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Abstract. In this paper, we propose a numerical method based on the

generalized hat functions (GHFs) and improved hat functions (IHFs) to

find numerical solutions for stochastic Volterra-Fredholm integral equa-

tion. To do so, all known and unknown functions are expanded in terms

of basic functions and replaced in the original equation. The operational

matrices of both basic functions are calculated and embeded in the equa-

tion to achieve a linear system of equations which give the expansion

coefficients of the solution. We prove that the rate of the convergence

is O(h2) and O(h4) for these two different bases under some conditions.

Two examples are solved and the results are compared with those of block

pulse functions method (BPFs) to show the accuracy and reliability of

the methods.

Keywords: Generalized hat functions, Improved hat functions, Stochastic

operational matrix, Stochastic Volterra-Fredholm integral equation, Brownian

motion.

∗Corresponding Author

Received 14 October 2018; Accepted 31 August 2019

c©2023 Academic Center for Education, Culture and Research TMU

145

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

8.
1.

14
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

26
-0

2-
10

 ]
 

                             1 / 20

http://dx.doi.org/10.52547/ijmsi.18.1.145
https://ijmsi.com/article-1-1440-en.html


146146 1

2000 Mathematics subject classification: 60H05, 60H20, 65C30.

1. Introduction

Stochastic equations are one of the most important and applied topics in

today’s world. They arise in modelling of different problems in science such as

finance [1, 2, 3], chemistry [4, 5, 6], mechanics [7], physics [8, 9, 10], mathematics

and statistics [11, 12, 13], biology [14, 15, 16], etc.. This sometimes results in

a stochastic Volterra-Fredholm integral equation and in many cases they have

no explicit form of the solution [17]. Consequently, numerical methods come

to solve the problem and find an appropriate approximation.

Consider the following stochastic Volterra-Fredholm integral equation,

X(t) = f(t) +

∫ β

α

K1(s, t)X(s)ds+

∫ t

0

K2(s, t)X(s) ds+

∫ t

0

K3(s, t)X(s) dB(s),

where s, t ∈ [o, T ), X, f,K1,K2 and K3 are the stochastic processes defined on

the same probability space (Ω, F, P ) and X is unknown.

Also
∫ t
0
K3(s, t)X(s) dB(s), is the Itô integral and B(t) is a Brownian motion

[20].

Different basic functions have been used to find an approximation for stochastic

integral equations such as block pulse functions [17, 18, 19], hat functions [21],

modified hat functions [22, 23], triangular functions [24, 25], hybrid functions

[26, 27], wavelet methods [28, 29], etc..

In this paper, we use both generalized hat functions (GHFs) and improved

hat functions (IHFs) to find approximations of the solution of the original

equation. In these methods, the operational matrices and approximations of

all functions are found according to basic functions. They are replaced in the

original equation and a linear system of equations is concluded. The rate of

convergence is shown to be O(h2) and O(h4) respectively for these methods,

which is acceptable.

This paper is organized as follows. In Section 2, we describe GHFs, their

properties and operational matrices. In Section 3, IHFs, their properties and

operational matrices are reviewed. In Section 4, the method of the solution is

studied. In Section 5, the error analysis is discussed. Some numerical examples

are solved and compared with those of BPFs in Section 6. And finally in Section

7, some tentative conclusions will be drawn.

2. Generalized hat functions (GHFs)

In this section, we get to know GHFs and their properties, function expansions

and operational matrices [21, 30].
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Hat functions, also known as triangular or tent functions and whose graphs

take the shape of triangles or hats, work to solve differential equations by

Galerkin method. They are useful in signal processing and communication sys-

tem engineering, and have applications in pulse code modulation for transmit-

ting digital signals. These functions are continuous and defined on [0, 1]. Gen-

eralized hat functions (GHFs) are created by extending the domain of definition

to [0, T ]. To do so, we divide [0, T ] into n equal subintervals [ih, (i + 1)h], i =

0, 1, . . . , n− 1, where h = T
n and n is an arbitrary positive integer and defines

a set of GHFs as

h0(t) =

{
h−t
h , 0 ≤ t ≤ h

0, otherwise.

For i = 1, 2, . . . , (n− 1),

hi(t) =


t−(i−1)h

h , (i− 1)h ≤ t ≤ ih
(i+1)h−t

h , ih ≤ t ≤ (i+ 1)h,

0, otherwise,

and

hn(t) =

{
t−(T−h)

h , T − h ≤ t ≤ T
0, otherwise.

From the definition of GHFs, the following properties come as a result.

(1) They are linearly independent.

(2)hi(jh) =

{
1, i = j

0, i 6= j
.

(3)hi(t)hj(t) = 0, |i− j| ≥ 2.

(4)
∑n
i=0 hi(t) = 1.

Suppose

H(t) = [h0(t), h1(t), . . . , hn(t)]T , (2.1)

then, we have

(5) H(t)HT (t) '


h0(t) 0 . . . 0

0 h1(t) . . . 0
...

...
. . .

...

0 0 0 hn(t)

 .
(6) H(t)H(t)TF ' diag(F )H(t), where F is an (n+ 1)-column vector.

(7) Let K be an (n + 1) × (n + 1) matrix, then H(t)TKH(t) ' H(t)T K̃,

where K̃ is a column vector with (n + 1) entries equal to the diagonal entries

of matrix K.
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An arbitrary real function f ∈ L2([0, T )) can be expanded by these basic

functions as

f(t) '
n∑
i=0

fihi(t) = FTH(t) = HT (t)F, (2.2)

where F = [f0, f1, . . . , fn]T and H(t) is defined in relation (2.1) and the coeffi-

cients in (2.2) are given by fi = f(ih), i = 0, 1, . . . , n.

Similarly, an arbitrary real function of two variables g(s, t) defined on L2([0, T )×
[0, T )) can also be expanded by these functions as

g(s, t) ' HT (s) G H(t) = HT (t) GT H(s), (2.3)

where G= [Gij ] is an (n + 1) × (n + 1) GHFs coefficients matrix with entries

Gij = g(ih, jh), that i, j = 0, 1, 2, . . . , n and h = T
n .

We present P and Ps as the operational matrix and stochastic operational

matrix of integration for GHFs respectively, where [21]

P =
h

2



0 1 1 . . . 1 1

0 1 2 . . . 2 2

0 0 1 . . . 2 2
...

...
...

. . .
...

...

0 0 0 . . . 1 2

0 0 0 . . . 0 1


, (2.4)

and

Ps =



0 β0(h) β0(h) . . . β0(h) β0(h)

0 B(h) + β1(h) γ1(h) . . . γ1(h) γ1(h)

0 0 B(2h) + β2(h) . . . γ2(h) γ2(h)

...
...

...
. . .

...
...

0 0 0 . . . B((n− 1)h) + βn−1(h) γn−1

0 0 0 . . . 0 B(T ) + βn(h)


,

(2.5)

with

β0(h) =
1

h

∫ h

0

B(τ) dτ,

βi(h) =
−1

h

∫ ih

(i−1)h
B(τ) dτ, i = 1, 2, . . . , n,

γi(h) =
−1

h

(∫ ih

(i−1)h
B(τ) dτ −

∫ (i+1)h

ih

B(τ) dτ

)
, i = 1, 2, . . . , n− 1,

Theorem 2.1. Let H(t) be the vector defined in relation (2.1), then∫ T

0

H(τ)HT (τ) dτ = P∗,
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where P∗ is the following (n+ 1)× (n+ 1) matrix,

P∗ =
h

3



1 1
2 0 0 0 . . . 0 0 0

1
2 2 1

2 0 0 . . . 0 0 0

0 1
2 2 1

2 0 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . 1
2 2 1

2

0 0 0 0 0 . . . 0 1
2 1


, (2.6)

Proof. The proof comes after integrating the elements of H(t)HT (t) from 0 to

T . �

3. Improved hat functions (IHFs)

IHFs and their properties, function expansions and operational matrices are

studied in this section [23, 30].

Let n ≥ 3 be a multiple of 3 and h = T
n . Also assume that the interval [0, T ) is

divided into n
3 equal subintervals [ih, (i+3)h], i = 0, 3, . . . , (n−3). Moreover, let

Xn be the set of all continuous functions that are the third degree polynomials

when restricted to the above subintervals. Each element of Xn being completely

determined by its values at (n+ 1) nodes ih, i = 0, 1, . . . , n eventuates (n+ 1)

is the dimension of Xn and f ∈ C([0, T )) can be approximated by a linear

combination of the following set of functions,

m0(t) =

{
−1
6h3 (t− h)(t− 2h)(t− 3h), 0 ≤ t ≤ 3h

0, otherwise.

If i = 3k − 2 and 1 ≤ k ≤ n
3 ,

mi(t) =

{
1

2h3 (t− (i− 1)h)(t− (i+ 1)h)(t− (i+ 2)h), (i− 1)h ≤ t ≤ (i+ 2)h

0, otherwise.

If i = 3k − 4 and 2 ≤ k ≤ n
3 + 1,

mi(t) =

{
−1
2h3 (t− (i− 2)h)(t− (i− 1)h)(t− (i+ 1)h), (i− 2)h ≤ t ≤ (i+ 1)h

0, otherwise,

and if i = 3k and 1 ≤ k ≤ n
3 − 1,

mi(t) =


1

6h3 (t− (i− 3)h)(t− (i− 2)h)(t− (i− 1)h), (i− 3)h ≤ t ≤ ih
−1
6h3 (t− (i+ 1)h)(t− (i+ 2)h)(t− (i+ 3)h), ih ≤ t ≤ (i+ 3)h

0, otherwise,

and

mn(t) =

{
1

6h3 (t− (T − h))(t− (T − 2h))(t− (T − 3h)), T − 3h ≤ t ≤ T
0, otherwise.
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The following properties come as a result of above definition.

1) They are linearly independent.

2)mi(jh) =

{
1, i = j

0, i 6= j
.

3)

n∑
i=0

mi(t) =1.

Suppose

M(t) = [m0(t),m1(t), . . . ,mn(t)]T , (3.1)

then, we have

4) M(t)MT (t) '


m0(t) 0 . . . 0

0 m1(t) . . . 0
...

...
. . .

...

0 0 0 mn(t)

 .
5) M(t)M(t)TF ' diag(F )M(t), where F is an (n+ 1)-column vector.

6) Let K be an (n + 1) × (n + 1) matrix, then M(t)TKM(t) ' M(t)T K̃,

where K̃ is a column vector with (n + 1) entries equal to the diagonal entries

of matrix K.

An arbitrary real function f on [0, T ) can be expanded by these basic functions

as

f(t) '
n∑
i=0

fimi(t) = FTM(t) = MT (t)F, (3.2)

where F = [f0, f1, . . . , fn]T and M(t) is defined in relation (3.1) and the coef-

ficients in (3.2) are given by fi = f(ih), i = 0, 1, . . . , n.

Similarly, an arbitrary real function of two variables g on [0, T )× [0, T ) can

also be expanded by these basis functions as

g(s, t) 'MT (s) G M(t) = MT (t) GT M(s), (3.3)

where G = [Gij ] is an (n + 1) × (n + 1) matrix and Gij = g(ih, jh) for i, j =

0, 1, 2, . . . , n.
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We introduce P′ and P′s, the operational matrix of integration of the vector

M(t) defined in relation (3.3) and stochastic operational matrix of Itô integra-

tion of the vector M(t) as

P′ =
h

24



0 a1 a2 a2 a2 . . . a2
0 p′1 p′2 p′3 p′3 . . . p′3
0 0 p′1 p′2 p′3 . . . p′3
0 0 0 p′1 p′2 . . . p′3
0 0 0 0 p′1 . . . p′3
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . p′1


,

where

a1 =
[

9 8 9
]
, a2 =

[
9 9 9

]
, p′1 =

 19 32 27

−5 8 27

1 0 9

 ,
p′2 =

 27 27 27

27 27 27

18 17 18

 , p′3 =

 27 27 27

27 27 27

18 18 18

 ,
and 0, based on its location in this matrix is a 3× 3 zero matrix or a 3-vector.

It is noteworthy that the operational matrix is not presented appropriately in

[23].

As well

P′s =



0 as1 as2 as2 as2 . . . as2
0 p′s1 p′s2 p′s3 p′s3 . . . p′s3
0 0 p′s1 p′s2 p′s3 . . . p′s3
0 0 0 p′s1 p′s2 . . . p′s3
0 0 0 0 p′s1 . . . p′s3
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . p′s1


,

where as1 =
[
θ0,1 θ0,2 θ0,3

]
, as2 =

[
θ0,3 θ0,3 θ0,3

]
, and

p′s1 =

 B(ih) + θi,i θi,i+1 θi,i+2

δi,i−1 B(ih) + δi,i δi,i+1

ξi,i−2 ξi,i−1 B(ih) + ξi,i

 ,
p′s2 =

 θi,i+2 θi,i+2 θi,i+2

δi,i+1 δi,i+1 δi,i+1

ξi,i+1 ξi,i+2 ξi,i+3

 , p′s3 =

 θi,i+2 θi,i+2 θi,i+2

δi,i+1 δi,i+1 δi,i+1

ξi,i+3 ξi,i+3 ξi,i+3

 ,
with

θ0,j(h) =
1

6h3

∫ jh

0

(3τ2 − 12τh+ 11h2)B(τ) dτ , j = 1, 2, 3.

if i = 3k − 2 and 1 ≤ k ≤ n
3
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θi,j(h) = − 1
2h3

∫ jh

(i−1)h
(3τ2 − (6i+ 4)hτ + (3i2 + 4i− 1)h2)B(τ) dτ,

j = i, i+ 1, i+ 2,

if i = 3k − 4 and 2 ≤ k ≤ n
3 + 1

δi,j(h) = 1
2h3

∫ jh

(i−2)h
(3τ2 − (6i− 4)hτ + (3i2 − 4i− 1)h2)B(τ) dτ,

j = i− 1, i, i+ 1,

if i = 3k and 1 ≤ k ≤ n
3 − 1

ξi,j(h) = −1
6h3

∫ jh

(i−3)h
(3τ2 − (6i− 12)hτ + (3i2 − 12i+ 11)h2)B(τ) dτ,

j = i− 2, i− 1, i,

and

ξi,j(h) =
−1

6h3
(

∫ ih

(i−3)h
(3τ2 − (6i− 12)hτ + (3i2 − 12i+ 11)h2)B(τ) dτ

−
∫ jh

ih

(3τ2 − (6i+ 12)hτ + (3i2 + 12i+ 11)h2)B(τ) dτ),

j = i+ 1, i+ 2, i+ 3,

and 0, based on its location in this matrix is a 3× 3 zero matrix or a 3-vector.

It is noteworthy that the stochastic operational matrix is not presented well in

[23].

Theorem 3.1. Let M(t) be the vector defined in relation (3.2), then

∫ T

0

M(τ)MT (τ) dτ = P′∗,

where P′∗ is the following (n+ 1)× (n+ 1) matrix

P
′
∗ =

h

35



8 99
16

−9
4

19
16

0 0 0 . . . 0 0 0 0 0 0 0
99
16

81
2

−81
16

−9
4

0 0 0 . . . 0 0 0 0 0 0 0
−9
4

−81
16

81
2

99
16

0 0 0 . . . 0 0 0 0 0 0 0
19
16

−9
4

99
16

16 99
16

−9
4

19
16

. . . 0 0 0 0 0 0 0

0 0 0 99
16

81
2

−81
16

−9
4

. . . 0 0 0 0 0 0 0

0 0 0 −9
4

−81
16

81
2

99
16

. . . 0 0 0 0 0 0 0

0 0 0 19
16

−9
4

99
16

16 . . . 0 0 0 0 0 0 0

.

.

.
.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 0 0 0 0 0 0 . . . 19
16

−9
4

99
16

16 99
16

−9
4

19
16

0 0 0 0 0 0 0 . . . 0 0 0 99
16

81
2

−81
16

−9
4

0 0 0 0 0 0 0 . . . 0 0 0 −9
4

−81
16

81
2

99
16

0 0 0 0 0 0 0 . . . 0 0 0 19
16

−9
4

99
16

8



,

Proof. The proof is easy and it comes after integrating the elements of M(t)MT (t)

from 0 to T . �
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4. Method of solution

As stated in the introduction, our aim is to solve the next stochastic Volterra-

Fredholm integral equation

X(t) = f(t) +

∫ β

α

K1(s, t)X(s)ds+

∫ t

0

K2(s, t)X(s) ds+

∫ t

0

K3(s, t)X(s) dB(s),

(4.1)

where t ∈ [0, T ). Without loss of generality we can set [0, T ] instead of [α, β].

By approximating X, f,K1,K2,K3 through GHFs expansions as mentioned in

relations (2.2) and (2.3), we have

X(t) ' XTH(t) = H(t)TX,

f(t) ' FTH(t) = H(t)TF,

K1(s, t) ' H(t)TKT
1 H(s) = H(s)TK1H(t),

K2(s, t) ' H(t)TK2
TH(s) = H(s)TK2H(t),

K3(s, t) ' H(t)TK3
TH(s) = H(s)TK3H(t).

Substituting above approximations in equation (4.1), we obtain

H(t)TX ' H(t)TF +

∫ T

0

H(t)TKT
1 H(s)H(s)TX ds

+

∫ t

0

H(t)TKT
2 H(s)H(s)TX ds+

∫ t

0

H(t)TKT
3 H(s)H(s)TX dB(s),

by applying the 6-th property of GHFs and Theorem 2.1, we have

H(t)TX ' H(t)TF + HT (t)KT
1 P∗X + HT (t)KT

2 diag(X)

(∫ t

0

H(s) ds

)
+ HT (t)KT

3 diag(X)

(∫ t

0

H(s) dB(s)

)
, (4.2)

where P∗ is defined in relation (2.6). Using operational matrices defined in

relations (2.4) and (2.5) , we get

H(t)TX ' H(t)TF + HT (t)KT
1 P∗X + HT (t)KT

2 diag(X)PH(t)

+ HT (t)KT
3 diag(X)PsH(t).

The following relation is obtained by using property 7 of GHFs in the previous

relation,

HT (t)X ' HT (t)F + HTKT
1 P∗X + HT (t)Ã + HT (t)B̃,
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where A = KT
2 diag(X)P and B = KT

3 diag(X)Ps. Eliminating HT (t) and

replacing ' by =, we obtain

X = F + KT
1 P∗X + Ã + B̃, (4.3)

which is a linear system of equations that its solution is easily found by math-

ematical softwares.

The solution method of IHFs is just like GHFs with the difference that the

basic functions and their operational matrices are changed to M,P′,P′s and

P′∗.

5. Error analysis

In this section, we prove that the rate of convergence for GHFs and IHFs meth-

ods are O(h2) and O(h4) respectively, in solving stochastic Volterra-Fredholm

integral equation.

Theorem 5.1. [21] Let f ∈ C2([0, T )) and en(t) = f(t) − fn(t), t ∈ [0, T ),

where fn(t) =
∑n
i=0 f(ih)hi(t) is the GHFs expansion of f , then we have

‖en‖ ≤
h2

2
‖f (2)‖,

where ‖.‖ denotes the sup-norm.

Theorem 5.2. [21] Let g(s, t) ∈ C2 ([0, T )× [0, T )) and en(s, t) = g(s, t) −
gn(s, t) for (s, t) ∈ [0, T )×[0, T ), where gn(s, t) =

∑n
i=0

∑n
j=0 g(ih, jh)hi(s)hj(t),

is the GHFs expansion of g(s, t), then we have

‖en‖ ≤
h2

2

(
‖f (2)s ‖+ 2‖f (1+1)

s,t ‖+ ‖f (2)t ‖
)
,

and so ‖en‖ = O(h2).

Theorem 5.3. Let X be the exact solution of equation (4.1) and Ẑn be the

solution by GHFs method then

‖X − Ẑn‖ ≤
h2

2

(
‖L−1‖(1 + (β − α)N1 + TN2 +N3‖B‖)‖X(2)‖+ ‖Z(2)‖

)
,

where X(t) ' X̂n(t) and Z(t) ' Ẑn(t), so ‖X − Ẑn‖ = O(h2), where Ni =

sup
s,t∈[0,T )

|Ki(s, t)| for i = 1, 2, 3 and L is the matrix that satisfies in relation

(4.3) as LX = F.

Proof. We know

‖X − Ẑn‖ ≤ ‖X − Z‖+ ‖Z − Ẑn‖, (5.1)

by the fact that X(t) = L−1f(t) and Z(t) = L−1f̂(t), we obtain

‖X − Z‖ ≤ ‖L−1‖‖f − f̂‖. (5.2)
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Applying inequality (5.2) and Theorem 5.1 in relation (5.1), we get

‖X − Ẑn‖ ≤ ‖L−1‖‖f − f̂‖+
h2

2
‖Z(2)‖. (5.3)

From the original equation (4.1) and for t ∈ [0, T ), we have

f(t) = X(t)−
∫ β

α

K1(s, t)X(s)ds−
∫ t

0

K2(s, t)X(s) ds−
∫ t

0

K3(s, t)X(s) dB(s),

and

f̂(t) = X̂n(t)−
∫ β

α

K1(s, t)X̂n(t)ds−
∫ t

0

K2(s, t)X̂n(t) ds−
∫ t

0

K3(s, t)X̂n(t) dB(s).

Thus, we obtain

f(t)− f̂(t) = X(t)− X̂n(t)−
∫ β

α

K1(s, t)(X(s)− X̂n(s))ds

−
∫ t

0

K2(s, t)(X(s)−X̂n(s)) ds−
∫ t

0

K3(s, t)(X(s)−X̂n(s)) dB(s),

therefore

sup
t∈[0,T )

|f(t)−f̂(t)| ≤ sup
t∈[0,T )

|X(t)−X̂n(t)|+ sup
t∈[0,T )

|
∫ β

α

K1(s, t)(X(s)−X̂n(s))ds|

+ sup
t∈[0,T )

|
∫ t

0

K2(s, t)(X(s)−X̂n(s)) ds|+ sup
t∈[0,T )

|
∫ t

0

K3(s, t)(X(s)−X̂n(s)) dB(s)|.

Hence, the following inequality is obtained

sup
t∈[0,T )

|f(t)−f̂(t)| ≤ sup
t∈[0,T )

|X(t)−X̂n(t)|+ sup
t∈[0,T )

∫ β

α

|K1(s, t)||X(s)−X̂n(s)|ds

+ sup
t∈[0,T )

∫ t

0

|K2(s, t)||X(s)−X̂n(s)| ds+ sup
t∈[0,T )

|
∫ t

0

|K3(s, t)||X(s)−X̂n(s)| dB(s),

thus

sup
t∈[0,T )

|f(t)− f̂(t)| ≤ sup
t∈[0,T )

|X(t)− X̂n(t)|+ (β−α)N1 sup
t∈[0,T )

|X(t)− X̂n(t)|

+TN2 sup
t∈[0,T )

|X(t)−X̂n(t)|+N3 sup
t∈[0,T )

|B(t)| sup
t∈[0,T )

|X(t)−X̂n(t)|

≤ h2

2
‖X(2)‖(1 + (β − α)N1 + TN2 +N3‖B‖). (5.4)

Using relation (5.4) in inequality (5.3), we have

‖X − Ẑn‖ ≤
h2

2
‖L−1‖‖X(2)‖(1 + (β − α)N1 + TN2 +N3‖B‖) +

h2

2
‖Z(2)‖,

therefore

‖X − Ẑn‖ ≤
h2

2
(‖L−1‖(1 + (β − α)N1 + TN2 +N3‖B(t)‖)‖X(2)‖+ ‖Z(2)‖),

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

8.
1.

14
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

26
-0

2-
10

 ]
 

                            11 / 20

http://dx.doi.org/10.52547/ijmsi.18.1.145
https://ijmsi.com/article-1-1440-en.html


156 N. Momenzade, A. R. Vahidi, E. Babolian

and this completes the proof. �

IHFs error analysis is reviewed in next theorems.

Theorem 5.4. [23] Let tj = jh, j = 0, 1, . . . , n, f ∈ C4([0, T )) and fn(t) be

the IHFs expansion of f(t), that is defined as fn(t) =
∑n
j=0 f(tj)mj(t). Also

assume that en(t) = f(t)− fn(t), for t ∈ [0, T ), then we have

‖en‖ ≤
3h4

128
‖f (4)‖.

Theorem 5.5. [23] Let si = ti = ih, i = 0, 1, . . . , n,K ∈ C4 ([0, T )× [0, T ))

and Kn(s, t) =
∑n
i=0

∑n
j=0K(si, tj)mi(s)mj(t), be the IHFs expansion of K(s, t).

Also assume that en(s, t) = K(s, t)−Kn(s, t) for s, t ∈ [0, T ), then we have

‖en‖ ≤
3h4

128

(
‖K(4)

s ‖+ ‖K(4)
t ‖

)
+

9h8

16384
‖K(4+4)

s,t ‖.

Theorem 5.6. Let X(t) be the exact solution of equation (4.1) and Ŷn(t) be the

solution obtained by the proposed method. So X(t) ' X̂n(t) and Y (t) ' Ŷn(t):

‖X − Ŷn‖ ≤
3h4

128
(‖L−1‖(1 + (β − α)M1 + TM2 +M3‖B(t)‖)‖X(4)‖+ ‖Y (4)‖)

for t ∈ [0, T ) and hence, ‖X − Ŷn‖ = O(h4), where Mi = sup
s,t∈[0,T )

|Ki(s, t)| for

i = 1, 2, 3 and L is the matrix that satisfies in relation (4.3) as LX = F.

Proof. From equation (4.1), we have

f(t) = X(t)−
∫ β

α

K1(s, t)X(s)ds−
∫ t

0

K2(s, t)X(s) ds−
∫ t

0

K3(s, t)X(s) dB(s),

and

f̂(t) = X̂n −
∫ β

α

K1(s, t)X̂n(t)ds−
∫ t

0

K2(s, t)X̂n(t) ds−
∫ t

0

K3(s, t)X̂n(t) dB(s),

for all t ∈ [0, T ), where X̂n(t) is the expansion of X(t) by IHFs. So

f(t)− ˆf(t) = X(t)− X̂n(t)−
∫ β

α

K1(s, t)(X(s)− X̂n(s))ds

−
∫ t

0

K2(s, t)(X(s)−X̂n(s)) ds−
∫ t

0

K3(s, t)(X(s)−X̂n(s)) dB(s),

therefore

sup
t∈[0,T )

|f(t)−f̂(t)| ≤ sup
t∈[0,T )

|X(t)−X̂n(t)|+ sup
t∈[0,T )

|
∫ β

α

K1(s, t)(X(s)−X̂n(s))ds|

+ sup
t∈[0,T )

|
∫ t

0

K2(s, t)(X(s)−X̂n(s)) ds|+ sup
t∈[0,T )

|
∫ t

0

K3(s, t)(X(s)−X̂n(s)) dB(s)|,
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thus

sup
t∈[0,T )

|f(t)−f̂(t)| ≤ sup
t∈[0,T )

|X(t)−X̂n(t)|+ sup
t∈[0,T )

∫ β

α

|K1(s, t)||X(s)−X̂n(s)|ds

+ sup
t∈[0,T )

∫ t

0

|K2(s, t)||X(s)−X̂n(s)| ds+ sup
t∈[0,T )

|
∫ t

0

|K3(s, t)||X(s)−X̂n(s)| dB(s).

Applying the assumptions, we have

sup
t∈[0,T )

|f(t)− f̂(t)| ≤ sup
t∈[0,T )

|X(t)− X̂n(t)|+ (β−α)M1 sup
t∈[0,T )

|X(t)− X̂n(t)|

+TM2 sup
t∈[0,T )

|X(t)−X̂n(t)|+M3 sup
t∈[0,T )

|B(t)| sup
t∈[0,T )

|X(t)−X̂n(t)|

≤ 3h4

128
‖X(4)‖(1 + (β − α)M1 + TM2 +M3‖B‖). (5.5)

By the fact that X(t) = L−1f(t) and Y (t) = L−1f̂(t), we obtain

sup
t∈[0,T )

|X(t)− Y (t)| ≤ ‖L−1‖ sup
t∈[0,T )

|f(t)− f̂(t)|. (5.6)

We also have

sup
t∈[0,T )

|X(t)− Ŷn(t)| ≤ sup
t∈[0,T )

|X(t)− Y (t)|+ sup
t∈[0,T )

|Y (t)− Ŷn(t)|. (5.7)

Applying inequalities (5.5) and (5.6) in (5.7), we get

sup
t∈[0,T )

|X(t)− Ŷn(t)| ≤ ‖L−1‖3h4

128
‖X(4)‖(1 + (β − α)M1 + TM2 +M3‖B‖)

+
3h4

128
‖Y (4)‖,

hence

‖X − Ŷn‖ ≤
3h4

128
(‖L−1‖(1 + (β − α)M1 + TM2 +M3‖B‖)‖X(4)‖+ ‖Y (4)‖),

and the proof is complete. �

6. Numerical examples

To show the accuracy of these two methods, we consider some examples. The

computations associated with the examples are performed using Matlab 7 and

[31].

Example 6.1. Let [17]

X(t) = f(t) +

∫ 1

0

cos(s+ t)X(s) ds+

∫ t

0

(s+ t)X(s)ds

+

∫ t

0

exp(−3(s+ t))X(s)dB(s)
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be a linear stochastic Volterra-Fredholm integral equation and s, t ∈ [0, 1),

f(t) = t2 + sin(1 + t) − 2 cos(1 + t) − 2 sin(t) − 7t4

12 + 1
40B(t). X(t) is an

unknown stochastic process defined on the probability space(Ω, F, P ) and B(t)

is a Brownian motion process. The numerical results for the above mentioned

basic functions for m = 15, m = 30 and k = 20 are inserted in TABLEs 1 and

2, where k is the number of iterations. According to the error analysis studied

in Section 5 and the numerical results shown in TABLEs 1 and 2, it can be

concluded that IHFs method is more accurate than BPFs and GHFs. Also,

the number of basic functions has an important role in accuracy. Curves in

FIGUREs 1 and 2 show the solutions computed by GHFs and IHFs for m = 15

and m = 30.
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Figure 1. Numerical results for Example 7.1 by GHFs and

IHFs methods with m=15.
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Figure 2. Numerical results for Example 7.1 by GHFs and

IHFs methods with m=30.
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m = 15

nodes ti BPFs in [17] GHFs IHFs

0 0.0189981383 0.0153842767 0.0210118224

0.1 0.0443427347 0.0285856363 0.0286495434

0.2 0.1036134219 0.0633603756 0.0660030915

0.3 0.1036134219 0.1079519530 0.1148579113

0.4 0.2223270323 0.1775973036 0.1869844526

0.5 0.1666985014 0.2549383742 0.2801345118

0.6 0.4314041184 0.3819749524 0.3918766851

0.7 0.2854952711 0.4666445831 0.5182189623

0.8 0.7172045224 0.6534792502 0.6633343506

0.9 0.4314041184 0.7582855445 0.8301212786

1 0.6106764696 1.1040791318 1.0214181806

Table 1. Numerical results for Example 7.1 and k = 20 and

m = 15.

m=30

nodes ti BPFs in [17] GHFs IHFs

0 −0.0232084950 0.0052161010 0.0202046201

0.1 −0.0016913095 0.0194995661 0.0311602020

0.2 0.0352166406 0.0531067848 0.0652089729

0.3 0.0866090271 0.1011729439 0.1160211920

0.4 0.1575206061 0.1675756213 0.1862674199

0.5 0.2523749931 0.2608108343 0.2803509939

0.6 0.3620734327 0.3708175101 0.3909921800

0.7 0.4852043944 0.4953250063 0.5163329361

0.8 0.6290333441 0.6393069770 0.6621374997

0.9 0.7913292795 0.8025816039 0.8283788832

1 0.9160050969 0.9834906651 1.0199870218

Table 2. Numerical results for Example 7.1 and k = 20 and

m = 30.
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Example 6.2. Let [17]

X(t) = f(t) +

∫ 1

0

(s+ t)X(s) ds+

∫ t

0

(s− t)X(s)ds

+

∫ t

0

1

125
sin(s+ t))X(s)dB(s),

be a linear stochastic Volterra-Fredholm integral equation and s, t ∈ [0, 1),

f(t) = 2− cos(1)− (1 + t) sin(1) + 1
250 sin(B(t)). X(t) is an unknown stochas-

tic process defined on the probability space(Ω, F, P ), and B(t) is a Brownian

motion process. The numerical results are inserted in TABLEs 3 and 4 for

m = 15, m = 30 and k = 20, where k is the number of iterations. Also curves

in FIGUREs 3 and 4 show the solutions computed by GHFs and IHFs method

for m = 15 and m = 30.

m = 15

nodes ti BPFs in [17] GHFs IHFs

0 0.8887010585 1.0043538668 1.0067965374

0.1 0.8739398501 0.9994807132 1.0028942472

0.2 0.8330559947 0.9860670105 0.9893671679

0.3 0.8330559947 0.9641075472 0.9658206983

0.4 0.7446350666 0.9293127652 0.9332182224

0.5 0.7770668749 0.8953335497 0.8915672703

0.6 0.6264915336 0.8357127003 0.8401305971

0.7 0.7086942516 0.7924107845 0.7791483715

0.8 0.4814490330 0.7059055898 0.7108899589

0.9 0.6264915336 0.6572112277 0.6359036879

1 0.5314586850 0.4984763159 0.5552917396

Table 3. Numerical results for Example 7.2 and k = 20 and

m = 15.
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m=30

nodes ti BPFs in [17] GHFs IHFs

0 0.9333907554 1.0064981428 1.0070405950

0.1 0.9170933336 1.0024669678 1.0031060950

0.2 0.8921163336 0.9889465339 0.9896906808

0.3 0.8581147160 0.9655639138 0.9663324513

0.4 0.8159938269 0.9328257670 0.9336072689

0.5 0.7657945036 0.8911282982 0.8919054816

0.6 0.7074524310 0.8397311733 0.8405694614

0.7 0.6404782622 0.7787328004 0.7797028588

0.8 0.5683453181 0.7102683321 0.7113601989

0.9 0.4903056104 0.6350338002 0.6363025241

1 0.4362719187 0.5570677486 0.5557721735

Table 4. Numerical results for Example 7.2 and k = 20 and

m = 30.
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Figure 3. Numerical results for Example 7.2 by GHFs and

IHFs methods with m=15.

7. Conclusion

In this paper, computational methods based on GHFs and IHFs were proposed

to solve stochastic Volterra-Fredholm integral equation. Substituting the ap-

proximations of all known and unknown functions in the original equation and

applying operational matrices resulted in a linear system of algebraic equations

which were simply solved by mathematical softwares. Convergence and error
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Figure 4. Numerical results for Example 7.2 by GHFs and

IHFs methods with m=30.

analysis of these two methods were investigated. According to the error anal-

ysis studied in Section 5, IHFs and GHFs rate of convergence are O(h4) and

O(h2) respectively. So, it can be concluded that IHFs is more accurate than

GHFs and BPFs.
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