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Asstract. In this paper, we investigate a Bresse-type system
of thermoelasticity of type III in the presence of a distributed
delay. We prove the well-posedness of the problem. Further-
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we make use of the semigroup method and the energy method.
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1. INTRODUCTION

Originally the Bresse system consists of three wave equations where the main
variables describing the longitudinal, vertical and shear angle displacements,
which can be represented as (see [6]):

P10 = Qo +IN + I
p2thyy = My — Q + Fy (1.1)
prwg = Ny — 1Q + F3,

where
N =ko(wz —lp),Q =k (px +lw+¢), M =by,
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2 L. Bouzettouta

We use N,Q and M to denote respectively the axial force, the shear force
and the bending moment. By w,¢ and ¥ we are denoting respectively the
longitudinal, vertical and shear angle displacements. Here p; = pA = pl, kg =
EA, k=K GA and | = R~!. For material properties, we use p for density, E for
the modulus of elasticity, G for the shear modulus, K for the shear factor, A for
the cross-sectional area, I for the second moment of area of the cross-section and
R for the radius of curvature and we assume that all this quantities are positives.
Also by F; we are denoting external forces. System (1.1) is an undamped system
and its associated energy remains constant when the time ¢ evolves. To stabilize
system (1.1), many damping terms have been considered by several authors.
(see [1], [3], [11]). Messaoudi et al. [12] established an exponential stability
result for the Timoshenko-type system with thermoelasticity and second sound.
Apalara in [2] obtained an exponential stability result for the following linear
damped Timoshenko system with second sound and internal distributed delay,

p1oee — k (pz + ), + pros + f:f wa(s)p: (x,t—s)ds =0, in (0,1) x (0,00)
P2t — bber + k (pz + 1) + 660, = 0, in (0,1) x (0,00)

030t + gz + 0, =0, in (0,1) x (0, 00)

T+ B+ 0, =0, in (0,1) x (0,00).

Mustapha and Kafini [13] added the distributed delay term in heat equation
and proved the exponential decay result under a suitable assumption on the

weight of delay.
In [4] Bouzettouta et al examined a Bresse system with internal distributed
delay in the feedback,

prote — Gh(Paa + lwe + o) — Ehl (wa — lp) + pope + p1 [ p(s)ee (z,t — s)ds =0
prwit — BEh (Wze — lpg) +IGh (pg +lw + 1) =0,

where (x,t) €]0, L[xR, with the Dirichlet and initial conditions. Regarding
the similar result concerning boundary distributed delay (see [2, 4, 5, 7, 8, 9,
10, 14)).

In the present paper we are concerned at the Bresse system with a distributed
delay term,

p1dtt — k (dz +lw + ), — kol (we — 1) + p1de + f:f p2(s)¢t (z,t —s)ds =0

prwer — ko (we — 1), + Kkl (¢z + 1w+ 1) =0 (12)
p39tt — 00z + /3¢ttw — kOt = 0.
where (z,t) € (0,1) x R, with the following boundary conditions:
0(0,t) = p(1,t) = 5 (0,1) = 1 (1,t) = wy(0,t) = wy(1,%)
=0(0,t) =0(1,t) =0,t >0, (1.3)
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and the initial conditions

¢(x70) = ¢0($),¢t($,0) = ¢1(x)a¢(x’0) = ¢O(J;)7
Ui (x,0) = Y1 (x), w(x,0) = wo(x), we(x,0) = wy (),
0(z,0) = Og(x), 0:(z,0) = 61(x)

de(x,—7) = f(z,t) in 0 < t < 7o,

#(0,t) = ¥,(0,t) = w,(0,¢) = 0(0,¢t) =0, Vt>0
do(1,1) = (1,t) =w(1,t) =0, Vt>0,

71 and 19 are two real numbers with 0 < 71 < 79, u1 > 0 is a positive constant,

to ¢ [11, 2] — Ris an L* function, pe > 0 almost everywhere, and the initial

data (o, ©1, Yo, Y1, wo, w1, 0o, 61, fo). belong to a suitable space (see below)
And under the assumption

1 > /Tz 1o (8) ds. (1.5)

1

The aim of this paper is to study the well-posedness and asymptotic stability
of system(1.2)-(1.4).

2. PRELIMINARIES AND WELL-POSEDNESS

In this section we first prove the existence and uniqueness of regular solutions
to problem (1.2)-(1.4) by using a semigroup theory as in [17], and Introduce
the following new variable [16].

In order to exhibit the dissipative nature of (1.2), we differentiate the first,
the second and the third equations of system (1.2) with respect to ¢ and in-
troduce new dependent variables ® = ;¥ =tb;, w =w; and z(z,p,t,s) =
D, (x,t — ps).

z(z,p,t,8) = @ (z,t —ps),x € (0,1),p€ (0,1),s € (T,72),t >0. (2.1)
Then, we have
szi(z, p,t, s) + z5(x, p,t,5) =01in (0,1) x (0,1) x (0,00) x s € (11,72). (2.2)
Therefore, problem (1.2) takes the form

p1Py —k(Qp +Iw+ W) — lkg (Wy — D) + 111Dy
+ f:f ua(s)z (x,1,t,8)ds =0,

szi(x, p,t) + zp(x, p, t) = 0,

2Oy — bW, + k(D + 1w+ O) + 56, =0,
piWi — ko (W —1D), + 1k (P, + 1w+ W) =0,
P304t — 0020 + By — kbize = 0.

(2.3)

With the initial and boundary conditions:

B(0,t) = B(1,t) = B(0,£) = ¥(1,t) = w(0,t) = w(l,t) = 0,t > 0.  (2.4)
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®(x,0) = Po(z), Py(x,0) = P1(x), ¥(x,0) = ¥o(x),

W, (z,0) = ¥y (), w(z,0) = wo(z), wi(z,0) = wi(x),z € (0,1)

0(x,0) = Op(x), 0:(x,0) = 61(z) in (0,00)

z(x,0,t,8) = Py (x,t) on (0,1) x (0,00) X (11,72), (2.5)
z(x,p,0,8) = fo(x,p,s) on (0,1) x (0,1) X (11, 7T2)

®(0,t) = ¥,(0,1) = w(0,¢) = 6(0,¢) =0(1,t) =0, Ve>0

®,(1,6) =¥ (1,t) =w(1,{) =0, Vi>0

Remark 2.1. The third equation of (2.3) and the boundary conditions yield

d2 1 1
,02—2/ W(axt)d:z:—&—k:/ U (z,t)dx=0

which gives

Consequently, if we set

U (z,t) = \Il(x7t)—(/01\110(m)dx>cos <\/Zt>
- p}j(/ol\pl(x)dx>sin< ;;t)

(q), z, \fl, w, 9) satisfies (2.3) with initial conditions for given by
1

1
U (2,0) = Ug (z) _/0 Wy (2) dz and ¥, (2,0) = Uy (z) _/O W, () d.

/Ollfl(x,t):(),

which justifies the application of Poincare’s inequality for V.In the sequel, we
work with ¥ but we write ¥ for simplicity.

Moreover, we have

If we set
U= ((P, (I)ta ‘Ila ‘Iltv W, Wy, 97 eta Z)T ’
then U; = (‘I)u‘ptt, Wy, ‘Ilttawtawttaotyettyzt)T
Therefore, problem (2.3)-(2.5) can be written as

{ AU = Uy,

2.6
U(O) = ((I)Ov(I)lv‘IIOa\Illaw()an,eanl,f(m’ps))ﬂ ( )

where the operator A is defined by
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u

k. lkg
2 (Pa +Iw + 0), + 0 (W — 1) —
v
W — oo (Bg + 1w + V) — -0,

Y S
Pl o fn u2(s)z (z,1,t,8)ds

b
[SEESES S I IR SR I~ ]
Il

w
k
20 (wo — D), — %(@z—i-lw—i-‘ll)
9
%ezz - %Uz + %ﬁzz
(%1) %p

(2.7)
We consider the following spaces

H, (0,1)={h € H'(0,1) : h(0) =0},
H; (0,1) ={h € H'(0,1) : h(1) =0},
a
(

HZ(0,1) = H*(0,1) N H} (0,1),
HZ(0,1) = H?(0,1) N H} (0,1),
and
H=H}(0,1) x L*(0,1) x H} (0,1) x L*(0,1),
x H} (0,1) x L*(0,1) x Hg (0,1) x L*(0,1),
x L2 ((0,L) x (0,1) x (11, 72)) -
With

1 1 T2
L2 ((0,L) x (0,1) x (11,72)) = {z measurable // / / suz (s) 22 (x, p, 8) dsdpda < oo} .
0 0 T1

We will show that A generates a Cy semigroup on H. Let us define on the
Hilbert space H the inner product, for

—~ ~ ~ ~ o~ T
U=(®,u,V,v,w,0,0,2)" U= ((b,ﬂ,\l/,ﬁ,v?r,%,&,ﬁ,?)

<U,(7>H =p1/01uﬂdx+p2‘/0

1 1
+k/ (B0 +V + lw) (@x-&-\ll—l-l\?v)dx—l-ko/ (wa —12) (W —13) da
0 0

1 1 1 1
vodx + p1 / wwdzx + p3 / J9dx + b/ U, U.dr
0 0 0

1 1 7o 1
+ 5/ 0z0zdx + / / sp(s) / z (z,p,8)Z (z, p, s) dpdsdzx. (2.8a)
0 0 T1 0

‘H is a Hilbert space for [ small enough since, in this case, the above inner

product is equivalent to the natural inner product defined on H.
The domain of A is given by

Uen/®e H2(0,1);¥,we HZ(0,1),u,0 € H: (0,1);v,w € HL (0,1)

D (A) = ;2€ L2 ((0,L) x (0,1) X (11,72)) ,u(z) = (z,0,s) in (0, L)
, P2 (1) =0,w, (0) = ¥, (0) =0.
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Theorem 2.2. Let (®g, P1, Vg, U1, wo,wr,00,01, fo) € H. Assume that the
hypothesis (1.5) holds. Then, for any initial datum Uy € H there exists a
unique solution U € C ([0, 00), H) for problem (2.6). Moreover, if Uy € D(A),
then U € C([0,00), D(A)) N C0,00), H).

Proof. To obtain the above result, we need to prove that A : D(A) — H is
a maximal monotone operator. For this purpose, we need the following two

steps: A is dissipative and Id — A is surjective.
Step 1: In this step, we prove that the operator A is dissipative. Let

U= (<I>,u7\I/,v,w,w,9,19,z)T,

u

k. Lk _ Bl 1 T P
L (@ + W Iw), + B0 (wy —18) = Blu— L (72 pp(s)z (2,1, ,5) ds »
v
4
b _ Kk I
E\I’zz ) (g + T +Iw) I By v
(AU, U)y = “ | ow
kg _ _ kL
o1 (Wg — 1®), o1 (Pz + T +Iw) w
9 6
5 _ B k s
P3 Oza 931 ve + 3 L .
= )%

1 1 1
:k/ u(@z+‘I/+lw)(4)1+\1’+lw)mdz+lk0/ (wg 7l<I>)udzfp,1/ u?da
0 0 0
1 T
—/ / upg(s)z (z,1,t,s) dsdx
0 T1
1 1 1
+b/ 'U\Ilzzdsz/ (Pr + T + lw) udzf,@/ v9,dx
0 0 0
1 1
+ko/ w(wz—ld))zd:c—kl/ w (Pgp + ¥ + lw) do
0 0
1 1 1 1
+5/ ﬂ@mwdzfﬂ/ ﬂvwdz+k-/ 19199”_4114»17/ v Vedr
0 0 0 0
1 1
+k/ (<I>m+q/+lw)(uz+v+lw)dz+k0/ (wWg — I®) (wy — lu)dx
Jo J0

1 1 7o 1
+6 [ wvudn— [ [ ua () [T 2009 2 (0,05) dpdsaa.
0 o Jr 0

With integration by parts we obtain,

1 1
(AU,UY,, = k/ u(<b$+\11+lw)xdm+lkg/
0 0

1
(Wx—lé)udm—ulf u?dx
0
1 1 T2
—k/ (‘bm-l—\ll—l—lw)vdac—/ / up2(s)z (x,1,t,s) dsdz
+ko/ww —1®) da:—kl/w@ + U+ lw) dx—i—k/ V0o dx

—i—k/ (¢’Z+‘l/+lw)(uz+v+lw)dx+k0/ (Wz — 1®) (we — lu) dx
0 0

1 TS 1
[ [T ) [ 2 @p5) 20 o) dpds,
0 T1 0
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then,

1 1
(AU,UY,, = —m/ w?dx — k/ 92 dax
0 0

- /1 /72 upa(s)z (z,1,t, s) dsdx
/ / e ( / (x,p,s)2zp (x,p, s)dpdsdz, (2.10)

and Integrating by parts in p , we have

1
/ Zp (337073) (.13 pPs s dﬂ_ / J) »Ps S dp
0

5 [z (z,1,s) — 2% (2,0,s)]

1 T2 1
/ / p2 (s) / zp (. p,8) 2 (2, p, 5) dpdsdx
0 T1 0

- %/0 /T2 pa (s) [2% (2,1, 5) = 2* (2,0,5)] (2.11)

Therefore, from (2.10) and (2.11),

(AU, U) = ul/l ()dxk/()lﬂidx

// 2 (2,1, 5) dsde
_/O/ u2(s)/0 2 (2,0, 5) 2 (@, py 5) dpdsda
Tll 1
:_‘“A wt @)de—k [ 02da
—/lu(x) (/Tzuz() (x,l,s)ds)dx
_,// s () 22 (2,1, 8) dsdix
5/ ”2“/0 w? (x) d.

Now, by using Cauchy-Schwarz’s inequality, we can estimate,

w7 ) 2 (1, ) ds ) _; "2 (@) T2u2<s> dz
0 T1
// o (8) 22 (x,1, s) dsdx

then
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Therefore, from the assumption (1.5) we have,

(AU, U) < — (ul - /:2 142 (s)) /01 u? (x) dx — k/ol 92dr <0 (2.12)

1
that is, the operator A is dissipative.
Step 2: To prove that the operator Id — A is surjective, that is, for any let
G = (91,92, 93,94, 95, 96, 97, gs, go) € H. We seek U = (@,u,\ll,v,w,w,ﬁ,ﬁ,z)T €
D (A) satistying

(Id— AU =@,
which is equivalent to
AP —u=g¢g
Apru—k (Py + U 4 Iw), — ko (Wy — 1) + p1u
+ [2 pa(s)z (2, 1,8, 8) ds = p1go
AV — v =g;
Apav — bW,y + k(P + U 4 Iw) + SY, = paga
AW — w = g5
Ap1ow — ko (Wg — D), + Kl (Py + VU +1W) = pigs
A0 — Y = g7
Ap3t — 80,0 + Bvy — k¥zz = p3gs
Az + s’lzp = go.

(2.13)

Suppose that we have found ®, ¥, w and 6. Therefore, the first, the third and
the fifth equation in (2.13) give

U:A(I)—gl
v=AV — g3
== AW — g5 (2.14)
U=\ — g7,

It is clear that u € H{ (0,1),v € H} (0,1),@0 € H} (0,1) and ¥ € H}(0,1).
And we can find,

z(x,0,8) = u(x), for x € (0,L),s € (11,72) . (2.15)

Following the same approach as in [15], we obtain, by using equations for z in
(2.14)

Az ($7P75) + Silzp (vaﬂs) = f9 (l’,p,S) ) for x € (OvL) S € (7_137_2) . (216)
Then by (2.14) and (2.15)

p
2 (x, p,8) = e u(x) + s | fo(2,0,5) e do.
0

So, from (2.13) on (0, L) x (0,1) x (11, 72),

p
2 (x,p,8) = AB(2)e M — fi(x)e M° + se_’\"s/ fo(x,0,5) e %do. (2.17)
0
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By using (1.5) and (2.13) the functions ®, ¥, w and 6 satisfying the following
system,

Np1® — k(P + 1w+ W), — ko (W, — D) + pyuy

+ f;? N2(S)Z (:U, 1,¢, 5) ds = P1 ()\91 + 92)

AN paW — bWy + k (Dy + 1w + V) + B0, = pa (Ag3 + gaa) (2.18)
Npyw — ko (Wy — @), + ki (P, +Iw+ V) = p1 (Ags + g6)

A2p30 — 00,5 + Buy — ke = p3 (Ag7 + gs) ,

Solving system (2.18) is equivalent to finding,
(@, W, w,0) € H2(0,1) x H? (0,1) x H (0,1) x H?(0,1),
such that
fol [(N2p1®n — k (Py + Iw + W) 1, - lko (W — 1®) 0 + pyun
1 [ pa(s)z (2, 1,1, 5) ds} dz = [; p1n (Mg + g2) dz
fol (A2paW¢ — bW,C, + k (Dp +lw + ©) ( + BCY, | do = fol p2€ (Ags + gra) dx

oy [N2o1we — ko (wy — D) &, + kI (D, + 1w + ©) €] dx = [ pi& (Ags + g6) da

Jo 230X — 002 x0 + Bxve — Kaxa] dz = [y p3x (g7 + gs) da,
(2.19)
for all (n,¢,&,x) € HE(0,1) x HY (0,1) x H (0,1) x HE (0,1) . From (2.17) we
have,

1
z(x,1,8) = )\(I’(x)e—ks _ fl(x)e_)‘s + Se—)\s/ fo (2,0, 5) A o
0

Consequently, problem (2.19) is equivalent to the problem
a((®,¥,w,0),(n,¢,&x) =L1n¢8x), (2.20)
where the bilinear form
a: [H (0,1) x H} (0,1) x HE (0,1) x Hg (0,1)]* — R,
and the linear form
L:H}(0,1) x H} (0,1) x H} (0,1) x H} (0,1) — R,
are defined by

a((q),\lf,w79> ) (%Q&X))

1
- / A2 (p1®n + p2C + prwé + psbX) + pru — bW,C
0

+ k(®p + 1w + U) (1, + 16+ ) — ko (W —19) (& — In)

+ B (C0% 4 xv2) — (005 + EV2) X0 + 77/ pa(s)A (z) e dsdz,

T1
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and

1
L(n,¢&x) = /0 (011 (Ag1 + g2) + p2€ (Ags + gaa) + p1€ (Ags + g6)

1
+p3x (Agr + gs) + (fl(os)e)‘s + se™ / fo(x,0,9) e)‘asda>} dx.
0

It is easy to verify that a is continuous and coercive, and L is continuous.
So applying the Lax-Milgram theorem, we deduce that for all (n,(,§,x) €
H}(0,1) x H} (0,1) x H(0,1) x H}(0,1) problem (2.20) admits a unique
solution (®, ¥, w,0) € H} (0,1)x HE (0,1) x H} (0,1) x HE (0,1) . Applying the
classical elliptic regularity, it follows from (2.19) that (®, ¥, w,0) € H2 (0,1) x
H?(0,1) x H? (0,1) x H} (0,1) Therefore, the operator \I — A is surjective for
any A > 0. Consequently, the existence result of theorem 2.2 follows from the
Hille-Yosida theorem. (|

3. STABILITY RESULTS

To state our decay result to the system (2.3)—(2.5), we introduce the energy
functional

1 1
E(t) = 3 / [p1®F + patb} + p1wy + b2 + p3bf + 662
0

(B + 0+ Iw)? + Ko (Wy — 1D) }dx

/// spe ( (z,p, s,t)dsdpdx. (3.1)

We can prove that the energy is decreasing. More precisely, we have the fol-
lowing result.

Theorem 3.1. Let (®,¥,w,0,z) be the solution of (2.3)—(2.5). Then there
erist two positive constants o and v such that

E(t)<aE(0)e " t>0 (3.2)

Lemma 3.2. Let (P, ¥, w,0,z) be the solution of (2.3)—(2.5) and assume (1.5)
holds. Then the energy functional, defined by (3.1) satisfies,

iE() —ro/ O?dx — k / 6? dex, (3.3)
with

ro = i1 —/ 1o (8) ds.

1
Proof. Multiplying (2.3)1, (2.3)2, (2.3)3, and (2.3)4 by &, Uy, w; and 6;, respec-
tively, and integrating over (0, 1), using integration by parts and the boundary
conditions, and adding the results, we obtain
(3.3). |
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Lemma 3.3. Let (P, U, w,0,2) be the solution of (2.3)—(2.5). Then the func-
tional

F1 (t) = p2 /01 \II\I/tdx (34)

satisfies, for €1 > 0 and €5 > 0, the estimate

1 1
F, (t) < pQ/ UZdx + (—b+ £ + kd&) / U2
0 2/61 0

1

1
L (D, + Iw + ) da + 0, / 02dx (3.5)
262 0 0

Proof. Taking the derivative of (3.4), using the third equation in (2.3) and
performing integration by parts, we get

1
F,(t) = pg/ (P04 + UF) da
0
1 1
= pg/ T2dx +/ U (WWoy — k(P + Iw + V) — B6;,) dx
0 0

1 1 1 1
:p2/ \Iffdx—b/ \pidaz—k/ m(¢x+lw+\p)dx—ﬁ/ Uy, dx
0 0 0 0

Using Young’s and Poincaré’s inequalities, for estimate (3.5)

1 1
F, (t) < pg/ U2dr + | —b+ £ + kdly / U2dx
0 2»61 0 -
k 1 1
+7/ (<I>w+lw+\ll)2dx+ﬂ€1/ 02dx
2£2 0 0
([
Lemma 3.4. Let (D, U, w,0,2) be the solution of (2.3)—(2.5). Then the func-
tional
1 T
P (t) = p1/ ®, <q> +/ U (y,1) dy) dz, (3.7)
0 0
satisfies, for any € > 0, the estimate
: kot 2, ko [* 2
F, (t)§—§ (P, +Iw+ ) de — — (W — 1®) dx
0 0

1 1 1
+c<1+>/ <I>,?dx+e/ U2 dx (3.8)
€/ Jo 0
1 T2
—|—c/ / o (8) 2% (2,1, s,t) dsdx
0 T1

Proof. Taking the derivative of (3.7), and using that,

z(x,p,5,0) = fo(x,p,s) in (0,1) x (0,1) x (0, 72)
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and integration by parts, we obtain

FQ/(t):plfoléz/(‘)zllfy(y)dydxf/ol (¢’+/Oz\l’(y)dy) [_:zyg(s)z(x,l,s,t)dsd:v

1 1 1
—k/ (<I>z+lw+\If)2dm+p1/ <1>§dx—lk0/ (We — 1®)2 dx
0 0 0

S /01 D, (i’—&-/:\ll(y)dy) da (3.9)

Using Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, for estimate the
terms in the right hand side of (3.9)

1 T 1 1
pl/ <I>t/ U, (y) dydx Se/ \Ilfdx+g/ dZdx
0 0 0 € Jo

Lemma 3.5. Let (9, U, w,0,2) be the solution of (2.3)~(2.5). Then the func-
tional

O

1 x 1
Fa(t) = ~papa | O ( | v dy) do—op [ 6,040 (310)
0 0 0
satisfies, for any €1 > 0,62 > 0,63 > 0,e4 > 0; the estimate

/ ) k ! 1
Fy(t) < —p2 <§1 - — - ) / U2dx — p3 (B — bez — k54)/ 02dx
0

281 262 0
1 1
0 0
psb [! p3C (7
+ 2 Wide + —/ ®2dx
253 0 254 0

Lemma 3.6. Let (P, U, w,0,2) be the solution of (2.3)—(2.5). Then the func-
tional

1 1 1
Fy (1) :pg/ 99tdx+§/ 93dx+ﬁ/ ,.0dx (3.12)
0 0 0

satisfies, for any €5 > 0; the estimate

1 1 1
Fy(t) < (p3+ﬁ)/ 93dm+ﬂ55/ \I!idxfé/ 02dx (3.13)
2e5 /) Jo 0 0

Proof. By differentiating (3.12) we obtain,
, 1 1 1
F,(t)= p3/ Hfdx + pg/ 00y dx + kpg/ 01,.0.dx
0 0 0

1 1
0 0

Using Young’s inequality, and integration by parts for obtain (3.13). O
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Lemma 3.7. Let (P, U, w,0,2) be the solution of (2.3)—(2.5). Then the func-

tional
1 1 T2
:/ / / se Py (s) 22 (x, p, s, t) dsdpda (3.14)
0 0 T1

satisfies the estimate

< —e” / / o ( (z,1,s,t)dsdx (3.15)

1
/ / / spa ( (x,p,8,t) dsdpda:—&—ul/ /<I>t2dx.
0

Proof. Differentiating Fj (t), we obtain,

F5 —2/ / / z(x, p,8,t) 2z (z, p, s,t) dsdpdx

Using the second equation (2.2), we arrive at

= 72/ / / 781) (I7pa Sat) Zp (x’pasvt) dede
—/ / / e *Pus (s) —22 (z,p,s,t)dsdpdx.
o Jo Jn dp

Integration by parts gives,

1 1 d To
[ ) e wpsit) dsdpdo
o Jo dp /s,
1 1 T2
7/ // spo () e P22 (x, p, 5,t) dsdpdx

/ / o ( (,0,s,t) — e *P2* (z,1,5,t)) dsdpdz
T1

—/ // spa (s) e P2* (x, p, 5,t) dsdp.
0 0 T1

Therefore,
T2 1
< —e” / / e ( (z,1,s,t)dsdx + </ a2 () ds) / d2dx
T1 0
/ / / spa ( (z,p, s,t) dsdpdz.
We, then, obtain (3.15) by virtue of (1.5). O

Lemma 3.8. Let (D, U, W, 0, z) be the solution of (2.3)—(2.5). Then the func-
tional,

1 1
Fs () := —p1 / O, (w,, —1®)dx — py / wi (P, +Iw+ ) da (3.16)
0 0


http://dx.doi.org/10.52547/ijmsi.18.1.1
https://ijmsi.com/article-1-1526-en.html

[ Downloaded from ijmsi.com on 2026-02-10 ]

[ DOI: 10.52547/ijmsi.18.1.1]

14 L. Bouzettouta

satisfies the estimate for any ¢ > 0,

1
Fi(t) < — (lko - %) /0 (wy — 1®)2 da — Ip, i

1 1
Wfd:c +1lp1 / 'I’fdz:
0

1 1
+lk/ (<I>x+wl+\I!)2dx+<2/ U2dy
0

/ / po (8) 22 (2,1, 5,t) dsd. (3.17)
with my = (fTTIQ a2 () ds) .

Proof. By differentiating (3.16) we obtain,
1 1 1
Fé (t) < —lko/ (W, — l<I>)2 dr — lpl/ wfderlpl/ ®2dx
0 0 0

1 1
+lk:/ (<I>m+wl+\ll)d;v+§2/ Wdy
0 0

+/01 (/ s (s)) (W, — 1) da.

Estimate (2.3) follows thanks to Cauchy-Schwarz inequality. ]

Lemma 3.9. Let (P, U, w,0,2) be the solution of (2.3)—(2.5). Then the func-
tional

1
Fr(t)=—-m /0 (D, + wwy) dx (3.18)

satisfies the estimate

1
F () < pl/ @dxfpl/ wtd:chcl/ \112+k0/ (W — 1) da:
0 0 0

+02/ (4 Iw+0) dx 4 = // po (8) 22 (2,1, 5,t) dsdz (3.19)
0

with mg = (f:f 2 (8) ds> :
Proof. By differentiating (3.18) we obtain,

1 T2
F7(t) = —/0 P (k (Py + 1w+ ¥), + ko (Wz —IP) — po®Py — / w(s)z (z,1,t,9) ds) dx
T

1 1 1
—/ @fdx—/ w (ko (Wa — 1®),, — kl (@ + lw + T)) dx—/ w2,
0 0 0

Using Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, for estimate the
terms in the right hand side of (3.19). O

Lemma 3.10. We have
aEt) < L(t) <cEl),Yt>0

for two positive constants ¢1 and cs.
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Proof. For N, N; > 0, let

I/\

+
=

1

2

+ N3

+
Z

+
5

+
o?

+ Ng

+
F

=

+ N7

+ N7

then

/

£(t) <

+

=7
L(t):=NE(t)+ Y NiF;(t) (3.20)

1 1 1
N ( ro [ ®dx — k/ wadr> + Ny (—b+ b + kdég) / W2 dx
0 0 0

1
[,;2/ dz+5€1/ tha:—l——/ (<I>;c+lw+\Il)2dx}
0 2@2

1
( E/ (®y +Iw + T) dm—@/( )
2Jo
(C<1+ ) <I>tdx+e/ L' da:+c/ / o (s)z (:v,l,s,t)dsd:c)
0 0
1
( P2 ( ————)/ \Iffdx—pg(ﬁ—bag—ka4)/ efdz)
261 262 0 0
2 p3b p3C 1 o
p2del 0 ~dx + pakea Gtmdx—i- U2 dy +— @Idx
2e3 264
((p3+—)/ Otdx+,6’s5/ \I/2dx 6/ 92dx>
0
( // ,ug(sz m,l,st)dsdm)
T1
1
( /// spo (s) 22 zp,st)dsdpda:+,u1/ @?dw)
0
( (lkof— /( —19)2 d:rflpl/ wtd:rJrlpl/ <I>2dm>
0
1
(+lk/ (P + Wi+ ) dm+<2/ ‘I’d:er / / w2 ( z zlst)dsdz)
0

1
p1/ d:rfpl/. wtda:Jrcl/ \I/ +k0/ (W ld)) dm)
0 0 0

1
02/ (Dr + lw+0)2 dx + = / / w2 (s) 2(m,l,s,t)dsdac)
0

1 1
|:—T‘0N+C<1+€> NQ+§{§_CN3+M1N5+ZP1N6—p1N7:| / (I)tZdl’
4 0

) k !
paN1+eNs—pa |1 — —— — ) N3+ @Ng / Uldx
25 252 0

: ) .
( b+ % + kd@) N+ 2 ps oo, Na o BesNa + 01N7} / 2 dy
1 0

[kl

le lplNG—p1N7:|/ W?diﬂ
L 0
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1
+ |BUNy — p3 (B — beg — keq) N3 + (P3 + 25) N4] / 07dx
5 0
1
+ [—5N4 + P2($€1N3]/ ngm

+ [—kN + pakeo N3] / 02 dx

r 1
4R kN2+lkN6+02N7} (@, + Iw + ) da
2(2 2 0
o ko — (1 T 19)? dz
+ CY 2 + Ko 7-( 0 — 7) 6:| -
r 1
+ 72N5+0N2++}/ / e ( :Ulst)dsdac
L 0

—e ™ N5 / // s (s) 22 (z, p, 8,t) dsdpdz.

At this point we choose ¢; i = 1,...,5 small enough, and N7 large enough so
that

k k lk
max{—Nl — *Ng + lkNﬁ + CQN7, 0N2 + k0N7

20y 2 2
N
(lko - 7) Ng, —e" ™ N5 +cNa + - —0} <0, (3.21)

1 c
—rolN + ¢ (1 + 6) Ny + %Ng 4+ 1 N5 4+ 1lp1Ng — p1 N7 <0 .

Once N7 is fixed, we then choose N; large enough such that

p3b
( b+ % +kd€2> N1 + —Nd + Bes Ny + c1 N7 < 0,
1

we choose N3,Ny4,Ng large enough such that

p3b
( b+ B —|—kd€2> Ny + 2—N3 + Bes Ny + c1 N7 <0,

201
ki
?Nl —1lp1Ne — p1 N7 <0,
€
Ng N
e Ns +cla + 2+ 55 <0,

max{—0Ny + p26e1 N3, — kN + pakeaN3} <0,

finally, we choose IV large enough such that,

T0N+C( )N2+ pSCN3+M1N5+Zp1N6*p1N7 < 0.
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Exploiting Young’s, Poincaré’s and Cauchy-Schwarz inequalities, and the fact
that e=*” <1 for all p € [0, 1], we obtain

£(t)] < c/ol (07 + W3 + W2+ wh o+ 07 + 62 + 6%, (o + lw + 0)? + (wo — 19)%] do
1 r1 rr

+/0 /0 /Tl s|u(s)|2%(x, p, s, t)dsdpda

< cE(1).
Consequently, |[£(t) — NE(t)| < cE(t) which yields

(N —c)E(t) < £(t) < (N + ¢)E(t), (3.22)
choosing N such that N —¢ >0
L' (t) < —agE(t), vt >0,

for some g > 0. A combination of lemma(3.10) gives

L(t) <=k L(t), Vt >0, (3.23)
where k1 = ‘;‘—5
Finally, a simple integration of (3.23) we obtain (3.2), which complete the
proof. O
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