the set of equivalence classes of Rgi.e.,

Qm = {[w]|[w] is an equivalence class of Rg}.

Consider R,, = {([A],1)}. Define 6,, : Qp X X X Qpy — L by

dim (2], a, [x]) = {a if za] = o] (3.2)

0 otherwise
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Also, define wyy, @ Qm — Z by wim([z]) = wi(p(z)). It is obvious that,
0 is well-defined. Now, we show that wy,, is well-defined. Let [z] = [w].
Then zRgw. Therefore, wim([z]) = wi(p(2)) = wi(p(w)) = wim([w]). Clearly,
(Qm,X Rm,Z wlm,(slm,flm,élm,Fth) 1sacomplete deterministic BL-
GLFA Now, we show that B(F) = B(F,,). Then B(Fy,)(x) = wim(pm(x))

wim([2]) = wi(p(x)) = B(F) (). -

Definition 3.25. Let Fl = (Ql,X Rl,Zl,w“,(5117f11,(§117F17F2) and FQ =
(Qg, X Rg, Zo,wi2, 812, f12, 012, F1, F,) be two BL-GLFA. A homomorphism from
Fy onto F, is a function ¢ from Q; onto Q, such that for every @', Q" € Q,
and u € X the following conditions hold:

(1) 01(Q",a,Q") > 0if and only if §,2(£(Q’), a,£(Q")),

(2) wi1(Q") = B implies that w2 (£(Q")) = B.
We say that £ is isomorphism if and only if £ is homomorphism, one-one and
w1 (Q') = B if and only if w2 (£(Q")) = B.

Theorem 3.26. Let 3 be a finite realization and F,, be the BL-GLFA defined
in the proof of Theorem 3.24, and F be a complete accessible deterministic
reduced BL-GLFA. Then F,, and F are isomorphic.

Proof. Let F = (Q,X, R, Z,w;, 0, fi,01, F1, F5) be a complete accessible deter-
ministic reduced BL-GLFA and F,,, = (Qm, X, R, Z,Wim, Otms fims Slm, Fi, F)
be the BL-GLFA defined in the proof of Theorem 3.24. Define & : Q —
Qm by &(Q) = [u], where fi({qo},u) = Q'. First, let Q' = Q", where
Q',Q" € Q. Then Q'pQ". Therefore, w(f(Q',x)) = w(f(Q",x)), for ev-
ery x € X*. Since F is accessible, then there exists u,v € X* such that
o1(({qo}, 1 ({q0})),u, Q") > 0. Since, F is complete and deterministic, so

fitlao},u) = Q" Also, fi({qo},v) = Q". Therefore,

Bux) = wi(fi{qo}, uz))
=wi(filfila}, u), z))
=wi(filfila}, v),z)) = B(va).

Then [u] = [v]. Hence, £(Q') = £(Q") and ¢ is well-defined.

Now, let [u] € Q,,. Since F is complete, then there is Q' € Q such that
fl({qo}lu) = Q. So, {(Q") = [u]. Hence, £ is onto.

Let 0*(({qo}, 1" ({@0})), u, Q") > 0. Then 0*(({go}, 1" ({0})), ua, Q") > 0.
Therefore, £(Q') = [u], £(@") = [ua) and 81([u],a, [ual) > 0. So, Sy (E(Q"). .
£Q")) >0

Now, let §;,, (£(Q"), a,£(Q")) > 0, where £(Q') = [u] and £(Q") = [v]. Then
[ua] = [v]. So, fil{qo},uv) = Q" and fi({qo},ua) = Q”. Hence, 6,(Q,u, Q") >
0.

Let £(Q’) = [u]. Then

wi(§(Q") = wi([u]) = wi(p(w)) = wi(fi{go}, v)) = wi(Q).
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Let Q,Q" € @ and £(Q') = £(Q"). Then there exist u,v € X* such that
[u] = £(Q") = £(Q") = [v]. So, B(uz) = B(vz), for every z € X*. Therefore,
Q' pQ". Since, F is reduced, then Q' = Q”. So, ¢ is one-to-one. Hence, Fj,
and F are isomorphic.

([l

4. CONCLUSION

In this note, the notions of complete, deterministic, accessible and reduced
for a BL-general L-fuzzy automaton is presented. After that, an algorithm
for computing the complete BL-general L-fuzzy automata is given. Also, it
is proved that for any finite realization 3, there exists a minimal quotient
complete deterministic BL-GLFA, where recognize 5. After that, it is shown
that any complete deterministic accessible reduced BL-GLFA is a minimal BL-
GLFA. Moreover, it is proved that for any given finite realization (8, the minimal
quotient complete deterministic BL-GLFA recognizing 3 is isomorphic to any
complete accessible deterministic reduced BL-GLFA recognizing 5. For an
accessible complete deterministic BL-GLFA F, an equivalence relation on states
of F is presented. Also, an algorithm for computing deterministic BL-general
L-fuzzy automata is presented.
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