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1. Introduction

Harmonic schlicht functions (HSF) have vastly been utilized not only in ap-

plied mathematics, but also in other numerous fields such as physics, aerody-

namics, electronics, operation research, engineering and medicine. The theory

of HSF is categorized under the most interesting topic in Geometric Function

Theory (GFT), which is a generalization of the regular schlicht functions (RSF).

Since then, the study of geometrical properties of HSF is key in ongoing seek

in GFT.

The first study on the theory of HSF was by Clunie and Sheil-Small [8] in

1984. In their seminal work, they studied each harmonic function ϕ on a sim-

ply connected domain which can be expressed in the form ϕ = µ + ν. The

function µ is called the regular part while ν is the co-regular part of ϕ. A

necessary and sufficient condition [8] for ϕ to be locally univalent and sense

preserving in the open unit disk D = {z ∈ C : |z| < 1} is |µ′(z)| > |ν′(z)| in D.

Moreover, they introduced the class H consisting of HSF ϕ = µ+ ν which are

sense-preserving in D, and normalized by the conditions ϕ(0) = ϕ′(0)− 1 = 0,

where the regular part µ and the co-regular part ν are given as follows:

µ(z) = z +

∞∑
ι=2

γιz
ι, ν(z) =

∞∑
ι=1

ηιz
ι, |η1| < 1. (1.1)

Obviously, class H reduces to class SA, which includes normalized RSF ϕ defined

in D, if the co-regular part ν is zero. As a result, the functions ϕ(z), in this

case, can be expressed as:

ϕ(z) = z +

∞∑
ι=2

γιz
ι. (1.2)

In RSF theory, there are assorted studies on convexity and starlikeness and

other properties of such functions. Further, some analogous studies were done

on harmonic functions investigating convexity, starlikeness, and others. Clunie

and Sheil-Small [8] were the first to introduce a subclass of H consisting of

harmonic convex functions, symbolized by HCV. In addition, they investigated

geometric properties of class H such as coefficient bounds, growth and distor-

tion bounds and covering theorems. Then, in 1990, Sheil-Small [26] considered

a subclass of H involving harmonic starlike functions, symbolized by HST.

In 1975, Silverman [28] presented the class ST of RSF with negative coeffi-

cients and opened new trends for studies. The subclasses of class ST have been

explored by numerous researchers for different objectives with various proper-

ties. Subclasses analogous to these results have not been explored on HSF in

the literature. In 1998, Silverman [29] attempted to fill this gap by considering

the class HT of HSF with negative coefficients rather than positive coefficients.
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Denote by HT the subclass of H including functions ϕ = µ+ν, such that µ and

ν are of the formula

µ(z) = z −
∞∑
ι=2

|γι| zι, ν(z) = −
∞∑
ι=1

|ηι| zι, |η1| < 1. (1.3)

Since then, various subclasses of HSF and theirs properties have been investi-

gated by numerous complex analysts. One may refer to Jahangiri and Ahuja

[17, 18], among many others.

Convolution (Hadamard product) is a significant tool for identifying diverse

subclasses and operators. In [8], Clunie and Sheil-Small introduced the con-

cept of convolution of two harmonic univalent functions as follows:

for two functions ϕκ ∈ H is given by ϕκ(z) = µκ(z)+νκ(z) = z+
∑∞
ι=2 γι,κz

ι+∑∞
ι=1 ηι,κ, z

ι, κ = 1, 2, |η1,1| < 1, |η1,2| < 1, z ∈ D, the convolution is denoted

by ϕ1 ∗ ϕ2 and defined as:

(ϕ1 ∗ ϕ2)(z) = z +

∞∑
ι=2

γι,1 γι,2 z
ι +

∞∑
ι=1

ηι,1 ηι,2 zι. (1.4)

Denote by A the class of normalized regular functions ϕ in D. The first in-

tegral operator defined on A was proposed by Alexander [2]. Later, in 1965,

Libera [19] considered another integral operator and discussed specific prop-

erties of starlike functions under this operator. These works stimulated many

researchers for studying operators, such as Bernardi [5] in 1969, Miller, Mo-

canu and Reade [21] in 1974. The following year, Ruscheweyh [25] presented

the differential operator Dlϕ(z), for ϕ ∈ A, by utilizing convolution concept as

follows: for a function ϕ ∈ A and l > −1, the Ruscheweyh differential operator

Dlϕ(z) is defined by Dl : A→ A,

Dlϕ(z) =
z

(1− z)l+1
∗ ϕ(z) = z +

∞∑
ι=2

(l + 1)ι−1

(ι− 1)!
γιz

ι (1.5)

such that D0ϕ(z) = ϕ(z) and D1ϕ(z) = zϕ′(z), z ∈ D.

Corresponding to differential operator Dlϕ(z), Noor [22] in 1999 imposed an

integral operator, which is denoted by Ilϕ(z) and called the Noor Integral op-

erator of l−th order of ϕ, as follows:

for a function ϕ ∈ A and l ∈ N0, the Noor integral operator Ilϕ(z) is defined
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by I l : A→ A,

Ilϕ(z) = ϕ
(−1)
l (z) ∗ ϕ(z) =

[
z

(1− z)l+1

]−1

∗ ϕ(z)

= z +

∞∑
ι=2

ι!

(l + 1)ι−1
γιz

ι,

(1.6)

such that

ϕl(z) ∗ ϕ(−1)
l (z) =

z

(1− z)2
. (1.7)

Note that I0ϕ(z) = zϕ′(z) and I1ϕ(z) = ϕ(z), z ∈ D.

Afterwards, numerous authors have introduced and studied several Noor-type

integral operators by employing hypergeometric functions and theirs general-

izations and extension. Some of the previous studies will be mentioned here.

In 2006, Noor [23] once again imposed Noor integral operator Il(%, ς, τ)ϕ(z)

on A by utilizing the well known Gauss hypergeometric function as follows:

Il(%, ς; τ)ϕ(z) = [zF (%, ς; τ ; z)]
(−1) ∗ ϕ(z)

= z +

∞∑
ι=2

(τ)ι−1(l + 1)ι−1

(%)ι−1(ς)ι−1
γnz

ι, (1.8)

such that

[zF (%, ς; τ ; z)] ∗ [zF (%, ς; τ ; z)]
(−1)

=
z

(1− z)l+1
, (z ∈ D). (1.9)

and the function F (%, ς; τ ; z) is the Gauss hypergeometric function defined as

follows: (see, [9])

For %, ς and τ be real or complex numbers with τ other than 0,−1,−2, ...,

and

F (%, ς; τ ; z) =

∞∑
ι=0

(%)ι(ς)ι
(τ)ι(1)ι

zι = 1 +
%ς

τ
z +

%(%+ 1)ς(ς + 1)

τ(τ + 1)

z2

2!
+ .... (1.10)

where, (σ)ι is the Pochhammer symbol given by

(σ)ι :=
Γ(σ + ι)

Γ(σ)
=

{
1, (ι = 0),

σ(σ + 1)(σ + 2)...(σ + ι− 1), (ι ∈ N).
(1.11)

In 2015, Ibrahim et al. [16] defined the following generalized Noor-type integral

operator Qξ`;κ,ε(τ ; %, ς; z;m)ϕ(z) on class A by making use of the extension
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Gauss hypergeometric functions:

Qξ`;κ,ε(τ ; %, ς; z;m)ϕ(z)

= z +

∞∑
ι=2

(τ)ι−1

(%)ι−1(ς)ι−1

ΩB(ς + ι− 1, τ − ς +m)

Bα,β;κ,ε
` (ς + ι− 1, τ − ς +m)

(ξ + 1)ι−1 γι z
ι, (1.12)

where

Ω =
Bα,β;κ,ε
` (ς, τ − ς +m)

B(ς, τ − ς +m)
, (1.13)

a further extension for the extended F`;κ,ε(%, ς; τ ; z;m) Gauss hypergeometric

functions is given by (see [1])

F`;κ,ε(%, ς; τ ; z;m) :=
∞∑
ι=0

(%)ι(ς)ι
(τ)ι

Bα,β;κ,ε
` (ς + ι, τ − ς +m)

B(ς + ι, τ − ς +m)

zι

ι!
, (1.14)

(
0 ≤ `, 0 < <(κ), 0 < <(ε), m < <(ς) < <(τ), |z| < 1

)
,

B(ω, ν) is the familiar Beta function defined by (see, [36], p.8)

B(ω, ν) =


∫ 1

0
ρω−1(1− ρ)ν−1dρ (0 < <(ρ); 0 < <(ν))

Γ(ω) Γ(ν)
Γ(ω+ν) (ω, ν ∈ C\Z−0 )

(1.15)

and the extended Beta function B
(α,β;κ,ε)
` (ω, ν), which is defined by (see, [38])

B
(α,β;κ,ε)
` (ω, ν) =

∫ 1

0

ρω−1(1− ρ)ν−1F

(
α;β;− `

ρκ(1− ρ)ε

)
dρ, (1.16)(

0 ≤ κ, 0 ≤ ε, 0 ≤ <(`), 0 < min{<(α),<(β)}, −<(κα) < <(ω),−<(εα) < <(ν)
)
.

Recently, Al-Janaby et al. [3] defined an extended generalized integral oper-

ator of Noor-type on the class of the harmonic multivalent functions by using

Fox-Wright generalized hypergeometric function as follows:

GNa,b
p [℘1]ϕ(z) = GNa,b

p [℘1]p[µ1]µ(z) +GNa,b
p [℘1]p[µ1]ν(z), (1.17)

where,

GNa,b
p [℘1]µ(z) = zp +

∞∑
ι=p+1

∆
b∏
l=1

Γ(χl + (ι− p)βl)
a∏
l=1

Γ(℘l + (ι− p)αl)
(ξ + p)ι−p γι z

ι, (1.18)

and

GNa,b
p [℘1]ν(z) = zp +

∞∑
ι=p

∆
b∏
l=1

Γ(χl + (ι− p)βl)
a∏
l=1

Γ(℘l + (ι− p)αl)
(ξ + p)ι−p ηι z

ι. (1.19)
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On the other hand, the study of Hurwitz-Lerch Zeta function plays a signifi-

cant role in GFT. Several authors have introduced numerous linear convolution

operators on various regular function classes by utilizing Hurwitz-Lerch Zeta

function and various of its generalizations. One may refer to some of theirs

contributions: Ghanim [13], Ghanim and Al-Janaby [14], Ghanim and Darus

[15], Rǎducanu and Srivastava [24], Srivastava and Attiya [35], Srivastava et.al.

[41, 42].

In terms of the Hurwitz-Lerch Zeta function Θ(z, υ, ω) defined by (see, for

example, [34, p. 121 et seq.], [33] and [37, p. 194 et seq.])

Θ(z, υ, ω) :=

∞∑
ι=0

zι

(ι+ ω)υ
(1.20)

(ω ∈ C \ Z−0 ; υ ∈ C when |z| < 1; 1 < <(υ) when |z| = 1).

The following new family of the ξ-Generalized Hurwitz-Lerch Zeta function

(GHLZF) was discussed and studied systematically by Srivastava [39]:

Θ
(%1,··· ,%p,ς1,··· ,ςq)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω;κ, ξ)

=
1

ξ Γ(υ)

∞∑
ι=0

p∏
j=1

(ξj)ι%j

(ω + ι)υ ·
q∏
j=1

(δj)ιςj

H2,0
0,2

[
(ω + ι)κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] zι

ι!

(1.21)

(
0 < min{<(ω),<(υ)}; 0 < <(κ); 0 < ξ

)
,

where(
ξj ∈ C (j = 1, · · · , p); δj ∈ C \ Z−0 (j = 1, · · · , q); 0 < %j (j = 1, · · · , p);

0 < ςj (j = 1, · · · , q); and 0 5 1 +

q∑
j=1

ςj −
p∑
j=1

%j

)
and the equality in the convergence condition holds true for suitably bounded

values of |z| given by

|z| < ∇ :=

 p∏
j=1

%
−%j
j

 ·
 q∏
j=1

ς
ςj
j

 .
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Definition 1.1. The H-function involved in the right-hand side of (1.21) is the

well-known Fox’s H-function [[20], Definition 1.1] (see also [32],[31]) defined by

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣ (ω1, A1), · · · , (ωp, Ap)

(κ1, B1), · · · , (κq, Bq)

]

=
1

2πi

∫
L

Ξ(υ)z−υ dυ
(
z ∈ C \ {0}; | arg(z)| < π

)
,

(1.22)

an empty product is interpreted as 1, m,n, p and q are integers such that

1 5 m 5 q and 0 5 n 5 p,

0 < Aj (j = 1, · · · , p) and 0 < Bj (j = 1, · · · , q),

ωj ∈ C (j = 1, · · · , p) and κj ∈ C (j = 1, · · · , q)

and L is a suitable Mellin-Barnes type contour separating the poles of the

gamma functions

{Γ(κj +Bjυ)}mj=1

from the poles of the gamma functions

{Γ(1− ωj +Ajυ)}nj=1.

It is worthy of mention here that, by using the fact that [[39], p. 1496,

Remark 7]

lim
κ→0

H2,0
0,2

(ω + ι)κ
1
ξ

∣∣∣∣
(υ, 1),

(
0, 1

ξ

)  = ξ Γ(υ) (0 < ξ),

the equation (1.21) reduces to the following form:

Θ
(%1,··· ,%p,ς1,··· ,ςq)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω; 0, ξ) := Θ

(%1,··· ,%p,ς1,··· ,ςq)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω)

=

∞∑
ι=0

p∏
j=1

(ξj)ι%j

(ω + ι)υ ·
q∏
j=1

(δj)ιςj

zι

ι!
.

(1.23)

Definition 1.2. The function Θ
(%1,··· ,%p,ς1,··· ,ςq)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω) involved in (1.23) is

the multiparameter extension and generalization of the Hurwitz-Lerch Zeta

function Θ(z, υ, ω) introduced by Srivastava et al. [[40], p. 503, Eq. (6.2)]

defined by

Θ
(%1,··· ,%p,ς1,··· ,ςq)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω) =

∞∑
ι=0

p∏
j=1

(ξj)ι%j

(ω + ι)υ ·
q∏
j=1

(δj)ιςj

zι

ι!
, (1.24)
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p, q ∈ N0; ξj ∈ C (j = 1, · · · , p); ω, δj ∈ C \ Z−0 (j = 1, · · · , q);

%j , ςk ∈ R+ (j = 1, · · · , p; k = 1, · · · , q);

−1 < ∆ when υ, z ∈ C;

∆ = −1 and υ ∈ C when |z| < ∇∗;

∆ = −1 and
1

2
< <(Ξ) when |z| = ∇∗

)
with

∇∗ :=

 p∏
j=1

%
−%j
j

 ·
 q∏
j=1

ς
ςj
j

 ,

∆ :=

q∑
j=1

ςj −
p∑
j=1

%j and Ξ := s+

q∑
j=1

δj −
p∑
j=1

ξj +
p− q

2
.

Consequently, by the above works on Noor integral operator and its general-

izations. In Section 2, we continue our investigations and studies in the theory

of operators. Here we’ll introduce a new extended generalized Noor-type in-

tegral operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) on H, which is defined by employing

GHLZF.

In earlier investigations, various subclasses of H were proposed by researchers,

such as Aydog̃an et al. [4], Duman et al. [10], Dziok et al. and [11] El-Ashwah

[12]. From another side, several authors introduced a sequence of classes of

HSF. This line of study are presented here.

In 2003, Yalcin et al. [43] established a subclass H1(β) = HP (β) consisting of

functions ϕ ∈ H which achieve the following first-order differential inequality:

<{µ′(z) + ν′(z)} > β, (0 ≤ β < 1). (1.25)

They also studied a sufficient condition
∑∞
ι=1 ι (|γι|+ |ηι|) ≤ 2 − β, where

γ1 = 1, for functions to be in the subclass H1(β). This condition is necessary

when the coefficients are negative. Moreover, they investigated distortion the-

orems and extreme points.

In 2004, Yalcin and Öztürk [44] considered a subclass H2(α) = HP (α) compos-

ing of functions ϕ ∈ H which achieve the second-order differential inequality

as:

<{αz (µ′′(z) + ν′′(z)) + (µ′(z) + ν′(z))} > 0, (0 ≤ α). (1.26)

In addition, they discussed a sufficient condition
∑∞
ι=1 ι (1 + α(ι− 1)) (|γι|+ |ηι|)

≤ 2, where γ1 = 1, for functions involving the aforementioned subclass H2(α),
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which is shown to be necessary when the coefficients are negative. They ana-

lyzed distortion theorems and extreme points as well.

In 2010, based on the study of Yalcin and Öztürk [44], Chandrashekar et al.

[7] introduced a subclass H2(α, β) = HP (α, β) of class H, which achieves the

following condition:

<{αz (µ′′(z) + ν′′(z)) + (µ′(z) + ν′(z))} > β, (0 ≤ α, 0 ≤ β < 1). (1.27)

They also investigated a sufficient condition
∑∞
ι=1 ι (1 + α(ι− 1)) (|γι|+ |ηι|) ≤

2− β, where γ1 = 1, for functions including to above subclass H2(α, β), which

is shown to be necessary when the coefficients are negative.

In 2015, Sokól et al. [30] imposed a subclass H3(α, β) = RH(α, β) of class

H, which achieves the third-order differential inequality as follows:

<{αz2 (µ′′′(z) + ν′′′(z)) + 3αz (µ′′(z) + ν′′(z)) + (µ′(z) + ν′(z))} > β, (1.28)

(0 ≤ α, 0 ≤ β < 1).

They examined a sufficient condition
∑∞
ι=1 ι

(
1 + α(ι2 − 1)

)
(|γι|+ |ηι|) ≤ 2−β,

where γ1 = 1, for functions belonging to above subclass H3(α, β), which is

shown to be necessary when the coefficients are negative. Furthermore, distor-

tion bounds, extreme points, convolution and convex combinations are studied.

Motivated by previous works, Section 3 imposes a new subclass GH4(α, β)

of H defined by utilizing a new extended Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) generalized

Noor-type integral operator which is considered in Section 2 satisfying the forth-

order differential inequality. Moreover, coefficient bounds, distortion bounds,

extreme points, convolution, convex combinations, and closure under an inte-

gral operator are given.

2. Proposed Operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z)

In this section, by employing GHLZF given in (1.21), we define a new ex-

tended generalized Noor-type integral operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) on H.

By setting %1 = · · · , %p = ς1 = · · · = ςq = 1, and ξj ∈ C \ Z−0 (j = 1, · · · , p) in

(1.21), we yield that

Θ
(1,··· ,1,1,··· ,1)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω;κ, ξ)

= 1
ξ Γ(υ)

∑∞
ι=0

p∏
j=1

(ξj)ι

(ω+ι)υ·
q∏
j=1

(δj)ι

H2,0
0,2

[
(ω + ι)κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] zι

ι!
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= 1
ξ Γ(υ)

∑∞
ι=1

p∏
j=1

(ξj)ι−1

(ω+(ι−1))υ·
q∏
j=1

(δj)ι−1

H2,0
0,2

[
(ω + (ι− 1))κ

1
ξ

∣∣∣∣ (υ, 1),
(
0, 1

ξ

) ] zι−1

(ι−1)!
.

Next, we consider a new function
(
zΘ

(1,··· ,1,1,··· ,1)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω;κ, ξ)

)−1

as:(
zΘ

(1,··· ,1,1,··· ,1)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω;κ, ξ)

)−1

= ξ Γ(υ)

∞∑
ι=1

(ω + (ι− 1))υ ·
q∏
j=1

(δj)ι−1 (ζ + 1)ι−1

p∏
j=1

(ξj)ι−1 H2,0
0,2

[
(ω + (ι− 1))κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] zι,
(2.1)

such that,(
zΘ

(1,··· ,1,1,··· ,1)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω;κ, ξ)

)
∗
(
zΘ

(1,··· ,1,1,··· ,1)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω;κ, ξ)

)−1

= z
(1−z)ζ+1 = z +

∞∑
ι=2

(ζ + 1)ι−1

(ι− 1)!
zι, (2.2)

where −1 < ζ.

Thus, from (2.1), we impose the following operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) : A −→
A:

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) =
Λ

ξΓ(υ)

(
zΘ

(1,··· ,1,1,··· ,1)
ξ1,··· ,ξp;δ1,··· ,δq (z, υ, ω;κ, ξ)

)−1

∗ ϕ(z)(2.3)

where Λ is defined by

Λ =

H2,0
0,2

[
(ω)κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ]
(ω)υ

.
(2.4)

The calculation gives the generalized Noor-type integral operator as:

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z)

= z +

∞∑
ι=2

Λ (ω + (ι− 1))υ
q∏
j=1

(δj)ι−1 (ζ + 1)ι−1

p∏
j=1

(ξj)ι−1 H2,0
0,2

[
(ω + (ι− 1))κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] γι z
ι. (2.5)

Remark 2.1. For some suitably chosen parameters κ, ξ, υ, ω, q, p, δj and ξj ,

the operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) defined in (2.5) can be reduced to various

operators previously mentioned. Thus, we have the following special cases:
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(1) By taking κ = 0, q = 1, p = 2, ω = υ = δ1 = ξ1 = 1, ξ2 = 2 and ζ = l

in (2.5), we obtain the Ruscheweyh’s differential operator defined by

(1.5).

(2) For κ = 0, q = 1, p = 2, ω = υ = δ1 = 1, ξ1 = l + 1 and ξ2 = ζ + 1 the

operator (2.5) reduces to Noor integral operator given in (1.6).

(3) For κ = 0, q = 1, p = 2, ω = υ = 1, δ2 = τ , ξ1 = %, ξ2 = ς and ζ = l

the operator (2.5) provides Noor-type integral operator defined in (1.8).

Therefore, the generalized Noor-type integral operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z)

when extended to HSF ϕ = µ+ ν̄ is defined by

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) = Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν(z),(2.6)

where

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ(z)

=z +

∞∑
ι=2

Λ (ω + (ι− 1))υ
q∏
j=1

(δj)ι−1 (ζ + 1)ι−1

p∏
j=1

(ξj)ι−1 H2,0
0,2

[
(ω + (ι− 1))κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] γι z
ι, (2.7)

and

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν(z)

=

∞∑
ι=1

Λ (ω + (ι− 1))υ
q∏
j=1

(δj)ι−1 (ζ + 1)ι−1

p∏
j=1

(ξj)ι−1 H2,0
0,2

[
(ω + (ι− 1))κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] ηι z
ι. (2.8)

3. Geometric outcomes

This section is composed of two subsections. New subclass GH4(α, β) of

HSF associated with a new extended generalized Noor-type integral operator

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) given in (2.6) is introduced and discussed. This study

aims to determine the upper bounds for the coefficients of functions included in

this considered subclass. Moreover, several geometric properties are discussed.

3.1. Subclass GH4(α, β). This subsection presents subclasses GH4(α, β) and

GHT4(α, β) of HSF with positive and negative coefficients, respectively, which

include a new integral operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)ϕ (z) written in (2.6) and

achieves the forth-order differential inequity.
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Definition 3.1. A function ϕ ∈ H is said to be in subclass GH4(α, β) if it

satisfies the following inequality:

<{αz3
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′′(z)
)

+ 6αz2
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′(z)
)

+ 7αz
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′(z)
)

+
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′(z)
)
} > β,

(3.1)

where the extended generalized Noor-type integral operator Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ(z)

and Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν(z) are given in (2.7) and (2.8), respectively, 0 ≤
α, 0 ≤ β < 1, and z ∈ D.

Also let GHT4(α, β) = GH4(α, β)
⋂

HT.

Remark 3.2. We note that

(1) For κ = α = 0, p = 2, q = ξ = υ = ω = δ1 = 1, ξ1 = ζ + 1, and ξ2 = 2

in (2.5), the subclass GH4(α, β) reduces to the earlier subclass H1(β)

introduced in (1.25).

(2) For κ = 0, p = 2, q = ξ = υ = ω = δ1 = 1, ξ1 = ζ + 1, and ξ2 = 2

in (2.5), the subclass GH4(α, β) = H4(α, β), where H4(α, β) represents

the subclass of functions ϕ = µ+ ν̄ be of the form (1.1) satisfying the

inequality

<{αz3 (µ′′′′(z) + ν′′′′(z)) + 6αz2 (µ′′′(z) + ν′′′(z))

+7αz (µ′′(z) + ν′′(z)) + (µ′(z) + ν′(z))} > β, (3.2)

where 0 ≤ α, and 0 ≤ β < 1. Moreover, let HT4(α, β) = H4(α, β)
⋂

HT.

3.2. Some Properties of GH4(α, β). In this subsection, a basic result is

gained by involving coefficient condition for HSF with positive coefficients in

GH4(α, β) and showing the prominence of this condition for negative coeffi-

cients in GHT4(α, β). Results related to functions included in GHT4(α, β) are

also obtained, such as growth bounds, extreme points, convolution, convex

combinations, and closure under an integral operator.

3.2.1. Coefficient Condition. A sufficient coefficient condition for harmonic schlicht

functions in GH4(α, β) is provided in the first theorem.
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Theorem 3.3. Let ϕ = µ+ ν̄ be of the form (1.1). If

∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)]|γι|+
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)]|ηι| ≤ 1− β, (3.3)

or

∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)](|γι|+ |ηι|) ≤ 2− β, (3.4)

where

Pι−1 =

Λ (ω + (ι− 1))υ
q∏
j=1

(δj)ι−1 (ζ + 1)ι−1

p∏
j=1

(ξj)ι−1 H2,0
0,2

[
(ω + (ι− 1))κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] , (3.5)

γ1 = 1, 0 ≤ α, and 0 ≤ β < 1, then ϕ is harmonic schlicht, sense-preserving

in D, and ϕ ∈ GH4(α, β).

Proof. First, ϕ is shown to be schlicht in D. Suppose z1, z2 ∈ D such that

z1 6= z2, then∣∣∣∣ϕ(z1)− ϕ(z2)

µ(z1)− µ(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ ν(z1)− ν(z2)

µ(z1)− µ(z2)

∣∣∣∣
= 1−

∣∣∣∣ ∑∞
ι=1 ηι(z

ι
1 − zι2)

(z1 − z2)−
∑∞
ι=2 γι(z

ι
1 − zι2)

∣∣∣∣ > 1−
∑∞
ι=1 ι|ηι|

1−
∑∞
ι=2 ι|γι|

≥ 1−
∑∞
ι=1 Pι−1

ι[1+α(ι3−1)]
1−β |ηι|

1−
∑∞
ι=2 Pι−1

ι[1+α(ι3−1)]
1−β |γι|

≥ 0.

(3.6)

Hence |ϕ(z1)− ϕ(z2)| > 0 and so ϕ is schlicht in D.

To show that ϕ is locally schlicht and sense-preserving in D. It suffices to

show that |µ′(z)| > |ν′(z)|. By using ng the condition (3.3), we have

|µ′(z)| ≥ 1−
∞∑
ι=2

ι|γι||z|ι−1 > 1−
∞∑
ι=2

ι|γι| ≥ 1− β −
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)]|γι|

≥
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)]|ηι| >
∞∑
ι=1

ι|ηι||z|ι−1 = |ν′(z)|.

(3.7)
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Utilizing the fact that <(w) ≥ β if and only if |1− β + w| ≥ |1 + β − w|, it is

sufficient to obtain∣∣∣(1− β) + αz3
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′′(z)
)

+ 6αz2
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′(z)
)

+ 7αz
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′(z)
)

+
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′(z)
) ∣∣∣

−
∣∣∣(1 + β)− αz3

(
Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′′(z)
)

− 6αz2
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′(z)
)

− 7αz
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′(z)
)

−
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′(z)
) ∣∣∣ > 0

(3.8)

in proving ϕ ∈ GH4(α, β). Substituting for µ(z) and ν(z) in (3.8) yields

∣∣∣∣∣(1− β) + 1 +

∞∑
ι=2

Pι−1 ι[1 + α(ι
3 − 1)]γιz

ι−1
+

∞∑
ι=1

Pι−1 ι[1 + α(ι
3 − 1)]ηιz

ι−1

∣∣∣∣∣
−

∣∣∣∣∣(1 + β)− 1−
∞∑
ι=2

Pι−1 ι[1 + α(ι
3 − 1)]γιz

ι−1 −
∞∑
ι=1

Pι−1 ι[1 + α(ι
3 − 1)]ηιz

ι−1

∣∣∣∣∣
≥ 2

[
(1− β)−

[ ∞∑
ι=2

Pι−1 ι[1 + α(ι
3 − 1)]|γι||z|ι−1

+

∞∑
ι=1

Pι−1 ι[1 + α(ι
3 − 1)]|ηι||z|ι−1

]]

≥ 2

[
(1− β)− |z|

[ ∞∑
ι=2

Pι−1 ι[1 + α(ι
3 − 1)]|γι|+

∞∑
ι=1

Pι−1 ι[1 + α(ι
3 − 1)]|ηι|

]]
≥ 2(1− β)(1− |z|) > 0,

(3.9)

by the condition (3.3). The harmonic function

ϕ(z) = z +

∞∑
ι=2

1− β
Pι−1 ι[1 + α(ι3 − 1)

xιz
ι +

∞∑
ι=1

1− β
Pι−1 ι[1 + α(ι3 − 1)

ȳιz̄
ι,(3.10)

where
∑∞
ι=2 |xι| +

∑∞
ι=1 |yι| = 1, shows that the coefficient bound written by

(3.3) is sharp. The functions of the form (3.10) are in GH4(α, β) because the

condition (3.3) can be achieved as follows:

∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)]

1− β
|γι|+

∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)]

1− β
|ηι|

=

∞∑
ι=2

|xι|+
∞∑
ι=1

|yι| = 1. (3.11)

This completes the proof of Theorem 3.3. �

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

8.
1.

73
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

26
-0

2-
10

 ]
 

                            14 / 23

http://dx.doi.org/10.52547/ijmsi.18.1.73
https://ijmsi.com/article-1-1525-en.html


Geometric Studies on Inequalities of Harmonic Functions ... 87

Corollary 3.4. Let ϕ = µ+ ν̄ be of the form (1.1). If

∞∑
ι=2

ι[1 + α(ι3 − 1)]|γι|+
∞∑
ι=1

ι[1 + α(ι3 − 1)]|ηι| ≤ 1− β, (3.12)

or
∞∑
ι=1

ι[1 + α(ι3 − 1)](|γι|+ |ηι|) ≤ 2− β, (3.13)

γ1 = 1, 0 ≤ α, and 0 ≤ β < 1, then ϕ is harmonic schlicht, sense-preserving

in D, and ϕ ∈ H4(α, β).

Proof. By part (2) of Remark 3.2 and Theorem 3.3, we have the required

assertion. �

We proceed to show that, the condition (3.4) is also necessary for harmonic

functions ϕ = µ+ ν̄, where µ and ν are of the form (1.3).

Theorem 3.5. Let ϕ = µ + ν̄ be of the form (1.3). Then ϕ ∈ GHT4(α, β) if

and only if the condition (3.3) or (3.4) is achieved and it is as follows:

∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)]|γι|+
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)]|ηι| ≤ 1− β,

or
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)](|γι|+ |ηι|) ≤ 2− β,

where Pι−1 defined in (3.5), γ1 = 1, 0 ≤ α, and 0 ≤ β < 1.

Proof. Since GHT4(α, β) ⊂ GH4(α, β). We only need to prove the ”only if”

part of this theorem. For function ϕ(z) of the form (1.3), we have the conditions

(3.1) as follows:

<{αz3
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′′(z)
)

+ 6αz2
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′′(z)
)

+ 7αz
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′′(z)
)

+
(

Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ)µ′(z) + Σ
δ1,...,δq
ξ1,...,ξp

(υ, ω;κ, ξ) ν′(z)
)
} > β.

Consequently, we get

<
{

(1− β)−
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)] |γι| zι−1 −
∞∑
n=1

Pι−1 ι[1 + α(ι3 − 1)] |ηι| zι−1
}

≥ 0. (3.14)
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The above required condition must hold for all values of z in D. Upon choosing

the values of z on the positive real axis where 0 < |z| = r < 1, we must have

(1− β)−
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)] |γι| rι−1 −
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)] |ηι| rι−1

≥ 0. (3.15)

Letting r → 1− through real values, it follows that

(1− β)−

[ ∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)] |γι|+
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)] |ηι|

]
≥ 0.(3.16)

So, we have
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)] |γι|+
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)] |ηι| ≤ 1− β. (3.17)

�

Corollary 3.6. Let ϕ = µ+ ν̄ be of the form (1.3). Then ϕ ∈ HT4(α, β) if and

only if the condition (3.12) or (3.13) holds.

Proof. By part (2) of Remark 3.2 and Theorem 3.5, we obtain the required

result. �

3.2.2. Growth Bounds. The following theorem considers the growth bounds for

function in ϕ ∈ GHT4(α, β).

Theorem 3.7. Let ϕ ∈ GHT4(α, β). Then, r = |z| < 1

|ϕ(z)| ≤ (1 + |η1|)r +

(
(1− β)

2P1[1 + 7α]

)[
1− 1

1− β
z|η1|

]
r2, (3.18)

and

|ϕ(z)| ≥ (1 + |η1|)r −
(

(1− β)

2P1[1 + 7α]

)[
1− 1

1− β
|η1|
]
r2, (3.19)

where,

P1 =

Λ (ω + 1)υ
q∏
j=1

δj (ζ + 1)

p∏
j=1

ξj H2,0
0,2

[
(ω + 1)κ

1
ξ

∣∣∣∣ (υ, 1),
(

0, 1
ξ

) ] ,
0 ≤ α, and 0 ≤ β < 1.

Proof. Let ϕ ∈ GHT4(α, β). Taking the absolute value of ϕ, we have

|ϕ(z)| ≤ (1 + |η1|)r +
∑∞
ι=2 (|γι|+ |ηι|) rι

≤ (1 + |η1|)r + r2
∑∞
ι=2

(
(1−β)

2P1[1+7α]

)(
2P1[1+7α]

(1−β) |γι|+
2P1[1+7α]

(1−β) |ηι|
)
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≤ (1 + |η1|)r + r2
∑∞
ι=2

(
(1−β)

2P1[1+7α]

)(
Pι−1 ι[1+α(ι3−1)]

(1−β) |γι|+ Pι−1 ι[1+α(ι3−1)]
(1−β) |ηι|

)

≤ (1 + |η1|)r +

(
(1− β)

2P1[1 + 7α]

)[
1− 1

1− β
|η1|
]
r2 (3.20)

and

|ϕ(z)| ≥ (1 + |η1|)r −
∑∞
ι=2 (|γι|+ |ηι|) rι

≥ (1 + |η1|)r − r2
∑∞
ι=2

(
(1−β)

2P1[1+7α]

)(
2P1[1+7α]

(1−β) |γι|+
2P1[1+7α]

(1−β) |ηι|
)

≥ (1 + |η1|)r − r2
(

(1−β)
2P1[1+7α]

)∑∞
ι=2

(
Pι−1 ι[1+α(ι3−1)]

(1−β) |γι|+ Pι−1 ι[1+α(ι3−1)]
(1−β) |ηι|

)

≥ (1 + |η1|)r −
(

(1−β)
2P1[1+7α]

) [
1− 1

1−β |η1|
]
r2. (3.21)

�

Corollary 3.8. Let ϕ ∈ GHT4(α, β). Then r = |z| < 1

|ϕ(z)| ≤ (1 + |η1|)r +

(
(1− β)

2[1 + 7α]

)[
1− 1

1− β
|η1|
]
r2, (3.22)

and

|ϕ(z)| ≥ (1 + |η1|)r −
(

(1− β)

2[1 + 7α]

)[
1− 1

1− β
|η1|
]
r2, (3.23)

where 0 ≤ α, and 0 ≤ β < 1.

Proof. By part (2) of Remark 3.2 and Theorem 3.7, we derive the required

assertion. �

3.2.3. Extreme Points. We determine the extreme points of closed convex hulls

of GHT4(α, β) denoted by coGHT4(α, β).

Theorem 3.9. Let ϕ ∈ GHT4(α, β). A function ϕ ∈ coGHT4(α, β) if and only

if

ϕ(z) =

∞∑
ι=1

(φιµι(z) + ψινk(z)) (3.24)

where

µ1(z) = z,

µι(z) = z − 1− β
Pι−1 ι[1 + α(ι3 − 1)]

zι, (ι = 2, 3, ...),

νι(z) = z − 1− β
Pι−1 ι[1 + α(ι3 − 1)]

zι, (ι = 1, 2, ...),

(3.25)
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ι=1 (φι + ψι) = 1, 0 ≤ φι and 0 ≤ ψι.

Proof. For a function ϕ of the form (3.24), we have

ϕ(z) =
∑∞
ι=1 (φιµι(z) + ψινι(z))

=
∑∞
ι=1 (φι + ψι) z −

∑∞
ι=2

1−β
Pι−1 ι[1+α(ι3−1)] φιz

ι −
∑∞
ι=1

1−β
Pι−1 ι[1+α(ι3−1)] ψιz

ι

= z −
∞∑
ι=2

1− β
Pι−1 ι[1 + α(ι3 − 1)]

φιz
ι −

∞∑
ι=1

1− β
Pι−1 ι[1 + α(ι3 − 1)]

ψιzι. (3.26)

Therefore, in view of Theorem 3.5, we acquire
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)]

1− β
|γι|+

∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)]

1− β
|ηι|

≤
∞∑
ι=2

φι +

∞∑
ι=1

ψι = 1− φ1 ≤ 1.

(3.27)

Therefore, ϕ ∈ coGHT4(α, β).

Conversely, suppose that ϕ ∈ coGHT4(α, β). Set

φι =
Pι−1 ι[1 + α(ι3 − 1)]

1− β
|γι| (ι = 2, 3, ...) , (3.28)

and

ψι =
Pι−1 ι[1 + α(ι3 − 1)]

1− β
|ηι| (ι = 1, 2, ...) . (3.29)

On the basis of Theorem 3.5, we notice that 0 ≤ φι ≤ 1, (ι = 2, 3, ...) and

0 ≤ ψι ≤ 1, (ι = 1, 2, ...). Let φ1 = 1 −
∑∞
ι=2 φι −

∑∞
ι=1 ψι and notice that

by Theorem 3.5, φ1 ≥ 0. Consequently, ϕ(z) =
∑∞
ι=1 (φιµι(z) + ψινι(z)) is

obtained as required. �

Corollary 3.10. Let ϕ ∈ HT4(α, β). A function ϕ ∈ coHT4(α, β) if and only

if

ϕ(z) =

∞∑
ι=1

(φιµι(z) + ψινι(z)) (3.30)

where

µ1(z) = z,

µι(z) = z − 1− β
ι[1 + α(ι3 − 1)]

zι, (ι = 2, 3, ...),

νι(z) = z − 1− β
ι[1 + α(ι3 − 1)]

zι, (ι = 1, 2, ...),

(3.31)

∑∞
ι=1 (φι + ψι) = 1, 0 ≤ φι and 0 ≤ ψι.
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Proof. By part (2) of Remark 3.2 and Theorem 3.9, the required assertion is

obtained. �

3.2.4. Closure Property. Now we show that ϕ ∈ HT4(α, β) is closed under con-

vex combinations of its members.

Theorem 3.11. The subclass ϕ ∈ GHT4(α, β) is closed under convex combi-

nations.

Proof. For j = 1, 2, ..., let ϕi ∈ GHT4(α, β), where

ϕi(z) = z −
∞∑
ι=2

|γi,ι| zι −
∞∑
n=2

|ηi,ι| zι. (3.32)

Then, by Theorem 3.5, we have
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)]

1− β
|γι|+

∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)]

1− β
|ηι| ≤ 1. (3.33)

For
∑∞
i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of ϕi may be written as

∞∑
i=1

tiϕi = z −
∞∑
ι=2

( ∞∑
i=1

ti|γi,ι|

)
zι −

∞∑
ι=1

( ∞∑
i=1

ti|ηi,ι|

)
zι. (3.34)

Then, by (3.33), we have∑∞
ι=2

Pι−1 ι[1+α(ι3−1)]
1−β (

∑∞
i=1 ti|γi,ι|) +

∑∞
ι=1

Pι−1 ι[1+α(ι3−1)]
1−β (

∑∞
i=1 ti|ηi,ι|)

=
∑∞
i=1 ti

(∑∞
ι=2

Pι−1 ι[1+α(ι3−1)]
1−β |γi,ι|+

∑∞
ι=1

Pι−1 ι[1+α(ι3−1)]
1−β |ηi,ι|

)
≤
∞∑
i=1

ti = 1. (3.35)

Therefore, by Theorem 3.5,
∑∞
i=1 tiϕi ∈ GHT4(α, β). �

Corollary 3.12. The subclass HT4(α, β) is closed under convex combinations.

Proof. By part (2) of Remark 3.2 and Theorem 3.11, we get the required result.

�

3.2.5. Convolution Property. The next theorem shows that the subclass GHT4(α, β)

is closed under convolution.

Theorem 3.13. For 0 ≤ ε ≤ β < 1, let ϕ ∈ GHT4(α, β) and ϑ ∈ GHT4(α, ε).

Then (ϕ ∗ ϑ) ∈ HT4(α, β) ⊂ GHT4(α, ε).
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Proof. Let the harmonic function ϕ(z) = z −
∑∞
ι=2 |γι|zι −

∑∞
ι=1 |ηι|zι and

ϑ(z) = z −
∑∞
ι=2 |aι|zι −

∑∞
ι=1 |bι|zι. Then the convolution of ϕ and ϑ is

defined as follows:

(ϕ ∗ ϑ)(z) = z −
∞∑
ι=2

|γιaι|zι −
∞∑
ι=1

|ηιbι|zι. (3.36)

In Theorem 3.5, since ϑ ∈ GHT4(α, ε), we conclude that |aι| ≤ 1 and |bι| ≤ 1.

However, ϕ ∈ GHT4(α, β), then we yield

∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)] |γι aι|+
∞∑
n=1

Pι−1 ι[1 + α(ι3 − 1)] |ηι bι|

≤
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)] |γι|+
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)] |ηι| ≤ 1− β ≤ 1− ε.
(3.37)

So, (ϕ ∗ ϑ) ∈ GHT4(α, β) ⊂ GHT4(α, ε). �

Corollary 3.14. For 0 ≤ ε ≤ β < 1, let ϕ ∈ HT4(α, β) and ϑ ∈ HT4(α, ε).

Then (ϕ ∗ ϑ) ∈ HT4(α, β) ⊂ HT4(α, ε).

Proof. By part (2) of Remark 3.2 and Theorem 3.13, we have the required

result. �

3.2.6. A Family of Integral Operators. Finally, a closure property of subclass

GHT4(α, β) is discussed under the generalized Bernardi-Libera-Livingston in-

tegral operator B(z), which is considered as follows: (see [27])

B(z) = (ρ+ 1)

∫ 1

0

tρ−1ϕ(tz)dt (ρ > −1). (3.38)

Theorem 3.15. If ϕ ∈ GHT4(α, β). Then B ∈ GHT4(α, β).

Proof. Let

ϕ(z) = z −
∞∑
ι=2

|γι|zι −
∞∑
ι=1

|ηι|zι. (3.39)

Then, we have

B(z) = (ρ+ 1)

∫ 1

0

tρ−1

(
(tz)−

∞∑
ι=2

|γι|(tz)ι −
∞∑
ι=1

|ηι|
(
tz
)ι)

dt

= z −
∞∑
ι=2

|Aι|zι −
∞∑
ι=1

|Bι|z̄ι,
(3.40)

where

Aι =
ρ+ 1

ρ+ ι
|γι| and Bι =

ρ+ 1

ρ+ ι
|ηι|.
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Thus, since ϕ ∈ GHT4(α, β),

∞∑
ι=2

Pι−1 ι[1 + α(ι2 − 1)]

(
ρ+ 1

ρ+ ι
|γι|
)

+

∞∑
ι=1

Pι−1 ι[1 + α(ιι − 1)]

(
ρ+ 1

ρ+ ι
|ηι|
)

≤
∞∑
ι=2

Pι−1 ι[1 + α(ι3 − 1)] |γι|+
∞∑
ι=1

Pι−1 ι[1 + α(ι3 − 1)]| ηι| ≤ 1− β.
(3.41)

In virtue of Theorem 3.5, we obtain B ∈ GHT4(α, β). �

Corollary 3.16. If ϕ ∈ HT4(α, β). Then B ∈ HT4(α, β).

Proof. By part (2) of Remark 3.2 and Theorem 3.15, we have the required

assertion. �
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