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ABSTRACT. The Haar wavelet collocation with iteration technique is ap-
plied for solving a class of time-fractional physical equations. The ap-
proximate solutions obtained by two dimensional Haar wavelet with iter-
ation technique are compared with those obtained by analytical methods
such as Adomian decomposition method (ADM) and variational itera-
tion method (VIM). The results show that the present scheme is effec-
tive and appropriate for obtaining the numerical solution of the time-
fractional Modified Camassa-Holm equation and Time fractional Modi-

fied Degasperis-Procesi equation.
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1. INTRODUCTION

Many phenomena in various fields of the science and engineering can be
modeled by fractional differential equations. The applications of fractional
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calculus have been demonstrated by many authors. For examples, fractional
calculus is applied to model the nonlinear oscillation of earthquake [1], fluid-
dynamic traffic [2], continuum and statistical mechanics [3], signal processing
[4], control theory [5], and dynamics of interfaces between nanoparticles and
subtracts [6].

Recently, orthogonal wavelets bases are becoming more popular for numer-
ical solutions of partial differential equations due to their excellent properties
such as ability to detect singularities, orthogonality, flexibility to represent a
function at different levels of resolution, and compact support. In recent years,
there has been a growing interest in developing wavelet based on numerical al-
gorithms for solution of fractional order partial differential equations ([7-15]).
Among them, the Haar wavelet method is the simplest and easiest to use. Haar
wavelets have been successfully applied for the solutions of ordinary and partial
differential equations, integral equations, and integro-differential equations.

In this work, we solve a family of important physically equations by combin-
ing Haar wavelet method and an iteration technique. We describe the nonlinear
fractional partial differential equation by an iteration technique and then con-
vert the obtained discretized equation into a Sylvester equation by the Haar
wavelet method to get the solution.

The above mentioned partial differential equation is as follows:

U — Ut + (0 + DUy = Duptipy + Ullpas, (1.1)
with the initial and boundary conditions:
u(z,0) = g(x), w(0,t) =yo(t), w(l,t)=wy1(t), t>0, 0O0<zxz<l,

where b is a positive integer. For b = 2 and b = 3 Eq. (1.1) reduces to Time
Fractional Modified Camassa-Holm equation and Time Fractional Modified
Degasperis-Procesi equation, respectively.

The Camassa-Holm equation is used to describe physical model for the uni-
directional propagation of waves in shallow water [19, 20]. This equation is
widely used in fluid dynamics, continuum mechanics, aerodynamics, and mod-
els for shock wave formation, solitons, turbulence, mass transport, and the
solution representing the waters free surface above a flat bottom [21, 22]. The
Camassa-Holm equation has been obtained by Fokas and Fuchssteiner [23] and
Lenells [24]. Camassa and Holm [25] put forward the derivation of the solution
as a model for dispersive shallow water waves and revealed that it is formally
integrable finite dimensional Hamiltonian system and its solitary waves are
solitons. Many analytical methods have been implemented in recent past for
the study of nonlinear fractional differential equations arising in mathematical
physics [26-35]. Note that, there are some new papers on the time-fractional
diffusion equation in signal processing (see for example, [36] and [37]). The
Degasperis-Procesi equation was discovered by Degasperis and Procesi in a
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search for integrable equations similar in form to the Camassa-Holm equation,
and is widely used in fluid dynamics, aerodynamics, optimal fiber, biology, solid
state physics, geometry and oceanology.

2. HAAR WAVELET AND OPERATIONAL MATRIX OF GENERAL ORDER
INTEGRATION

The 7 th uniform Haar wavelet h;(z) , € [0, 1) is defined as:

1 a(i) <z < b(4)
hi(z) =< -1 b(i) <z < c(i) (2.1)
0 otherwise
where a(i) = 21 p(i) = 205 (i) = £ i=214+k+1,=0,1,2,3,...,J
is dilation parameter, m = 27! and k = 0,1,2,...,2/ —1 is translation param-

eter. The Maximum level of resolution is J. In particular hi(z) = xjo,1)(2),
where xo,1)(%) is characteristic function on interval [0,1), is the Haar scal-
ing function. Let us define the collocation points z; = % where j =
1,2,3,...,m.

We establish an operational matrix for integration via Haar wavelets. The
operational matrix of integration of general order is obtained by integration
Eq. (2.1) is as follows:

Poi(z) = Igayhi(x)
1 o a—1
- m/a(l)(gc—s) ds, o> 0. (2.2)
Pui(z) = I;"hi(:ﬂ)=ﬁ
i@ =) ds a(i) b(),

b(z a— T a— .
fa((i)) (x—8)* tds — fbm(x —5)*'ds  b(3)

f:((:)) (x —5)* tds — fbc((:)) (x—5)*"tds x> c(i).

By simplifying:

~ (z—a(1)"
Po1(z) Tla+1) (2.4)
and
Pai(z) = IChi(z) = F(a1+ ¥
(z —ai)® a(i) <z < b(3),
(x —a(i))* — 2(z — b(2))* b(i) <= < c(i), (2.5)
(x —a(i)* —2(z —b(1))* + (x — c(i))* = > c(i)

Any function y € L?[0, 1] can be expressed in terms of the Haar wavelet as:

y(z) = Z cihi(z), (2.6)
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where ¢;s are the Haar wavelet coefficients given by ¢; = fol y(z)h;(z)d.
We can approximate the function y(x) by the truncated series

m—1
y(@) = > cihi(x). (2.7)
i=1
Taking the collocation point as x(i) = % where i = 1,2,--- ,m we define
Haar wavelet matrix H,, x,, as:
hi(z(1))  ha(2(2)) - ha(z(m))
ho(z(1))  ho(2(2)) -+ ha(z(m))
mem = . . .
b (2(1)) B (2(2)) -+ hap(z(m))
We can represent equation (2.7) in vector form as y = c¢H where ¢ =
[c1,¢2, ..., ¢m]. The Haar coefficient ¢; can be evaluated by ¢ = yH ! where

H~! is inverse of H. Similarly we can obtain the fractional order integration
matrix P of Haar function by substituting the collocation points in Egs. (2.4)
and (2.5).

Poa(z(1))  Paa(z(2 Pa,1(z(m))

N Pop2(z(1))  pa,2(x(2)) Py 2(x(m))
mem =

pa,m(w(D) pa)m(x(Q)) pa,m(x(m))

For example if m = 8 , « = 0.9, the Haar wavelet matrix of fractional
integration is:

0.0857  0.2305 0.3650 0.4941 0.6195 0.7421 0.8625 0.9811

0.0857 0.2305 0.3650 0.4941 0.4480 0.2812 0.1325 —0.0071

0.0857  0.2305 0.1935 0.0331 —0.0248 —0.156 —0.115 —0.0091

po9 0 0 0 0 0.0857 0.2305 0.1935 0.0331
8x8 ™ 0.0857 0.0590 —0.0102 —0.0054 —.0037 —0.0028 —0.0022 —0.0018
0 0 0.0857 0.0590 —0.0102 —-0.0054 —0.0037 —0.0028
0 0 0 0 0.0857 0.0590 —0.0102 —0.0054

0 0 0 0 0 0 0.0857 0.0590

We derive another operational matrix of fractional integration to solve the
fractional boundary value problems. Let n > 0 and ¢ : [0,7] — R be a contin-
uous function and assume that Haar function have [0,7) as compact support,
then

M@@MOﬂzﬂwlﬂn—QMWS (2.8)

v = g(a)Cons
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and
b(i) ) c(4) L
@) ki) = )] | L =9 / L ey 09

Ua,n,i = g(x)ca,i

where ot = gy Caui = 1y [w —a(i)” — 200 — (i) + (n - c(z'»a]

By using the collocation points, we get:

G@W)ISh () g@@)Igha() - glam))I§hi()
e || 9GO gD R) e alelm)) I3 ha(o)
o) IS hn(n) 9@ @) hm(n) - gla(m))I§ hn(n)

In particular, for n =1, g(x) =z, a = 0.9, m = 8, we get:

.0650 .1950 .3249 .4549 .5849 7148 .8448 L9748

—.0047 —.0140 —.0233 —.0326 —.0420 —.0513 —.0606 —.0700

—-.0005 —.0015 —.0026 —.0036 —.0046 —.0056 —.0067 —.0077

Vo9l _ —-.0025 —-.0075 —.0125 —.0175 —.0225 —.0275 —.0325 —.0375
8x8 - -.0001 -.0003 -—.0005 —.0007 -—.0009 —.0012 —.0014 —.0016
—.0001 —.0004 -—.0007 —.0011 —.0014 —.0017 —.0020 —.0023

—.0002 —.0008 —.0014 -—.0019 —.0025 —.0030 —.0036 —.0041

—.0013 —.0040 —.0067 —.0094 —.0121 —.0147 —.0174 —.0201

3. CONVERGENCE

Theorem 3.1. Suppose that the functions um(x,t) obtained by using Haar
wavelet are the approximation of u(x,t), then we have the following error bound:

lu(z,t) — um(z,t)||g <

K
V3m
11 1/2
||u(:v,t)||E</0 /0 u2(x,t)d:cdt> . (3.1)

Proof. Suppose u,(z,t) is the following approximation of u(x,t),

-1

U (z, 1) = Unihn (2)hy (T).

3
3

3
Il
<
-~
Il
=3

Then we have:
u(z,t) — um(z,t) = Z Z Unihn ()R (t) = Z Z Unihn ()R (T).
n=ml=m n=2p+1 [|=2p+1

The orthogonality of the sequence h;(x) on [0,1) implies that

() = 25 h(29(.) — k). (3.2)
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Therefore

e, 1) —un(z. )} = / / W(s) — (2, 1)) Pt
Z Z Z Z Unitiy (3.3)

n=2pP+1 [=2P+1 n/=2p+1 [/=2p+1

1 1
</0 hn(x)hn/(x)dm> (A hl(t)hl/(t)dt>

Z Z uilv (3'4)

n=2p+1 |=2p+1

where un; = (hy (), (u(z,t), hi(t))).
According to Eq. (2.1) and the inner product definition, we have:

(u(e, ), (1)) = /O w(w, )ha(t)dt

k*Q.S k_
j 27 27
= 22 (/ u(z,t)dt — / u(x, t)dt). (3.5)
B k=05
27 27
By using mean value theorem of integrals:
kE—1 k—05 k-0.5
E'tl,tg : T <t < Y Y <ty < E, (36)
so that
i, k=05 k-1 k k—0.5
(u(z,t), (t)) = 2° (( 5~y umt) - (5 - —; )u(x’t2)>
24
= 571 <u(x7t1) - u(:c,tg)) (3.7
1

2J+1/ h .13 tl) (l‘,tz))dl‘

0.5

k
27 27

= 2§+1 </k1 u(z,t1)dr — /M‘).s u(w, t1)dx (3.9)
27 27

k—0.5

_/ ” u(x,tg)dx+/2 u(:b,tg)dx).
k=1 k—0.5
27 27

(3.10)
By using mean value theorem of integrals again we have:
k—1 k—05 k—-05
3%1,%2,1’3,1’4 o 97 lea‘TZ < 27 ) 27 < x3,74 < 27
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1( k—0.5 k—1 k k—0.5
Upp = 2{(2j - T)u(xl,tl) - (g - T)u(xz,tl) -
k—05 k-1 k k—0.5
( T T)u(mg,tz) + (27 - 2j)u(x4,t2)}

2
ul, = 22;_4{(11(301,&) — u(w, 1) — (u(ws, t2) — u(ac4,t2))} .

By using mean value theorem of derivatives:

351,522 1’1§€1<£B2, 1’3§£2<£L’4

so that
2 2
42 — 11) (24 — w3) GU(EZ t1) ‘5U(§2x, t2) } (3.12)

We assume that au("L 9u(x.!) i continuous and bounded on (0,1) x (0,1), then
Ou(x,t
3K > 0,Vz,t € (0,1) x (0, 1), ‘“(Z)' <K. (3.13)
1 4K? 4K?
2 _
Uy < <22j+4) 225 94j+4” (3.14)

By substituting Eq. (3.14) into Eq. (3.3), we have

(

2J+1 1 2J+1_1

() — 1) 2 )
n=27 n= 2J

2J+1_1 2J+1_1

- 4K?2
- 24]+4
n= 2J n= 21
oo 20+l 1929+l
_ 2
- Y (X% )
j=p+1 n=27 n=227
K? 1 K2
R GaET (3.15)
Therefore
K

[u(z,t) = tm (2, t)]|p < —=—. (3.16)

Vam
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From the Eq. (3.16), we can find that |u(z,t) — wn(z,t)[|g — 0 when
m — oo. The larger the value of m, the more accurate the numerical solution.
with similar procedure, we have

K
Upgpr(x,t) —uq(x,t < —. 3.17
[tr i1 (2, t) = s (2, 1) 2 Jam (3.17)

Eq. (3.17) implies that error between the exact and approximate solution
at the (r+1)th iteration is inversely proportional to the maximal level of reso-
lution. This implies that u;” | (x,t) converges to u,41(z,t) as m — oco. Since
ur41(x,t)is obtained at (r + 1)th iteration of Picard technique then according
to the convergence analysis of Picard technique which states that w,1(x,t)
converges to u(x,t) as r approaches to infinity. This suggests that solution
by Haar wavelet Picard technique, u" ,(x,t), converges to u(x,t) as m and r
approaches to infinity. O

4. DESCRIPTION OF THE PROPOSED METHOD
By applying the iteration method (Picard iteration) to Eq. (1.1), we get

0%Upy1  BPupy ou, Ou, O%u, A3,

- =—(b+1)u? 4.1
g oo - TV T e T (4.1)
for 0 < a <1, b> 0, with the initial and boundary condition:
uT-l-l('Ta O) = g(x), uT+1(07 t) = yo(t), uT+1(17 t) =Y (t)v
witht >0, 0 <x <1.
By applying the Haar wavelet method, we suppose:
agu . 2M 2M o . o
= Ci T ha( =H"(z)C" H(¢). 4.2
T =L i(t) = HT (0)C" H () (12)
By applying the integral operator I2 on Eq. (4.2):
duy
SEL = (P)TCTH ) + p)T + g(t). (4.3)

By using the boundary condition and put x =0, x =1, we get:

)
r=0 alt) = %

oy 0
z=1 :  p(t)= % - % — (P2(1)TCTHH().

By applying the integral operator I} to Eq. (4.3) :

w1 (z,t) = (PHTC™T P + x{yl(t) —yo(t) — (Pf(l))TCrHPt} +yo(t) + r(x),(4.2)
we use the initial condition and put t = 0 to get:

t=0: r(z) = g(z) — 2{y1(0) — y0(0) } — yo(0).
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By derivating from Eq. (4.2), we get:

Ou, - T or(x)
o = (P)'C +1Pt—|—(yl(t)—yo(t)—(Pf(l)) c+1Pt)+ 5 0 (42)
82U _ T r+1 827"(%')
oz = H @C P = (4.3)
We estimate right side or nonlinear part of Eq. (4.1) by Haar wavelet:
Ou, 0%u, 5 0%, oul
S(x,t) = b —(b+1 y—
(%) Or 0Ox? (b+ Ly Ox? tu O3
2M 2M
= DD mighi(@)h;(t) (43)
i=1 j=1
— HT(@)MH(2),

where m; j = (h;(2), (S(z,t), h;j(t)) ). By substituting Eqs. (4.4) and (4.2) for
Eq. (4.1), we get:

aaurJrl
ot
By applying fractional integral operator I* to Eq. (4.3) and using the initial

= H(x)C™ ™ H(t) + H' (x) M H (t). (4.3)

conditions, we obtain:
(1) = HT (@)CTH PP + BT (2) MPE + g(a). (1.4)
From Egs. (4.4) and (4.2), we get:
K@, t)+ (P)TC ™ pe = (P2A)TCTHP) = HT ()" PP = H (@) MP] =0, (4.4)
where K (z,t) = 2{y1(t) — yo(t) } + yo(t) +r(z) — g(2).

In discrete form by putting collocation points, Eq(4) in matrix form can be
written as:

((P:?)T _ V2,1,g(w)) Cr-}-lpt _ HT07-+1Pta _ HTMPta - K, (45)

where H is the m x m Haar matrix, V219 = g(2)I[?HT = g(z)(P?*(1))7,
(9(x) = x) is the m x m fractional integration matrix for boundary value
problem, PY = I®HT and P® = I*H are the m x m matrices of fractional
integration of the Haar function. Also K = K(z(i),t(i)), i = 1,2, ..., m matrix
determined at the collocation points.

By multiplying P~! from right side and (HT)~! from left side to Eq (4.5),
we get:

(HT)—l ((PQ)T _ V2,Lg(m)) ot (4.6)
A
7CT+1 Pta(Pfl) _ (HT)fl (HTMPta . K) (Pil),
—-B C
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which it is the Sylvester equation (AX + XB = (). We solve Eq. (4.6) for
C™*1 which is m x m coefficient matrix, and substituting C"*! in Eqs. (4.4)
or (4.2), we get solution u,41(x,t) at the collocation points. Suppose an initial
approximation ug(z,t), we get a linear fractional partial differential equation in
u(x,t) by substituting » = 0 in Eq. (4.1), where is solved by above procedure.
Similarly for » = 1 we obtain uz(z,t) and so on.

4.1. Numerical Examples. In this section, we present Haar wavelet iteration
(HWI) method for the numerical solution of the Time Fractional Modified
Camassa-Holm and Time Fractional Modified Degasperis-Procesi equations,
and the proposed method has been compared with existing method ([16], [17],
[18]) to demonstrate its capability.

EXAMPLE 4.1. By putting b = 2, equation (1.1) reduces to Time Fractional
Modified Camassa-Holm equation.

Uy — Uyt + 3uluy = 2Uptiyr + Ullprs (4.6)
with the initial and boundary conditions:
u(z,0) = —2860h2(g), u(0,t) = —2sech?(—t), wu(l,t) = —2sech2(% —t).
The corresponding integer order problems o = 1 has the exact solution
Uegact = —2866h2(g —t).

Suppose ug(x,t) = —2sech®(%) as an initial approximated and apply the
Haar wavelet with iteration technique.

The numerical results for different value resolution (m) and different iter-
ation with @ = 1 at 5 iterations are shown in Figs 1, 3. Absolute error for
different iterations with o = 1 in (x(7),¢(¢)) are shown in Fig 2. To make a
comparison, the absolute error obtained by the present method has been com-
pared with the Adomian Decomposition Method (ADM) [17] and Variational
Iteration Method (VIM) [16], [18] in Table 1.

ExXAMPLE 4.2. By putting b = 3, equation (1.1) reduce to Time Fractional
Degasperis-Procesi equation.

Uy — Uyt + 2P uy = Bugliyy + Ullprs (4.7)

with the initial and boundary conditions:

15 9, T
u(z,0) = 5 sech (2)
1 t
u(0,t) = —gsechQ(—%)
15 1 5t
1) = ——sech?(= — 2.
u(1,t) Ssech(2 4)
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fifth iter for m=8 fifth iter for m=16

fifth iter for m=32 exact solution

() ()

FIGURE 1. Exact solution and Haar wavelet iteration (HWI) solu-
tion for different value resolution in Example 4.1, which shows that
numerical solution is in very good coincide with exact solution by
increasing resolution (m).

The corresponding integer order problems o = 1 has exact solution

15 x bt
Uegact = 7§560h2(§ — Z)
Suppose ug(z,t) = —2sech?(%£) as an initial approximated and apply the

Haar wavelet iteration technique.

The numerical results include absolute error and approximate solutions for
m = 64 at 3 iterations are shown in Fig 3. The approximate solutions obtained
by the present method has been compared with the Adomian Decomposition
Method (ADM) [17] and Variational Iteration Method (VIM) [16], [18] in Ta-
ble 2 and Table 3 shows the absolute errors of the approximate solutions for
different value of « at different points.
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0.18 T

*

014 |

absulute error for 1th Iter
—Z— absulute error for 2th iter
absulute error for 3th iter
- absulute error for 4th iter

absulute error for Sth iter

0.12

0.1

n.08

0.06

0.04

0.02

FIGURE 2.

Comparison of absolute error for different approxi-

mate solutions for a = 1, in Example 4.1.

a=1
(@), tG) | [uSiy s —wewl  [uSHor —weal [0 —weal  |uGh oy — weal17]  [ul)y, — uea|[18]
(35> 1o5) | 446x 1077 8.23 x 10~ ° 1.71 x 10~7 3.66 x 10~ % 3.66 x 10~ %
(£, &%) | 531x1073 1.26 x 1072 5.22 x 1073 8.17 x 1072 8.17 x 1072
(£, 2L) | ss52x1073 3.10 x 1072 1.29 x 1072 3.40 x 1071 3.40 x 1071
(£5, £%) | 231 x1072 3.20 x 1072 1.23 x 1072 7.48 x 1071 7.48 x 1071
(5, 85y | 734x1072 8.28 x 1073 9.84 x 1074 1.263 x 10! 1.263 x 10!
(5% 7a5) | 129 x 1071 3.46 x 1072 1.59 x 1072 1.836 x 10! 1.836 x 10!
(%, %) | 1.60x1071 7.83 x 1072 2.82 x 1072 2.414 x 10! 2.414 x 10*
(Hi, 4| 130x 107! 8.94 x 1072 2.59 x 1072 2.822 x 10! 2.822 x 10*
(42 127y | 5.73 x1073 2.79 x 1072 2.22 x 1073 3.404 x 10* 3.404 x 10*

TABLE 1. Absolute error of approximate solution haar wavelet
with = 1, m = 64 in Example 4.1, present method solution
compared with ADM method [17] and VIM method [16] , [18]
at various points of x and t.

5. CONCLUSION

In this work, we haveapplied the combination of Haar wavelet operational
matrices method and iteration technique for the solution of time fractional mod-
ified Camassa-Holm equation and time fractional modified Degasperis-Procesi
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first iter for m=64 second iter for m=64

05 - 05~

(4) (B)

third iter for m=64 forth iter for =64

(c) ()

fifth iter for m=64 exact solution

08 - 08~

(E) (F)

FIGURE 3. Haar wavelet iteration solution for different itera-
tions with @ = 1 in Example 4.1, which shows that numerical
solution is in very good coincide with exact solution by in-
creasing iterations.

equation. We transform nonlinear fractional partial differential equation to the
linear equation and Sylvester equation by using iteration technique. The ob-
tained results have been compared with exact solutions as well as with ADM
and VIM, which shows that numerical solution are in very good coincide with
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first iter

(a)

third iter

02
oqgl [ ¥ steidearoriar i ter #Pry
—&— absulule error for 2 er *,x e
absulute arror for 3 der ¥ *
016 * »
. *
0.14 * *
+
012 o =
g *

0.4

0.08
L *
0.06 ¥
¥
0.04 *
o
*
0.02 *
o

®  exact solion at 1=0.2421, all of X
—6&— first Revation il 1=0.2421, allof x

——— second iteration a11=0.2421, all of x
third ileralion at 1:0.2421, sl of x

second iter

(8)

exact solution

05
s, #  exact sokiion at 1=0.9921, al of x
06 Y —&— first itteration at 1=0.9921, all of x
——— second itieration 821, all of x
irch Bieration 1=0.9921, al of x
07
08
09
El
1.1
12

#  exact solition al 1=0,6484, all
—&— firsl Resation f
——— second iteration 3
third Heration at 1=0.6484, all of x

FIGURE 4. Haar wavelet iteration solution for different itera-

tions with o = 1, which shows that numerical solution is in

very good coincide with exact solution by increasing iterations.
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a=1
(), tG) | Sy —veal WDy —ueal WS, —ueal  uGh o —ueal )y, — ueal
(3 35) 5.24 X 10~ 2.29 X 10~ 2.20 x 10~ ° 1.24 x 101 1.24 x 10~ 1
(£, 22 5.95 x 1073 4.70 x 1073 2.95 x 1073 2.02 x 1072 2.02 x 1072
(.3 1.62 x 1073 1.25 x 102 3.90 x 1073 3.10 x 1071 3.10 x 1071
(%, %) 3.40 x 1072 1.47 x 1072 2.91 x 1073 8.34 x 1071 8.34 x 1071
(£, 5 9.62 x 1072 1.68 x 1072 1.42 x 1072 1.496 x 10% 1.496 x 10%
(5 125) 1.59 x 1071 3.08 x 1072 2.03 x 1072 2.233 x 10* 2.233 x 101
(5, %) 1.88 x 1071 5.39 x 1072 1.11 x 1072 2.979 x 10* 2.979 x 101
(41,11 1.47 x 101 5.42 x 1072 7.90 x 1073 3.674 x 10" 3.674 x 10"
(127, 121 7.54 x 1073 1.63 x 1072 1.41 x 1073 4.267 x 10" 4.267 x 10!

TABLE 2. absolute error of approximate solution haar wavelet

in a = 1,m = 64 in Example 4.2, present method solution
compared with ADM method [17] and VIM method [16] , [18]
at various points of x and t.

@@),t() [uflys —veal  1Ry; — veal  |uiRy ) — veal  |[ufiyy; — ueol
a=20.3 a =0.6 a = 0.9 a=1
(35 35) 4.49 x 10°° 4.24 x 10°° 3.11 x 10~ 2.20 x 10~°
(&%, &%) | 5.22x1073 4.60 x 1073 3.46 x 1073 2.95 x 1073
(.3 4.82 x 1073 3.89 x 1073 3.62 x 1073 3.90 x 1073
(5%, £%) 1.28 x 1072 1.13 x 1072 6.03 x 1073 2.91 x 1073
(£, 5 4.27 x 1072 3.59 x 10~2 2.14 x 1072 1.42 x 1072
(55 To5 6.83 x 1072 5.53 x 1072 3.13 x 1072 2.03 x 1072
(2.5 6.86 x 102 5.17 x 10~ 2 2.34 x 1072 1.11 x 1072
(41,11 3.51 x 1072 2.19 x 1072 9.28 x 10~4 7.90 x 10~4
(127,121 7.46 x 1073 4.22 x 1073 1.86 x 104 1.41 x 104

TABLE 3. Absolute error of (HWI) with @ = 1,m = 64 in
Example 4.2. which shows that solutions by present method

convergence to the exact solution at @ = 1, when « approach

to 1.

the exact solution by increasing iterations or level of resolution or both. The

obtained results demonstrate the accuracy, efficiency, and reliability of the pro-

posed method. Agreement between present numerical results obtained by Haar
Wavelet Iteration method with exact solutions appear very satisfactory through

illustrative results in Tables and Figures.

However, Haar Wavelet Iteration

method provides more accurate and better solution in comparison to ADM
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and VIM. The present scheme is very simple, effective and appropriate for
obtaining numerical solutions of nonlinear partial differential equations.
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