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1. Introduction

Let f be a continous function on an interval I with a nonempty interior.

Then, define:

F (x, y) =

{
1

y−x

∫ y

x
f(t)dt, x, y ∈ I, x ̸= y,

f(x), x = y ∈ I.
(1.1)

Wulbert in [15], proved that the integral arithmetic mean F defined in (1.1)

is convex on I2 if f is convex on I. Zhang and Chu, in [16], rediscovered (with-

out referring to and citing Wulbert’s result) that the necessary and sufficient
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2 A. Vukelić

condition for the convexity of the integral arithmetic mean F is for f to be

convex on I.

Let f be a real-valued function defined on the segment [a, b]. The divided

difference of order n of the function f at distinct points x0, ..., xn ∈ [a, b], is

defined recursively (see [1], [10]) by

f [xi] = f(xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.

The definition may be extended to include the case that some (or all) of the

points coincide. Assuming that f (j−1)(x) exists, we define

f [x, . . . , x︸ ︷︷ ︸
j−times

] =
f (j−1)(x)

(j − 1)!
. (1.2)

For divided difference the following holds:

f [x0, . . . , xn] =

n∑
i=0

f(xi)

ω′(xi)
, where ω(x) =

n∏
j=0

(x− xj),

so we have that

f [x0, . . . , xn] =

n∑
i=0

f(xi)∏n
j=0,j ̸=i(xi − xj)

.

If the function f has continuous n-th derivative on [a, b], the divided differ-

ence f [x0, . . . , xn] can be represented in integral form by

f [x0, . . . , xn] =

∫
∆n

f (n)

(
n∑

i=0

uixi

)
du0 . . . dun−1,

where

∆n =

{
(u0, . . . , un−1) : ui ≥ 0,

n−1∑
i=0

ui ≤ 1

}
and un = 1−

∑n−1
i=0 ui.

The notion of n-convexity goes back to Popoviciu ([12]). We follow the

definition given by Karlin ([5]):

Definition 1.1. A function f : [a, b] → R is said to be n-convex on [a, b],

n ≥ 0, if for all choices of (n + 1) distinct points in [a, b], n-th order divided

difference of f satisfies

f [x0, ..., xn] ≥ 0.
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On Lah-Ribarič Inequality Involving Averages of Convex Functions 3

In fact, Popoviciu proved that each continuous n-convex function on [a, b]

is the uniform limit of the sequence of n-convex polynomials. Many related

results, as well as some important inequalities due to Favard, Berwald and

Steffensen can be found in [6].

In [3] is proved the following Jensen inequality for divided differences:

Theorem 1.2. Let f be an (n+2)-convex function on (a, b) and x ∈ (a, b)n+1.

Then

G(x) = f [x0, . . . , xn]

is a convex function of the vector x = (x0, . . . , xn). Consequently,

f

[
m∑
i=0

aix
i
0, . . . ,

m∑
i=0

aix
i
n

]
≤

m∑
i=0

aif [x
i
0, . . . , x

i
n] (1.3)

holds for all ai ≥ 0 such that
∑m

i=0 ai = 1.

Schur polynomial in n + 1 variables x0, . . . , xn of degree d = d0 + . . . + dn
(dj ’s form nonincreasing sequence non-negative integers, i.e. d0 ≥ . . . ≥ dn) is

defined as

S(d0,...,dn)(x0, . . . , xn) =
det
[
x
dn−j+j
i

]n
i,j=0

det
[
xj
i

]n
i,j=0

.

The numerator consists of alternating polynomials (they change the sign under

any transposition of the variables) and so they are all divisible by the denomi-

nator which is Vandermonde determinant. Schur polynomial is also symmetric

because the numerator and denominator are both alternating.

Using Schur polynomial and Vandermonde determinant (extended with log-

arithmic function)

V (x; p, q) = det


1 x0 x0

2 . . . x0
n−1 x0

p lnq x0

1 x1 x1
2 . . . x1

n−1 x1
p lnq x1

1 x2 x2
2 . . . x2

n−1 x2
p lnq x2

...
...

...
. . .

...
...

1 xn xn
2 . . . xn

n−1 xn
p lnq xn


we obtain:

Proposition 1.3. For monomial function h(x) = xn+k, where k ≥ 1 is an

integer, holds

h[x0, . . . , xn] = S(k,0, . . . , 0︸ ︷︷ ︸
n−times

)(x0, . . . , xn) =
V (x;n+ k, 0)

V (x;n, 0)

=

n∑
i1=0

i1∑
i2=0

· · ·
ik−1∑
ik=0

xi1xi2 · · ·xik .
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4 A. Vukelić

For potential function f(x) = xp = xn+p−n, where p is a real number, holds

f [x0, . . . , xn] =
V (x; p, 0)

V (x;n, 0)
.

Let f(x, y) be a real-valued function defined on I × J (I = [a, b], J =

[c, d]). Then the (l1, l2) divided difference of the function f at distinct points

x0, . . . , xl1 ∈ I, y0, . . . , yl2 ∈ J , is defined by (see [10])

f

[
x0, . . . , xl1

y0, . . . , yl2

]
= f([y0, . . . , yl2 ])[x0, . . . , xl1 ]

= f([x0, . . . , xl1 ])[y0, . . . , yl2 ]

=

l1∑
i=0

l2∑
j=0

f(xi, yj)

ω′(xi)ω′(yj)
, (1.4)

where ω(x) =
∏l1

i=0(x− xi), ω(y) =
∏l2

j=0(y − yj).

Definition 1.4. A function f : I×J → R is said to be (l1, l2)-convex or convex

of order (l1, l2) if for all distinct points x0, . . . , xl1 ∈ I, y0, . . . , yl2 ∈ J ,

f

[
x0, . . . , xl1

y0, . . . , yl2

]
≥ 0. (1.5)

If this inequality is strict, then f is said to be strictly (l1, l2)-convex.

Popoviciu in [13] proved the following theorem:

Theorem 1.5. If the partial derivative f
(l1+l2)

xl1yl2
of f exists, then f is (l1, l2)-

convex iff

f
(l1+l2)

xl1yl2
≥ 0. (1.6)

If the inequality in (1.6) is strict, then f is strictly (l1, l2)-convex.

The well known Lah-Ribarič inequality is given in the following theorem (see

[7]):

Theorem 1.6. Let f be a real valued convex function on [m,M ]. Then for

m ≤ xk ≤ M, pk > 0 (1 ≤ k ≤ n) and
∑n

k=1 pk = 1 we have

n∑
k=1

pkf(xk) ≤
M − x̄

M −m
f(m) +

x̄−m

M −m
f(M), (1.7)

where x̄ =
∑n

k=1 pkxk.

The goal of this paper is to give the extension of Wulbert’s result from

[15] and also to obtain inequalities with divided differences using the Lah-

Ribarič inequality. As a consequence, we will proof the convexity of higher

order for function defined by divided difference. In the last section, a new family

of exponentially convex functions and Cauchy-type means are constructed by

looking to the linear functionals associated with the obtained inequalities.
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On Lah-Ribarič Inequality Involving Averages of Convex Functions 5

2. Inequalities involving averages

The following result is an extension of Wulbert’s results:

Theorem 2.1. Let f be a real valued convex function on [m,M ] and F is

defined in (1.1). Then for m ≤ xk, yk ≤ M, pk > 0 (1 ≤ k ≤ n) and
∑n

k=1 pk =

1 we have
n∑

k=1

pkF (xk, yk) ≤
M − 1

2 (x̄+ ȳ)

M −m
F (m,m) +

1
2 (x̄+ ȳ)−m

M −m
F (M,M), (2.1)

where x̄ =
∑n

k=1 pkxk and ȳ =
∑n

k=1 pkyk.

Consequently, for l1 + l2 = 2 the integral arithmetic mean (1.1) is (l1, l2)-

convex on [m,M ]2.

Proof. By using the Lah Ribarič inequality (1.7) we get:

n∑
k=1

pkF (xk, yk) =

n∑
k=1

pk

∫ 1

0

f(syk + (1− s)xk)ds

=

∫ 1

0

n∑
k=1

pkf(syk + (1− s)xk))ds

≤ f(m)

M −m

∫ 1

0

[
M −

n∑
k=1

pk(syk + (1− s)xk)

]
ds

+
f(M)

M −m

∫ 1

0

[
n∑

k=1

pk(syk + (1− s)xk)−m

]
ds

=
f(m)

M −m
M − f(m)

M −m

∫ 1

0

(sȳ + (1− s)x̄)ds

+
f(M)

M −m

∫ 1

0

(sȳ + (1− s)x̄)ds−m
f(M)

M −m

=
M − 1

2 (x̄+ ȳ)

M −m
F (m,m) +

1
2 (x̄+ ȳ)−m

M −m
F (M,M).

Now, if we put n = 2, x1 = m,x2 = M,y1 = M,y2 = m, p1 = p2 = 1
2 , then

the inequality (2.1) reduces to

F (m,M) + F (M,m) ≤ F (m,m) + F (M,M).

Use the definition in (1.4) we get

(M −m)2(F [m,M ])[M,m] ≥ 0.

It is known that if this holds for all possible m,M > 0 then F is (1, 1)-convex

function (see [13]).

Wulbert in [15], proved that the integral arithmetic mean F defined in (1.1)

is convex on [m,M ]2, so we have F
(2+0)
x2y0 ≥ 0 and F

(0+2)
x0y2 ≥ 0. So, by using

Theorem 1.5 function F is convex of order (2, 0) and (0, 2). □
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6 A. Vukelić

Remark 2.2. Theorem 2.1 is a generalization of the Lah-Ribarič inequality. For

xk = yk, k = 1, . . . , n the inequality (2.1) recaptures the Lah-Ribarič inequality

(1.7).

The following theorem is the integral version of Theorem 2.1:

Theorem 2.3. Let (Ω,A, µ) be a probability space, α, β : Ω → [m,M ] be

functions from L1(µ) and let f be an convex function on [m,M ] and F is

defined in (1.1). Then∫
Ω

F (α(u), β(u))dµ(u) ≤
M − 1

2 (ᾱ+ β̄)

M −m
F (m,m) +

1
2 (ᾱ+ β̄)−m

M −m
F (M,M),

(2.2)

where ᾱ =
∫
Ω
α(u)dµ(u) and β̄ =

∫
Ω
β(u)dµ(u).

Proof. By using the integral version of Lah-Ribarič inequality we get:∫
Ω

F (α(u), β(u))dµ(u) =

∫ 1

0

∫
Ω

f(sβ(u) + (1− s)α(u))dµ(u)ds

≤ f(m)

M −m

∫ 1

0

[
M −

∫
Ω

(sβ(u)− (1− s)α(u))dµ(u)

]
ds

+
f(M)

M −m

∫ 1

0

[∫
Ω

(sβ(u)− (1− s)α(u))dµ(u)−m

]
ds

=
M − 1

2 (ᾱ+ β̄)

M −m
F (m,m) +

1
2 (ᾱ+ β̄)−m

M −m
F (M,M).

□

3. Inequalities for divided differences

In the following theorem we proof the Lah-Ribarič inequality for divided

differences:

Theorem 3.1. Let f be an (n+2)-convex function on [m,M ] and x ∈ [m,M ]n+1.

Then

l∑
i=0

aif [x
i
0, . . . , x

i
n] (3.1)

≤ f (n)(m)

n!(M −m)

M − 1

n+ 1

n∑
j=0

x̄j

+
f (n)(M)

n!(M −m)

 1

n+ 1

n∑
j=0

x̄j −m


holds for all ai ≥ 0 such that

∑l
i=0 ai = 1 and x̄j =

∑l
i=0 aix

i
j. Consequently,

for n = 1

G(x) = f [x0, x1]

is a (l1, l2)-convex function of the vector x = (x0, x1), when l1 + l2 = 2.
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On Lah-Ribarič Inequality Involving Averages of Convex Functions 7

Proof. Using the Lah-Ribarič inequality for convex function f (n), we have

l∑
i=0

aif [x
i
0, . . . , x

i
n] =

l∑
i=0

ai

∫
∆n

f (n)

 n∑
j=0

ujx
i
j

 du0 . . . dun−1

=

∫
∆n

l∑
i=0

aif
(n)

 n∑
j=0

ujx
i
j

 du0 . . . dun−1

≤ f (n)(m)

M −m

∫
∆n

M −
l∑

i=0

ai

n∑
j=0

ujx
i
j

 du0 . . . dun−1

+
f (n)(M)

M −m

∫
∆n

 l∑
i=0

ai

n∑
j=0

ujx
i
j −m

 du0 . . . dun−1

(
for g(x) =

xn

n!
and h(x) =

xn+1

(n+ 1)!

)

=
f (n)(m)

M −m

M ∫
∆n

g(n)

 n∑
j=0

ujx
i
j

 du0 . . . dun−1

−
l∑

i=0

ai

∫
∆n

h(n)

 n∑
j=0

ujx
i
j

 du0 . . . dun−1


+

f (n)(M)

M −m

 l∑
i=0

ai

∫
∆n

h(n)

 n∑
j=0

ujx
i
j

 du0 . . . dun−1

−m

∫
∆n

g(n)

 n∑
j=0

ujx
i
j

 du0 . . . dun−1


=

f (n)(m)

M −m

[
M · g[xi

0, x
i
1, . . . , x

i
n]−

l∑
i=0

ai · h[xi
0, x

i
1, . . . , x

i
n]

]

+
f (n)(m)

M −m

[
l∑

i=0

ai · h[xi
0, x

i
1, . . . , x

i
n]−m · g[xi

0, x
i
1, . . . , x

i
n]

]

=
f (n)(m)

n!(M −m)

M − 1

n+ 1

n∑
j=0

x̄j

+
f (n)(M)

n!(M −m)

 1

n+ 1

n∑
j=0

x̄j −m

 .

Now, If we put n = 1, x0
0 = m,x0

1 = M,x1
0 = M,x1

1 = m, a1 = a2 = 1
2 and

fact that f ′(x) = f [x, x] = G(x, x), similarly as in Theorem 2.1, we can proof

that function G is convex function of order (1, 1).

By using Theorem 1.2 and similarly as in Theorem 2.1, we also can proof

that function G is convex function of order (2, 0) and (0, 2). □
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8 A. Vukelić

The integral version of Lah-Ribarič inequality for divided differences is given

with following theorem:

Theorem 3.2. Let p, gi : Ω → [m,M ], (i = 0, . . . , n) be functions from L1(µ)

and let f be an (n+ 2)-convex function on [m,M ]. Then∫
Ω

p(x)f [g0(x), . . . , gn(x)]dµ(x)

≤ f (n)(m)

n!(M −m)

[
M − 1

n+ 1

n∑
i=0

ḡi

]
+

f (n)(M)

n!(M −m)

[
1

n+ 1

n∑
i=0

ḡi −m

]
(3.2)

holds for all p(x) ≥ 0 such that
∫
Ω
p(x)dµ(x) = 1 and ḡi =

∫
Ω
p(x)gi(u)dµ(u).

Proof. Using the integral Lah-Ribarič inequality for convex function f (n), we

have the following conclusion∫
Ω

p(x)f [g0(x), . . . , gn(x)]dµ(x)

=

∫
∆n

(∫
Ω

p(x)f (n)

(
n∑

i=0

uigi(x)

)
dµ(x)

)
du0 . . . dun−1

≤ f (n)(m)

M −m

∫
∆n

(
M −

∫
Ω

p(x)

(
n∑

i=0

uigi(x)

)
dµ(x)

)
du0 . . . dun−1

+
f (n)(M)

M −m

∫
∆n

(∫
Ω

p(x)

(
n∑

i=0

uigi(x)

)
dµ(x)−m

)
du0 . . . dun−1

=
f (n)(m)

n!(M −m)

[
M − 1

n+ 1

n∑
i=0

ḡi

]
+

f (n)(M)

n!(M −m)

[
1

n+ 1

n∑
i=0

ḡi −m

]
.

□

4. Applications to exponential convexity

Motivated by inequalities (2.1), (2.2), (3.1) and (3.2), under the same as-

sumptions, we define following functionals:

Φ1(f) =
M − 1

2 (x̄+ ȳ)

M −m
f(m) +

1
2 (x̄+ ȳ)−m

M −m
f(M)−

n∑
k=1

pk
yk − xk

∫ yk

xk

f(t)dt,

(4.1)

Φ2(f) =
M − 1

2 (ᾱ+ β̄)

M −m
f(m) +

1
2 (ᾱ+ β̄)−m

M −m
f(M)

−
∫
Ω

(
1

β(u)− α(u)

∫ β(u)

α(u)

f(t)dt

)
dµ(u), (4.2)
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On Lah-Ribarič Inequality Involving Averages of Convex Functions 9

Φ3(f) =
f (n)(m)

n!(M −m)

M − 1

n+ 1

n∑
j=0

x̄j

+
f (n)(M)

n!(M −m)

 1

n+ 1

n∑
j=0

x̄j −m


−

l∑
i=0

aif [x
i
0, . . . , x

i
n] (4.3)

and

Φ4(f) =
f (n)(m)

n!(M −m)

[
M − 1

n+ 1

n∑
i=0

ḡi

]
+

f (n)(M)

n!(M −m)

[
1

n+ 1

n∑
i=0

ḡi −m

]

−
∫
Ω

p(x)f [g0(x), . . . , gn(x)]dµ(x). (4.4)

Similarly as in [11] we can construct new families of exponentially convex

function and Cauchy type means by looking at these linear functionals. Also, we

can proof the monotonicity property of the generalized Cauchy means obtained

via these functionals.

Here we present an example for such a family of functions:

Example 4.1. Consider a family of functions

Ω = {fs : (0,∞) → R : s ∈ R}

defined by

fs(x) =

{
xs

s(s−1) , s /∈ {0, 1},
xj ln x

(−1)1−jj!(1−j)! , s = j ∈ {0, 1}.

Here, d2fs
dx2 (x) = xs−2 = e(s−2) ln x > 0 which shows that fs is convex for x > 0

and s 7→ d2fs
dx2 (x) is exponentially convex by definition. Arguing as in [11] we

get that the mappings s 7→ Φi(fs), i = 1, 2 are exponentially convex. Now we

get:

µs,q(Φi,Ω) =



(
Φi(fs)
Φi(fq)

) 1
s−q

, s ̸= q,

exp
(
−Φi(f0fs)

Φi(fs)
+ 1−2s

s2−s

)
, s = q /∈ {0, 1},

exp
(
− Φi(f

2
0 )

2Φi(f0)
+ 1
)
, s = q = 0,

exp
(
−Φi(f0f1)

2Φi(f1)
− 1
)
, s = q = 1,

where for s ̸= −1, 0, 1

Φ1(fs) =
M − 1

2 (x̄+ ȳ)

M −m
· ms

s(s− 1)
+

1
2 (x̄+ ȳ)−m

M −m
· Ms

s(s− 1)

− 1

s3 − s

n∑
k=1

pk
ys+1
k − xs+1

k

yk − xk
,
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Φ1(f−1) =
M − 1

2 (x̄+ ȳ)

M −m
· 1

2m
+

1
2 (x̄+ ȳ)−m

M −m
· 1

2M

− 1

2

n∑
k=1

pk
ln yk − lnxk

yk − xk
,

Φ1(f0) =
1
2 (x̄+ ȳ)−M

M −m
· lnm+

m− 1
2 (x̄+ ȳ)

M −m
· lnM

+

n∑
k=1

pk
yk ln yk − xk lnxk

yk − xk
− 1,

Φ1(f1) =
M − 1

2 (x̄+ ȳ)

M −m
·m lnm+

1
2 (x̄+ ȳ)−m

M −m
·M lnM

− 1

2

n∑
k=1

pk
y2k ln yk − x2

k lnxk

yk − xk
+

1

4
(x̄+ ȳ).

For similarly results for Jensen’s inequality involving averages of convex

functions see [2] and [4].

For a family of functions

Ω̃ =
{
f̃s : (0,∞) → R : s ∈ R

}
defined by

f̃s (x) =

{
xs

s(s−1)...(s−(n+1)) , s /∈ {0, 1, . . . , n+ 1},
xj ln x

(−1)n+1−jj!(n+1−j)!
, s = j ∈ {0, 1, . . . , n+ 1},

analogous as above it is easy to prove that s 7→ Φi

(
f̃s

)
(i = 3, 4) are exponen-

tially convex. In this case, we get µ̃s,q

(
Φi, Ω̃

)
(i = 3, 4) as follows

µ̃s,q

(
Φi, Ω̃

)
=



(
Φi(fs)
Φi(fq)

) 1
s−q

, s ̸= q,

exp
(

(−1)n+1(n+1)!Φi(f0fs)
Φi(fs)

+
∑n+1

k=0
1

k−s

)
, s = q /∈ {0, 1, . . . , n+ 1},

exp

(
(−1)n+1(n+1)!Φi(f0fs)

2Φi(fs)
+
∑n+1

k=0
k ̸=s

1
k−s

)
, s = q ∈ {0, 1, . . . , n+ 1}.

For s /∈ {0, 1, . . . , n+ 1}

Φ3(f̃s) =
M − 1

2 (x̄+ ȳ)

M −m

ms−n

n!(s− n)(s− (n+ 1))
+

1
2 (x̄+ ȳ)−m

M −m

Ms−n

n!(s− n)(s− (n+ 1))

−
n+1∏
k=0

1

s− k

m∑
i=0

ai
V (xi, s, 0)

V (xi, n, 0)
.
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For s = j ∈ {0, 1, . . . , n+ 1} we have

f̃ (n)
s (x) =

1

(−1)
n+1−j

j! (n+ 1− j)!

n−1∑
i=0

n−1∏
k=0
k ̸=i

(j − k)xj−n +

n−1∏
i=0

(j − i)xj−n lnx

 .

So, for s = j ∈ {0, 1, . . . , n− 1}

Φ3(f̃j) =
M − 1

2 (x̄+ ȳ)

M −m
· m

j−n

n!
+

1
2 (x̄+ ȳ)−m

M −m
· M

j−n

n!
−

n+1∏
k=0

1

j − k

m∑
i=0

ai
V (xi, j, 1)

V (xi, n, 0)

and for l ∈ {0, 1}

Φ3(f̃n+l) = (−1)l+1

M − 1
2 (x̄+ ȳ)

M −m
·
ml
[∑n−1

i=0
1

n+l−1 + lnm
]

n!

+
1
2 (x̄+ ȳ)−m

M −m
·
M l
[∑n−1

i=0
1

n+l−1 + lnM
]

n!


−

n+1∏
k=0

1

n+ l − k

m∑
i=0

ai
V (xi, n+ l, 1)

V (xi, n, 0)
.

For similarly results for Jensen’s inequality for divided differences see [8] and

[14]. See also [9].

Φi (i = 1, 2, 3, 4) are positive, so then there exists ξi, ξ̃i ∈ [m,M ] such that

ξs−q
i =

Φi (fs)

Φi (fq)
, i = 1, 2, ξ̃s−q

i =
Φi

(
f̃s

)
Φi

(
f̃q

) , i = 3, 4.

Since the function ξi 7→ ξs−q
i and ξ̃i 7→ ξ̃s−q

i are invertible for s ̸= q, we have

m ≤
(
Φi (fs)

Φi (fq)

) 1
s−q

≤ M, i = 1, 2, m ≤

Φi

(
f̃s

)
Φi

(
f̃q

)


1
s−q

≤ M, i = 3, 4,

which together with the fact that µs,q (Φi,Ω) and µ̃s,q

(
Φi, Ω̃

)
are continuous,

symmetric and monotonous, shows that µs,q (Φi,Ω) and µ̃s,q

(
Φi, Ω̃

)
are means.
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14. G. Roqia, J. Pečarić, A. Vukelić, n—exponential Convexity of Divided Differences and

Related Stolarsky Type Menas, Math. Ineq. Appl., 16(4), (2013), 1043–1063.

15. D. E. Wulbert, Favard’s Inequality on Average Values of Convex Functions, Math. Com-

put. Model., 37(2003), 1383–1391.

16. X. M. Zhang, Y. M. Chu, Convexity of the Integral Arithmetic Mean of a Convex Func-

tion, Rocky Mt. J. Math., 40(3), (2010), 1061–1068.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
2.

1 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
26

-0
1-

30
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            12 / 12

http://dx.doi.org/10.61186/ijmsi.19.2.1
https://ijmsi.com/article-1-1522-en.html
http://www.tcpdf.org

