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Abstract. In this paper, we investigate a Bresse-type system

of thermoelasticity of type III in the presence of a distributed

delay. We prove the well-posedness of the problem. Further-

more, an exponential stability result will be shown without the

usual assumption on the wave speeds. To achieve our goals,

we make use of the semigroup method and the energy method.
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1. Introduction

Originally the Bresse system consists of three wave equations where the main

variables describing the longitudinal, vertical and shear angle displacements,

which can be represented as (see [6]):
ρ1ϕtt = Qx + lN + F1

ρ2ψtt = Mx −Q+ F2

ρ1wtt = Nx − IQ+ F3,

(1.1)

where

N = k0 (wx − lϕ) , Q = k (ϕx + lw + ψ) ,M = bψx
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2 L. Bouzettouta

We use N,Q and M to denote respectively the axial force, the shear force

and the bending moment. By w,ϕ and ψ we are denoting respectively the

longitudinal, vertical and shear angle displacements. Here ρ1 = ρA = ρI, k0 =

EA, k = k′GA and l = R−1. For material properties, we use ρ for density, E for

the modulus of elasticity, G for the shear modulus, K for the shear factor, A for

the cross-sectional area, I for the second moment of area of the cross-section and

R for the radius of curvature and we assume that all this quantities are positives.

Also by Fi we are denoting external forces. System (1.1) is an undamped system

and its associated energy remains constant when the time t evolves. To stabilize

system (1.1), many damping terms have been considered by several authors.

(see [1], [3], [11]). Messaoudi et al. [12] established an exponential stability

result for the Timoshenko-type system with thermoelasticity and second sound.

Apalara in [2] obtained an exponential stability result for the following linear

damped Timoshenko system with second sound and internal distributed delay,
ρ1ϕtt − k (ϕx + ψ)x + µ1ϕt +

∫ τ2
τ1
µ2(s)ϕt (x, t− s) ds = 0, in (0, 1)× (0,∞)

ρ2ψtt − bψxx + k (ϕx + ψ) + δθx = 0, in (0, 1)× (0,∞)

ρ3θt + qx + δψtx = 0, in (0, 1)× (0,∞)

τqt + βq + θx = 0, in (0, 1)× (0,∞) .

Mustapha and Kafini [13] added the distributed delay term in heat equation

and proved the exponential decay result under a suitable assumption on the

weight of delay.
In [4] Bouzettouta et al examined a Bresse system with internal distributed

delay in the feedback,
ρ1ϕtt −Gh (ϕxx + lwx + ψx)− Ehl (wx − lϕ) + µ0ϕt + ρ1

∫ τ2
τ1
µ(s)ϕt (x, t− s) ds = 0

ρ2ψtt − EIψxx +Gh (ϕx + lw + ψ) = 0

ρ1wtt − Eh (wxx − lϕx) + lGh (ϕx + lw + ψ) = 0,

where (x, t) ∈]0, L[×R+ with the Dirichlet and initial conditions. Regarding

the similar result concerning boundary distributed delay (see [2, 4, 5, 7, 8, 9,

10, 14]).
In the present paper we are concerned at the Bresse system with a distributed

delay term,
ρ1φtt − k (φx + lw + ψ)x − k0l (wx − lφ) + µ1φt +

∫ τ2
τ1
µ2(s)φt (x, t− s) ds = 0

ρ2ψtt − bψxx + k (φx + lw + ψ) + βθtx = 0

ρ1wtt − k0 (wx − lφ)x + kl (φx + lw + ψ) = 0

ρ3θtt − δθxx + βψttx − kθtxx = 0.

(1.2)

where (x, t) ∈ (0, 1)× R+, with the following boundary conditions:

φ(0, t) = φ(1, t) = ψx(0, t) = ψx(1, t) = wx(0, t) = wx(1, t)

= θ(0, t) = θ(1, t) = 0, t > 0, (1.3)
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Stabilization of a Type III Thermoelastic Bresse System with Distributed Delay-time 3

and the initial conditions

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), ψ(x, 0) = ψ0(x),

ψt(x, 0) = ψ1(x), w(x, 0) = w0(x), wt(x, 0) = w1(x),

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x)

φt(x,−τ) = f(x, t) in 0 < t ≤ τ2,
φ(0, t) = ψx(0, t) = wx(0, t) = θ(0, t) = 0, ∀t ≥ 0

φx(1, t) = ψ (1, t) = w (1, t) = 0, ∀t ≥ 0,

. (1.4)

τ1 and τ2 are two real numbers with 0 ≤ τ1 < τ2, µ1 > 0 is a positive constant,

µ2 : [τ1, τ2] −→ R is an L∞ function, µ2 ≥ 0 almost everywhere, and the initial

data (ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, θ1, f0). belong to a suitable space (see below)

And under the assumption

µ1 ≥
∫ τ2

τ1

µ2 (s) ds. (1.5)

The aim of this paper is to study the well-posedness and asymptotic stability

of system(1.2)-(1.4).

2. Preliminaries and Well-posedness

In this section we first prove the existence and uniqueness of regular solutions

to problem (1.2)-(1.4) by using a semigroup theory as in [17], and Introduce

the following new variable [16].

In order to exhibit the dissipative nature of (1.2), we differentiate the first,

the second and the third equations of system (1.2) with respect to t and in-

troduce new dependent variables Φ = ϕt,Ψ =ψt, w =wt and z(x, ρ, t, s) =

Φt (x, t− ρs).

z(x, ρ, t, s) = Φt (x, t− ρs) , x ∈ (0, 1) , ρ ∈ (0, 1) , s ∈ (τ1, τ2) , t > 0. (2.1)

Then, we have

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0 in (0, 1)× (0, 1)× (0,∞) × s ∈ (τ1, τ2) . (2.2)

Therefore, problem (1.2) takes the form

ρ1Φtt − k (Φx + lw + Ψ)x − lk0 (wx − lΦ) + µ1Φt
+
∫ τ2
τ1
µ2(s)z (x, 1, t, s) ds = 0,

szt(x, ρ, t) + zρ(x, ρ, t) = 0,

ρ2Ψtt − bΨxx + k (Φx + lw + Ψ) + βθtx = 0,

ρ1wtt − k0 (wx − lΦ)x + lk (Φx + lw + Ψ) = 0,

ρ3θtt − δθxx + βΨtx − kθtxx = 0.

(2.3)

With the initial and boundary conditions:

Φ(0, t) = Φ(1, t) = Ψ(0, t) = Ψ(1, t) = w(0, t) = w(1, t) = 0, t > 0. (2.4)
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4 L. Bouzettouta

Φ(x, 0) = Φ0(x),Φt(x, 0) = Φ1(x),Ψ(x, 0) = Ψ0(x),

Ψt(x, 0) = Ψ1(x),w(x, 0) = w0(x),wt(x, 0) = w1(x), x ∈ (0, 1)

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x) in (0,∞)

z (x, 0, t, s) = Φt (x, t) on (0, 1)× (0,∞)× (τ1, τ2) ,

z (x, ρ, 0, s) = f0 (x, ρ, s) on (0, 1)× (0, 1)× (τ1, τ2)

Φ(0, t) = Ψx(0, t) = wx(0, t) = θ(0, t) = θ(1, t) = 0, ∀t ≥ 0

Φx(1, t) = Ψ (1, t) = w (1, t) = 0, ∀t ≥ 0

(2.5)

Remark 2.1. The third equation of (2.3) and the boundary conditions yield

ρ2
d2

dt2

∫ 1

0

Ψ (x, t) dx+ k

∫ 1

0

Ψ (x, t) dx = 0

which gives∫ 1

0
Ψ (x, t) dx =

(∫ 1

0
Ψ0 (x) dx

)
cos

(√
k

ρ2
t

)
+

(∫ 1

0
Ψ1 (x) dx

)√
ρ2

k
sin

(√
k

ρ2
t

)
.

Consequently, if we set

Ψ̃ (x, t) = Ψ (x, t)−
(∫ 1

0

Ψ0 (x) dx

)
cos

(√
k

ρ2
t

)

−
√
ρ2
k

(∫ 1

0

Ψ1 (x) dx

)
sin

(√
k

ρ2
t

)
(

Φ, z, Ψ̃,w, θ
)

satisfies (2.3) with initial conditions for given by

Ψ̃ (x, 0) = Ψ0 (x)−
∫ 1

0

Ψ0 (x) dx and Ψ̃t (x, 0) = Ψ1 (x)−
∫ 1

0

Ψ1 (x) dx.

Moreover, we have ∫ 1

0

Ψ̃ (x, t) = 0,

which justifies the application of Poincare’s inequality for Ψ̃.In the sequel, we

work with Ψ̃ but we write Ψ for simplicity.

If we set

U = (Φ,Φt,Ψ,Ψt,w,wt, θ, θt, z)
T
,

then Ut = (Φt,Φtt,Ψt,Ψtt,wt,wtt, θt, θtt, zt)
T
.

Therefore, problem (2.3)-(2.5) can be written as{
AU = Ut,

U (0) = (Φ0,Φ1,Ψ0,Ψ1,w0,w1, θ0, θ1, f (x, ρs)),
(2.6)

where the operator A is defined by
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Stabilization of a Type III Thermoelastic Bresse System with Distributed Delay-time 5

A



Φ

u

Ψ

v

w

$

θ

ϑ

z


=



u
k
ρ1

(Φx + lw + Ψ)x + lk0
ρ1

(wx − lΦ)− µ1
ρ1
u− 1

ρ1

∫ τ2
τ1
µ2(s)z (x, 1, t, s) ds

v
b
ρ2

Ψxx − k
ρ2

(Φx + lw + Ψ)− 1
ρ2
βϑx

$
k0
ρ1

(wx − lΦ)x −
kl
ρ1

(Φx + lw + Ψ)

ϑ
δ
ρ3
θxx − β

ρ3
vx + k

ρ3
ϑxx(−1

s

)
zρ


(2.7)

We consider the following spaces

H1
a (0, 1) =

{
h ∈ H1 (0, 1) : h (0) = 0

}
,

H1
b (0, 1) =

{
h ∈ H1 (0, 1) : h (1) = 0

}
,

H2
a (0, 1) = H2 (0, 1) ∩H1

a (0, 1) ,

H2
b (0, 1) = H2 (0, 1) ∩H1

b (0, 1) ,

and

H = H1
a (0, 1)× L2 (0, 1)×H1

b (0, 1)× L2 (0, 1) ,

×H1
b (0, 1)× L2 (0, 1)×H1

0 (0, 1)× L2 (0, 1) ,

× L2
ω ((0, L)× (0, 1)× (τ1, τ2)) .

With

L2
ω ((0, L)× (0, 1)× (τ1, τ2)) =

{
z measurable /

∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) z2 (x, ρ, s) dsdρdx <∞
}
.

We will show that A generates a C0 semigroup on H. Let us define on the

Hilbert space H the inner product, for

U = (Φ, u,Ψ, v,w, $, θ, ϑ, z)
T
, Û =

(
Φ̂, û, Ψ̂, v̂, ŵ, $̂, θ̂, ϑ̂, ẑ

)T
〈
U, Û

〉
H

= ρ1

∫ 1

0
uûdx+ ρ2

∫ 1

0
vv̂dx+ ρ1

∫ 1

0
$$̂dx+ ρ3

∫ 1

0
ϑϑ̂dx+ b

∫ 1

0
ΨxΨ̂xdx

+ k

∫ 1

0
(Φx + Ψ + lw)

(
Φ̂x + Ψ̂ + lŵ

)
dx+ k0

∫ 1

0
(wx − lΦ)

(
ŵx − lΦ̂

)
dx

+ δ

∫ 1

0
θxθ̂xdx+

∫ 1

0

∫ τ2

τ1

sµ (s)

∫ 1

0
z (x, ρ, s) ẑ (x, ρ, s) dρdsdx. (2.8a)

H is a Hilbert space for l small enough since, in this case, the above inner

product is equivalent to the natural inner product defined on H.
The domain of A is given by

D (A) =


U ∈ H/Φ ∈ H2

a (0, 1) ; Ψ,w ∈ H2
b (0, 1) , u, θ ∈ H1

a (0, 1) ; v,$ ∈ H1
b (0, 1)

; z ∈ L2
ω ((0, L)× (0, 1)× (τ1, τ2)) , u (x) = (x, 0, s) in (0, L)

,Φx (1) = 0,wx (0) = Ψx (0) = 0.

 .

(2.9)
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6 L. Bouzettouta

Theorem 2.2. Let (Φ0,Φ1,Ψ0,Ψ1,w0,w1, θ0, θ1, f0) ∈ H. Assume that the

hypothesis (1.5) holds. Then, for any initial datum U0 ∈ H there exists a

unique solution U ∈ C ([0,∞),H) for problem (2.6). Moreover, if U0 ∈ D(A),

then U ∈ C([0,∞), D(A)) ∩ C1[0,∞),H).

Proof. To obtain the above result, we need to prove that A : D(A) → H is

a maximal monotone operator. For this purpose, we need the following two

steps: A is dissipative and Id − A is surjective.
Step 1: In this step, we prove that the operator A is dissipative. Let

U = (Φ, u,Ψ, v,w, $, θ, ϑ, z)
T
,

〈AU,U〉H =

〈



u
k
ρ1

(Φx + Ψ + lw)x +
lk0
ρ1

(wx − lΦ)− µ1
ρ1
u− 1

ρ1

∫ τ2
τ1

µ2(s)z (x, 1, t, s) ds

v
b
ρ2

Ψxx − k
ρ2

(Φx + Ψ + lw)− 1
ρ2
βϑx

$
k0
ρ1

(wx − lΦ)x −
kl
ρ1

(Φx + Ψ + lw)

ϑ
δ
ρ3
θxx − β

ρ3
vx + k

ρ3
ϑxx(

−1
s

)
zρ


,



Φ

u

Ψ

v

w

$

θ

ϑ

z



〉

= k

∫ 1

0
u (Φx + Ψ + lw) (Φx + Ψ + lw)x dx + lk0

∫ 1

0
(wx − lΦ)udx− µ1

∫ 1

0
u
2
dx

−
∫ 1

0

∫ τ2
τ1

uµ2(s)z (x, 1, t, s) dsdx

+ b

∫ 1

0
vΨxxdx− k

∫ 1

0
(Φx + Ψ + lw) vdx− β

∫ 1

0
vϑxdx

+ k0

∫ 1

0
$ (wx − lΦ)x dx− kl

∫ 1

0
$ (Φx + Ψ + lw) dx

+ δ

∫ 1

0
ϑθxxdx− β

∫ 1

0
ϑvxdx + k

∫ 1

0
ϑϑxxdx + b

∫ 1

0
vxΨxdx

+ k

∫ 1

0
(Φx + Ψ + lw) (ux + v + l$) dx + k0

∫ 1

0
(wx − lΦ) ($x − lu) dx

+ δ

∫ 1

0
θxϑxdx−

∫ 1

0

∫ τ2
τ1

µ2 (s)

∫ 1

0
z (x, ρ, s) zρ (x, ρ, s) dρdsdx.

With integration by parts we obtain,

〈AU,U〉H = k

∫ 1

0
u (Φx + Ψ + lw)x dx+ lk0

∫ 1

0
(wx − lΦ)udx− µ1

∫ 1

0
u2dx

−k
∫ 1

0
(Φx + Ψ + lw) vdx−

∫ 1

0

∫ τ2

τ1

uµ2(s)z (x, 1, t, s) dsdx

+k0

∫ 1

0
$ (wx − lΦ)x dx− kl

∫ 1

0
$ (Φx + Ψ + lw) dx+ k

∫ 1

0
ϑϑxxdx

+k

∫ 1

0
(Φx + Ψ + lw) (ux + v + l$) dx+ k0

∫ 1

0
(wx − lΦ) ($x − lu) dx

−
∫ 1

0

∫ τ2

τ1

µ2 (s)

∫ 1

0
z (x, ρ, s) zρ (x, ρ, s) dρdsdx,
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Stabilization of a Type III Thermoelastic Bresse System with Distributed Delay-time 7

then,

〈AU,U〉H = −µ1

∫ 1

0

u2dx− k
∫ 1

0

ϑ2xdx

−
∫ 1

0

∫ τ2

τ1

uµ2(s)z (x, 1, t, s) dsdx

−
∫ 1

0

∫ τ2

τ1

µ2 (s)

∫ 1

0

z (x, ρ, s) zρ (x, ρ, s) dρdsdx, (2.10)

and Integrating by parts in ρ , we have∫ 1

0

zρ (x, ρ, s) z (x, ρ, s) dρ =
1

2

∫ 1

0

∂

∂ρ
z2 (x, ρ, s) dρ

=
1

2

[
z2 (x, 1, s)− z2 (x, 0, s)

]
,

then ∫ 1

0

∫ τ2

τ1

µ2 (s)

∫ 1

0

zρ (x, ρ, s) z (x, ρ, s) dρdsdx

=
1

2

∫ 1

0

∫ τ2

τ1

µ2 (s)
[
z2 (x, 1, s)− z2 (x, 0, s)

]
. (2.11)

Therefore, from (2.10) and (2.11),

〈AU,U〉 = −µ1

∫ 1

0

u2 (x) dx− k
∫ 1

0

ϑ2xdx

−
∫ 1

0

∫ τ2

τ1

u (x)µ2 (s) z (x, 1, s) dsdx

−
∫ 1

0

∫ τ2

τ1

µ2 (s)

∫ 1

0

zρ (x, ρ, s) z (x, ρ, s) dρdsdx

= −µ1

∫ 1

0

u2 (x) dx− k
∫ 1

0

ϑ2xdx

−
∫ 1

0

u (x)

(∫ τ2

τ1

µ2 (s) z (x, 1, s) ds

)
dx

− 1

2

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s) dsdx

+
1

2

∫ τ2

τ1

µ2 (s)

∫ 1

0

u2 (x) dx.

Now, by using Cauchy-Schwarz’s inequality, we can estimate,∣∣∣∣∫ 1

0

u (x)

(∫ τ2

τ1

µ2 (s) z (x, 1, s) ds

)
dx

∣∣∣∣ ≤ 1

2

∫ 1

0

u2 (x)

(∫ τ2

τ1

µ2 (s)

)
dx

+
1

2

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s) dsdx
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8 L. Bouzettouta

Therefore, from the assumption (1.5) we have,

〈AU,U〉 ≤ −
(
µ1 −

∫ τ2

τ1

µ2 (s)

)∫ 1

0

u2 (x) dx− k
∫ 1

0

ϑ2xdx ≤ 0 (2.12)

that is, the operator A is dissipative.

Step 2: To prove that the operator Id − A is surjective, that is, for any let

G = (g1, g2, g3, g4, g5, g6, g7, g8, g9) ∈ H.We seek U = (Φ, u,Ψ, v,w, $, θ, ϑ, z)
T ∈

D (A) satisfying

(Id−A)U = G,

which is equivalent to

λΦ− u = g1
λρ1u− k (Φx + Ψ + lw)x − lk0 (wx − lΦ) + µ1u

+
∫ τ2
τ1
µ2(s)z (x, 1, t, s) ds = ρ1g2

λΨ− v = g3
λρ2v − bΨxx + k (Φx + Ψ + lw) + βϑx = ρ2g4
λw −$ = g5
λρ1$ − k0 (wx − lΦ)x + kl (Φx + Ψ + lw) = ρ1g6
λθ − ϑ = g7
λρ3ϑ− δθxx + βvx − kϑxx = ρ3g8
λz + s−1zρ = g9.

(2.13)

Suppose that we have found Φ, Ψ,w and θ. Therefore, the first, the third and

the fifth equation in (2.13) give
u = λΦ− g1
v = λΨ− g3
$ = λw − g5
ϑ = λθ − g7,

(2.14)

It is clear that u ∈ H1
0 (0, 1) , v ∈ H1

0 (0, 1) , $ ∈ H1
0 (0, 1) and ϑ ∈ H1

0 (0, 1) .

And we can find,

z(x, 0, s) = u(x), for x ∈ (0, L) , s ∈ (τ1, τ2) . (2.15)

Following the same approach as in [15], we obtain, by using equations for z in

(2.14)

λz (x, ρ, s) + s−1zρ (x, ρ, s) = f9 (x, ρ, s) , for x ∈ (0, L) , s ∈ (τ1, τ2) . (2.16)

Then by (2.14) and (2.15)

z (x, ρ, s) = e−λρsu(x) + se−λρs
∫ ρ

0

f9 (x, σ, s) eλσsdσ.

So, from (2.13) on (0, L)× (0, 1)× (τ1, τ2) ,

z (x, ρ, s) = λΦ(x)e−λρs − f1(x)e−λρs + se−λρs
∫ ρ

0

f9 (x, σ, s) eλσsdσ. (2.17)
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Stabilization of a Type III Thermoelastic Bresse System with Distributed Delay-time 9

By using (1.5) and (2.13) the functions Φ,Ψ, w and θ satisfying the following

system,

λ2ρ1Φ− k (Φx + lw + Ψ)x − lk0 (wx − lΦ) + µ1ut
+
∫ τ2
τ1
µ2(s)z (x, 1, t, s) ds = ρ1 (λg1 + g2)

λ2ρ2Ψ− bΨxx + k (Φx + lw + Ψ) + βϑx = ρ2 (λg3 + gλ4)

λ2ρ1w − k0 (wx − lΦ)x + kl (Φx + lw + Ψ) = ρ1 (λg5 + g6)

λ2ρ3θ − δθxx + βvx − kϑxx = ρ3 (λg7 + g8) ,

(2.18)

Solving system (2.18) is equivalent to finding,

(Φ,Ψ,w, θ) ∈ H2
a (0, 1)×H2

b (0, 1)×H2
b (0, 1)×H2

a (0, 1) ,

such that

∫ 1

0

[
λ2ρ1Φη − k (Φx + lw + Ψ) ηx − lk0 (wx − lΦ) η + µ1uη

+η
∫ τ2
τ1
µ2(s)z (x, 1, t, s) ds

]
dx =

∫ 1

0
ρ1η (λg1 + g2) dx∫ 1

0

[
λ2ρ2Ψζ − bΨxζx + k (Φx + lw + Ψ) ζ + βζϑx

]
dx =

∫ 1

0
ρ2ζ (λg3 + gλ4) dx∫ 1

0

[
λ2ρ1wξ − k0 (wx − lΦ) ξx + kl (Φx + lw + Ψ) ξ

]
dx =

∫ 1

0
ρ1ξ (λg5 + g6) dx∫ 1

0

[
λ2ρ3θχ− δθxχx + βχvx − kϑxχx

]
dx =

∫ 1

0
ρ3χ (λg7 + g8) dx,

(2.19)

for all (η, ζ, ξ, χ) ∈ H1
0 (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

0 (0, 1) . From (2.17) we

have,

z (x, 1, s) = λΦ(x)e−λs − f1(x)e−λs + se−λs
∫ 1

0

f9 (x, σ, s) eλσsdσ.

Consequently, problem (2.19) is equivalent to the problem

a ((Φ,Ψ,w, θ) , (η, ζ, ξ, χ)) = L (η, ζ, ξ, χ) , (2.20)

where the bilinear form

a :
[
H1

0 (0, 1)×H1
0 (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)

]2 −→ R,

and the linear form

L : H1
0 (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

0 (0, 1) −→ R,

are defined by

a ((Φ,Ψ,w, θ) , (η, ζ, ξ, χ))

=

∫ 1

0

[
λ2 (ρ1Φη + ρ2Ψζ + ρ1wξ + ρ3θχ) + µ1uη − bΨxζx

+ k (Φx + lw + Ψ) (ηx + lξ + ζ)− k0 (wx − lΦ) (ξx − lη)

+ β (ζϑx + χvx)− (δθx + kϑx)χx + η

∫ τ2

τ1

µ2(s)λφ (x) e−λsdsdx,
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10 L. Bouzettouta

and

L (η, ζ, ξ, χ) =

∫ 1

0

[ρ1η (λg1 + g2) + ρ2ζ (λg3 + gλ4) + ρ1ξ (λg5 + g6)

+ρ3χ (λg7 + g8) +

(
−f1(x)e−λs + se−λs

∫ 1

0

f9 (x, σ, s) eλσsdσ

)]
dx.

It is easy to verify that a is continuous and coercive, and L is continuous.

So applying the Lax-Milgram theorem, we deduce that for all (η, ζ, ξ, χ) ∈
H1

0 (0, 1) × H1
0 (0, 1) × H1

0 (0, 1) × H1
0 (0, 1) problem (2.20) admits a unique

solution (Φ,Ψ,w, θ) ∈ H1
0 (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

0 (0, 1) . Applying the

classical elliptic regularity, it follows from (2.19) that (Φ,Ψ,w, θ) ∈ H2
a (0, 1)×

H2
b (0, 1)×H2

b (0, 1)×H1
a (0, 1) Therefore, the operator λI −A is surjective for

any λ > 0. Consequently, the existence result of theorem 2.2 follows from the

Hille-Yosida theorem. �

3. Stability results

To state our decay result to the system (2.3)–(2.5), we introduce the energy

functional

E (t) =
1

2

∫ 1

0

[
ρ1Φ2

t + ρ2ψ
2
t + ρ1w

2
t + bψ2

x + ρ3θ
2
t + δθ2x

+k (Φx + ψ + lw)
2

+ k0 (wx − lΦ)
2
]
dx

+
1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) z2 (x, ρ, s, t) dsdρdx. (3.1)

We can prove that the energy is decreasing. More precisely, we have the fol-

lowing result.

Theorem 3.1. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5). Then there

exist two positive constants α and γ such that

E (t) ≤ αE (0) e−γt, t ≥ 0 (3.2)

Lemma 3.2. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5) and assume (1.5)

holds. Then the energy functional, defined by (3.1) satisfies,

d

dt
E (t) ≤ −r0

∫ 1

0

Φ2
tdx− k

∫ 1

0

θ2txdx, (3.3)

with

r0 = µ1 −
∫ τ2

τ1

µ2 (s) ds.

Proof. Multiplying (2.3)1, (2.3)2, (2.3)3, and (2.3)4 by Φt,Ψt,wt and θt, respec-

tively, and integrating over (0, 1), using integration by parts and the boundary

conditions, and adding the results, we obtain

(3.3). �
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Stabilization of a Type III Thermoelastic Bresse System with Distributed Delay-time 11

Lemma 3.3. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5). Then the func-

tional

F1 (t) := ρ2

∫ 1

0

ΨΨtdx (3.4)

satisfies, for `1 > 0 and `2 > 0, the estimate

F
′

1 (t) ≤ ρ2
∫ 1

0

Ψ2
tdx+

(
−b+

β

2`1
+ kd`2

)∫ 1

0

Ψ2
xdx

+
k

2`2

∫ 1

0

(Φx + lw + Ψ)
2
dx+ β`1

∫ 1

0

θ2t dx (3.5)

Proof. Taking the derivative of (3.4), using the third equation in (2.3) and

performing integration by parts, we get

F
′

1 (t) = ρ2

∫ 1

0

(
ΨΨtt + Ψ2

t

)
dx

= ρ2

∫ 1

0

Ψ2
tdx+

∫ 1

0

Ψ (bΨxx − k (Φx + lw + Ψ)− βθtx) dx

= ρ2

∫ 1

0

Ψ2
tdx− b

∫ 1

0

Ψ2
xdx− k

∫ 1

0

Ψ (Φx + lw + Ψ) dx− β
∫ 1

0

Ψθtxdx

Using Young’s and Poincaré’s inequalities, for estimate (3.5)

F
′

1 (t) ≤ ρ2
∫ 1

0

Ψ2
tdx+

(
−b+

β

2`1
+ kd`2

)∫ 1

0

Ψ2
xdx

+
k

2`2

∫ 1

0

(Φx + lw + Ψ)
2
dx+ β`1

∫ 1

0

θ2t dx

�

Lemma 3.4. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5). Then the func-

tional

F2 (t) := ρ1

∫ 1

0

Φt

(
Φ +

∫ x

0

Ψ (y, t) dy

)
dx, (3.7)

satisfies, for any ε > 0, the estimate

F
′

2 (t) ≤ −k
2

∫ 1

0

(Φx + lw + Ψ)
2
dx− lk0

2

∫ 1

0

(wx − lΦ)
2
dx

+ c

(
1 +

1

ε

)∫ 1

0

Φ2
tdx+ ε

∫ 1

0

Ψ2
tdx (3.8)

+ c

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx

Proof. Taking the derivative of (3.7), and using that,

z (x, ρ, s, 0) = f0 (x, ρ, s) in (0, 1)× (0, 1)× (0, τ2)
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12 L. Bouzettouta

and integration by parts, we obtain

F
′
2 (t) = ρ1

∫ 1

0
Φt

∫ x

0
Ψy (y) dydx−

∫ 1

0

(
Φ +

∫ x

0
Ψ (y) dy

)∫ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx

− k
∫ 1

0
(Φx + lw + Ψ)2 dx+ ρ1

∫ 1

0
Φ2
tdx− lk0

∫ 1

0
(wx − lΦ)2 dx

− µ1

∫ 1

0
Φt

(
Φ +

∫ x

0
Ψ (y) dy

)
dx (3.9)

Using Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, for estimate the

terms in the right hand side of (3.9)

ρ1

∫ 1

0

Φt

∫ x

0

Ψy (y) dydx ≤ ε
∫ 1

0

Ψ2
tdx+

c

ε

∫ 1

0

Φ2
tdx

�

Lemma 3.5. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5). Then the func-

tional

F3 (t) = −ρ2ρ3
∫ 1

0

θt

(∫ x

0

Ψt (y, t) dy

)
dx− δρ2

∫ 1

0

θxΨdx (3.10)

satisfies, for any ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0; the estimate

F
′

3 (t) ≤ −ρ2
(
ς1 −

δ

2ε1
− k

2ε2

)∫ 1

0

Ψ2
tdx− ρ3 (β − bε3 − kε4)

∫ 1

0

θ2t dx

+ ρ2δε1

∫ 1

0

θ2xdx+ ρ2kε2

∫ 1

0

θ2txdx (3.11)

+
ρ3b

2ε3

∫ 1

0

Ψ2
xdx+

ρ3C

2ε4

∫ 1

0

Φ2
xdx

Lemma 3.6. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5). Then the func-

tional

F4 (t) = ρ3

∫ 1

0

θθtdx+
k

2

∫ 1

0

θ2xdx+ β

∫ 1

0

Ψxθdx (3.12)

satisfies, for any ε5 > 0; the estimate

F
′

4 (t) ≤
(
ρ3 +

β

2ε5

)∫ 1

0

θ2t dx+ βε5

∫ 1

0

Ψ2
xdx− δ

∫ 1

0

θ2xdx (3.13)

Proof. By differentiating (3.12) we obtain,

F
′

4 (t) = ρ3

∫ 1

0

θ2t dx+ ρ3

∫ 1

0

θθttdx+ kρ3

∫ 1

0

θtxθxdx

+ β

∫ 1

0

Ψtxθdx+ β

∫ 1

0

Ψxθtdx

Using Young’s inequality, and integration by parts for obtain (3.13). �
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Lemma 3.7. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5). Then the func-

tional

F5 (t) :=

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρµ2 (s) z2 (x, ρ, s, t) dsdρdx (3.14)

satisfies the estimate

F
′

5 (t) ≤ −e−τ2
∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx (3.15)

− e−τ2
∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) z2 (x, ρ, s, t) dsdρdx+ µ1

∫ 1

0

∫
Φ2
tdx.

Proof. Differentiating F5 (t), we obtain,

F
′

5 (t) = 2

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρµ2 (s) z (x, ρ, s, t) zt (x, ρ, s, t) dsdρdx

Using the second equation (2.2), we arrive at

F
′

5 (t) = −2

∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρµ2 (s) z (x, ρ, s, t) zρ (x, ρ, s, t) dsdρdx

= −
∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρµ2 (s)
d

dρ
z2 (x, ρ, s, t) dsdρdx.

Integration by parts gives,

F
′

5 (t) = −
∫ 1

0

∫ 1

0

d

dρ

∫ τ2

τ1

µ2 (s)
(
e−sρz2 (x, ρ, s, t)

)
dsdρdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) e−sρz2 (x, ρ, s, t) dsdρdx

=

∫ 1

0

∫ τ2

τ1

µ2 (s)
(
z2 (x, 0, s, t)− e−sρz2 (x, 1, s, t)

)
dsdρdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) e−sρz2 (x, ρ, s, t) dsdρ.

Therefore,

F
′

5 (t) ≤ −e−τ2
∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx+

(∫ τ2

τ1

µ2 (s) ds

)∫ 1

0

Φ2
tdx

− e−τ2
∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) z2 (x, ρ, s, t) dsdρdx.

We, then, obtain (3.15) by virtue of (1.5). �

Lemma 3.8. Let (Φ,Ψ,W, θ, z) be the solution of (2.3)–(2.5). Then the func-

tional,

F6 (t) := −ρ1
∫ 1

0

Φt (wx − lΦ) dx− ρ1
∫ 1

0

wt (Φx + lw + Ψ) dx (3.16)
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14 L. Bouzettouta

satisfies the estimate for any ς2 > 0,

F
′

6 (t) ≤ −
(
lk0 −

m0

2

)∫ 1

0

(wx − lΦ)
2
dx− lρ1

∫ 1

0

w2
t dx+ lρ1

∫ 1

0

Φ2
tdx

+ lk

∫ 1

0

(Φx + wl + Ψ)
2
dx+ ς2

∫ 1

0

Ψ2
tdx

+
1

2

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx. (3.17)

with m0 =
(∫ τ2

τ1
µ2 (s) ds

)
.

Proof. By differentiating (3.16) we obtain,

F
′

6 (t) ≤ −lk0
∫ 1

0

(wx − lΦ)
2
dx− lρ1

∫ 1

0

w2
t dx+ lρ1

∫ 1

0

Φ2
tdx

+ lk

∫ 1

0

(Φx + wl + Ψ) dx+ ς2

∫ 1

0

Ψ2
tdx

+

∫ 1

0

(∫ τ2

τ1

µ2 (s)

)
(wx − lΦ) dx.

Estimate (2.3) follows thanks to Cauchy-Schwarz inequality. �

Lemma 3.9. Let (Φ,Ψ,w, θ, z) be the solution of (2.3)–(2.5). Then the func-

tional

F7 (t) = −ρ1
∫ 1

0

(ΦΦt + wwt) dx (3.18)

satisfies the estimate

F
′

7 (t) ≤ −ρ1
∫ 1

0

Φ2
tdx− ρ1

∫ 1

0

w2
t dx+ c1

∫ 1

0

Ψ2
x + k0

∫ 1

0

(wx − lΦ)
2
dx

+ c2

∫ 1

0

(Φx + lw+Ψ)
2
dx+

1

2

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx (3.19)

with m0 =
(∫ τ2

τ1
µ2 (s) ds

)
.

Proof. By differentiating (3.18) we obtain,

F7 (t) = −
∫ 1

0
Φ

(
k (Φx + lw + Ψ)x + lk0 (wx − lΦ)− µ0Φt −

∫ τ2

τ1

µ(s)z (x, 1, t, s) ds

)
dx

−
∫ 1

0
Φ2
tdx−

∫ 1

0
w
(
k0 (wx − lΦ)x − kl (Φx + lw + Ψ)

)
dx−

∫ 1

0
w2
t .

Using Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, for estimate the

terms in the right hand side of (3.19). �

Lemma 3.10. We have

c1E(t) ≤ L(t) ≤ c2E(t),∀t ≥ 0

for two positive constants c1 and c2.
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Proof. For N,Ni > 0, let

L (t) := NE (t) +

i=7∑
i=1

NiFi (t) (3.20)

L
′
(t) ≤ N

(
−r0

∫ 1

0
Φ2
tdx− k

∫ 1

0
θ2
txdx

)
+N1

(
−b+

β

2`1
+ kd`2

)∫ 1

0
Ψ2
xdx

+N1

[
ρ2

∫ 1

0
Ψ2
tdx+ β`1

∫ 1

0
θ2
t dx+

k

2`2

∫ 1

0
(Φx + lw + Ψ)2 dx

]
+N2

(
−
k

2

∫ 1

0
(Φx + lw + Ψ)2 dx−

lk0

2

∫ 1

0
(wx − lΦ)2 dx

)
+N2

(
c

(
1 +

1

ε

)∫ 1

0
Φ2
tdx+ ε

∫ 1

0
Ψ2
tdx+ c

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx

)
+N3

(
−ρ2

(
ς1 −

δ

2ε1
−

k

2ε2

)∫ 1

0
Ψ2
tdx− ρ3 (β − bε3 − kε4)

∫ 1

0
θ2
t dx

)
+N3

(
ρ2δε1

∫ 1

0
θ2
xdx+ ρ2kε2

∫ 1

0
θ2
txdx+

ρ3b

2ε3

∫ 1

0
Ψ2
xdx+

ρ3C

2ε4

∫ 1

0
Φ2
xdx

)
+N4

((
ρ3 +

β

2ε5

)∫ 1

0
θ2
t dx+ βε5

∫ 1

0
Ψ2
xdx− δ

∫ 1

0
θ2
xdx

)
+N5

(
−e−τ2

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx

)
+N5

(
−e−τ2

∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) z2 (x, ρ, s, t) dsdρdx+ µ1

∫ 1

0
Φ2
tdx

)
+N6

(
−
(
lk0 −

m0

2

)∫ 1

0
(wx − lΦ)2 dx− lρ1

∫ 1

0
w2
t dx+ lρ1

∫ 1

0
Φ2
tdx

)
+N6

(
+lk

∫ 1

0
(Φx + wl + Ψ)2 dx+ ς2

∫ 1

0
Ψ2
tdx+

1

2

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx

)
+N7

(
−ρ1

∫ 1

0
Φ2
tdx− ρ1

∫ 1

0
w2
t dx+ c1

∫ 1

0
Ψ2
x + k0

∫ 1

0
(wx − lΦ)2 dx

)
+N7

(
c2

∫ 1

0
(Φx + lw+Ψ)2 dx+

1

2

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx

)

then

L
′
(t) ≤

[
−r0N + c

(
1 +

1

ε

)
N2 +

ρ3c

2ε4
N3 + µ1N5 + lρ1N6 − ρ1N7

] ∫ 1

0

Φ2
tdx

+

[
ρ2N1 + εN2 − ρ2

(
ς1 −

δ

2ε1
− k

2ε2

)
N3 + ς2N6

] ∫ 1

0

Ψ2
tdx

+

[(
−b+

β

2`1
+ kd`2

)
N1 +

ρ3b

2ε3
N3 + βε5N4 + c1N7

] ∫ 1

0

Ψ2
xdx

+

[
kl

2ε
N1 − lρ1N6 − ρ1N7

] ∫ 1

0

w2
t dx
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+

[
β`1N1 − ρ3 (β − bε3 − kε4)N3 +

(
ρ3 +

β

2ε5

)
N4

] ∫ 1

0

θ2t dx

+ [−δN4 + ρ2δε1N3]

∫ 1

0

θ2xdx

+ [−kN + ρ2kε2N3]

∫ 1

0

θ2txdx

+

[
k

2`2
N1 −

k

2
N2 + lkN6 + c2N7

] ∫ 1

0

(Φx + lw + Ψ)
2
dx

+

[
− lk0

2
N2 + k0N7 −

(
lk0 −

m0

2

)
N6

] ∫ 1

0

(wx − lΦ)
2
dx

+

[
−e−τ2N5 + cN2 +

N6

2
+
N7

2

] ∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx

+
[
−e−τ2N5

] ∫ 1

0

∫ 1

0

∫ τ2

τ1

sµ2 (s) z2 (x, ρ, s, t) dsdρdx.

At this point we choose εi i = 1, ..., 5 small enough, and N7 large enough so

that

max{ k
2`2

N1 −
k

2
N2 + lkN6 + c2N7,−

lk0
2
N2 + k0N7

−
(
lk0 −

m0

2

)
N6,−e−τ2N5 + cN2 +

N6

2
+
N7

2
0} < 0 , (3.21)

−r0N + c

(
1 +

1

ε

)
N2 +

ρ3c

2ε4
N3 + µ1N5 + lρ1N6 − ρ1N7 < 0 .

Once N7 is fixed, we then choose N1 large enough such that(
−b+

β

2`1
+ kd`2

)
N1 +

ρ3b

2ε3
N3 + βε5N4 + c1N7 < 0,

we choose N3,N4,N6 large enough such that(
−b+

β

2`1
+ kd`2

)
N1 +

ρ3b

2ε3
N3 + βε5N4 + c1N7 < 0,

kl

2ε
N1 − lρ1N6 − ρ1N7 < 0,

−e−τ2N5 + cN2 +
N6

2
+
N7

2
< 0,

max{−δN4 + ρ2δε1N3, − kN + ρ2kε2N3} < 0,

finally, we choose N large enough such that,

−r0N + c

(
1 +

1

ε

)
N2 +

ρ3c

2ε4
N3 + µ1N5 + lρ1N6 − ρ1N7 < 0.
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Exploiting Young’s, Poincaré’s and Cauchy-Schwarz inequalities, and the fact
that e−sρ ≤ 1 for all ρ ∈ [0, 1], we obtain

L(t)| ≤ c
∫ 1

0

[
Φ2
t + Ψ2

t + Ψ2
x + w2

t + θ2
t + θ2

x + θ2
tx, (Φx + lw + Ψ)2 + (wx − lΦ)2

]
dx

+

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ(s)|z2(x, ρ, s, t)dsdρdx

≤ cE(t).

Consequently, |L(t)−NE(t)| ≤ cE(t) which yields

(N − c)E(t) ≤ L(t) ≤ (N + c)E(t), (3.22)

choosing N such that N − c > 0

L′ (t) ≤ −α0E(t), ∀t ≥ 0,

for some α0 > 0. A combination of lemma(3.10) gives

L′ (t) ≤ −k1L (t) , ∀t ≥ 0, (3.23)

where k1 = α0

c2
.

Finally, a simple integration of (3.23) we obtain (3.2), which complete the

proof. �
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