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Abstract. Let G be a finite group. The automorphism σ of a group G

is said to be an absolute central automorphism, if for all x ∈ G, x−1xσ ∈
L(G), where L(G) be the absolute centre of G. In this paper, we study

some properties of absolute central automorphisms of a given finite p-

group.
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1. Introduction

Let G be a finite group and N a characteristic subgroup of G. Suppose σ

is an automorphism of G. If (Ng)σ = Ng for all g in G or equivalently σ in-

duces the identity automorphism on G/N , we shall say σ centralizes G/N . We

let AutN (G) denote the group of all automorphisms of G centralizing G/N .

Clearly σ ∈ AutN (G) if and only if x−1xσ ∈ N for all x ∈ G. Now let M

be a normal subgroup of G. Let us denote by CAutN (G)(M) the group of all

automorphisms of AutN (G) centralizing M . Various authors have studied the

groups AutZ(G), the central automorphisms of G, where Z = Z(G), AutG
′
(G),

the IA-automorphisms of G, where G′ stands for the commutator subgroup of

G, and AutΦ(G), where Φ denote the Frattini subgroup of G, the intersec-

tion of all maximal subgroups of G, see for example [14, 17, 19, 20]. For any

Received 30 September 2018; Accepted 15 August 2019

c©2022 Academic Center for Education, Culture and Research TMU

97

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
2.

97
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-0

7-
07

 ]
 

                             1 / 12

http://dx.doi.org/10.52547/ijmsi.17.2.97
https://ijmsi.com/article-1-1424-en.html


98 R. Soleimani

element g ∈ G and σ ∈ Aut(G), the element [g, σ] = g−1gσ is called the au-

tocommutator of g and σ. Also inductively, for all σ1, σ2, ..., σn ∈ Aut(G),

define [g, σ1, σ2, ..., σn] = [[g, σ1, σ2, ..., σn−1], σn]. Hegarty [7], generalized the

concept of centre into absolute centre L(G) of a group G as

L(G) = {g ∈ G | [g, σ] = 1,∀σ ∈ Aut(G)}.

One can easily check that the absolute centre is a characteristic subgroup con-

tained in the centre of G. Also he introduced the concept of the absolute central

automorphism. An automorphism σ of G is called an absolute central auto-

morphism if σ centralizes G/L(G). We denote the set of all absolute central

automorphisms of G by AutL(G). Singh and Gumber [18], Kaboutari Farimani

[9], also Shabani-Attar [17] have given some necessary and sufficient conditions

for a finite non-abelian p-group such that all absolute central automorphisms

are inner. In this paper, we will characterize the finite non-abelian p-groups

G such that AutL(G) = AutG
′
(G). Then, we determine the finite non-abelian

p-groups G with cyclic Frattini subgroup for which AutL(G) = AutΦ(G). Fi-

nally, we classify all finite p-groups G of order pn(3 ≤ n ≤ 5), such that

AutL(G) = Inn(G).

Throughout this paper all groups are assumed to be finite and p always

denotes a prime number. Most of our notation is standard, and can be found

in [5], for example. In particular, a p-group G is said to be extraspecial if

G′ = Z(G) = Φ(G) is of order p. Let L1(G) = L(G) and for n ≥ 2, define

Ln(G) inductively as

Ln(G) = {g ∈ G | [g, σ1, σ2, ..., σn] = 1,∀σ1, σ2, ..., σn ∈ Aut(G)}.

A group G is called autonilpotent of class at most n if Ln(G) = G, for some

n ∈ N. If σ is an automorphism of G and x is an element of G, we write xσ for

the image of x under σ and o(x) for the order of x. For a finite group G, exp(G),

d(G) and cl(G), denote the exponent of G, minimal number of generators of G

and the nilpotency class of G, respectively. Recall that a group G is called a

central product of its subgroups G1, ..., Gn if G = G1 · · ·Gn and [Gi, Gj ] = 1,

for all 1 ≤ i < j ≤ n. In this situation, we shall write G = G1 ∗ · · · ∗ Gn.

For s ≥ 1, we use the notation G∗s for the iterated central product defined by

G∗s = G ∗ G∗(s−1) with G∗1 = G, where G is a finite p-group. We also make

the convention G∗0 = 1. Finally, we use Xn for the direct product of n-copies

of a group X, Cn for the cyclic group of order n where n ≥ 1, as usual, D8 for

the dihedral group, Q8 for the quaternion group, of order 8, respectively and

Mp(n,m) and Mp(n,m, 1) for the minimal non-abelian p-groups of order pn+m

and pn+m+1 defined respectively by

〈a, b | ap
n

= bp
m

= 1, ab = a1+pn−1

〉,
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A Note on Absolute Central Automorphisms of Finite p-Groups 99

where n ≥ 2, m ≥ 1 and

〈a, b, c | ap
n

= bp
m

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉,

where n ≥ m ≥ 1 and if p = 2, then m+ n > 2.

2. Preliminary results

In this section we give some results which will be used in the rest of the

paper.

Let G and H be any two groups. We denote by Hom(G,H) the set of

all homomorphisms from G into H. Clearly, if H is an abelian group, then

Hom(G,H) forms an abelian group under the following operation (fg)(x) =

f(x)g(x), for all f, g ∈ Hom(G,H) and x ∈ G.

The following lemma is a well-known.

Lemma 2.1. Let A,B and C be finite abelian groups. Then

(i) Hom(A×B,C) ∼= Hom(A,C)×Hom(B,C);

(ii) Hom(A,B × C) ∼= Hom(A,B)×Hom(A,C);

(iii) Hom(Cm, Cn) ∼= Ce, where e is the greatest common divisor of m and

n.

We have the following theorem due to Müller [14].

Theorem 2.2. [14, Theorem] If G is a finite p-group which is neither elemen-

tary abelian nor extraspecial, then AutΦ(G)/Inn(G) is a non-trivial normal

p-subgroup of the group of outer automorphisms of G.

The following preliminary lemma is well-known result [19, Lemma 2.2].

Lemma 2.3. Let G be a group and M , N be normal subgroups of G with

N ≤M and CN (M) ≤ Z(G). Then CAutN (G)(M) ∼= Hom(G/M,CN (M)).

Corollary 2.4. If G is a finite group, then

CAutL(G)(Z(G)) ∼= Hom(G/Z(G), L(G)),

where L = L(G).

Moghaddam and Safa [12], proved that for a finite group G,

AutL(G) ∼= Hom(G/L(G), L(G)).

The following theorem states a useful result for finite p-groups.

Theorem 2.5. Let G be a finite p-group different from C2. Then AutL(G) ∼=
Hom(G,L(G)).
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100 R. Soleimani

Proof. Let θ ∈ AutL(G). We define the map fθ : G→ L(G) by fθ(g) = g−1gθ.

It is easy to see that fθ is a homomorphism, and θ 7→ fθ is an injective map

from AutL(G) to Hom(G,L(G)). Conversely, assume that f ∈ Hom(G,L(G)).

Then we define θ = θf : G → G by gθ = gf(g). Since by [11, Corollary 3.7],

g−1gθ ∈ L(G) ≤ Φ(G), for every element g ∈ G, we may write G as the product

of the image of θ and the Frattini subgroup of G and so the image of θ must

be G itself. Hence θ is an automorphism of G. Now θ = θf ∈ AutL(G) and

fθf = f . Finally, suppose that α, β ∈ AutL(G). Then for any x ∈ G,

fαβ(x) = x−1xαβ = x−1(xx−1xα)β = x−1xβx−1xα = x−1xαx−1xβ ,

since x−1xα ∈ L(G). Thus fαβ(x) = fα(x)fβ(x) and so θ 7→ fθ is a homomor-

phism, which completes the proof. �

We next give a necessary and sufficient condition on a finite p-group G for

the group AutL(G) to be elementary abelian.

Corollary 2.6. Let G be a finite p-group. Then AutL(G) is elementary abelian

if and only if exp(G/G′) = p or exp(L(G)) = p.

Proof. It is straightforward by Lemma 2.1 and Theorem 2.5. �

3. Main results

For a finite abelian p-group G, |L(G)| = 1, 2 by [11, Lemma 4.4] and so

|AutL(G)| = 1 or AutL(G) ∼= Cd2 , with d = d(G). Thus we may assume that

G is a non-abelian p-group. In this section, first we characterize the finite

non-abelian p-groups G such that AutL(G) = AutG
′
(G). Then, we deter-

mine the finite non-abelian p-groups G with cyclic Frattini subgroup for which

AutL(G) = AutΦ(G).

In [9], Kaboutari Farimani proved the following two results giving some

information of absolute central automorphisms of a finite p-group.

Lemma 3.1. Let G be a finite non-abelian p-group. Then CAutL(G)(Z(G)) =

Inn(G) if and only if G/L(G) is abelian and L(G) is cyclic.

Theorem 3.2. Let G be a finite non-abelian p-group. Then AutL(G) = Inn(G)

if and only if G/L(G) is abelian, L(G) is cyclic and Z(G) = L(G)Gp
n

where

exp(L(G)) = pn.

Note that the Theorem 3.2 yields the following corollary that is the Corollary

1 of Singh and Gumber [18].

Let G be a finite non-abelian p-group such that G′ ≤ L(G). Let G/Z(G) =

Cpα1 × Cpα2 × · · · × Cpαr , where α1 ≥ α2 ≥ · · · ≥ αr ≥ 1. Also let G/L(G) =

Cpβ1 × Cpβ2 × · · · × Cpβs , where β1 ≥ β2 ≥ · · · ≥ βs ≥ 1 and L(G) = Cpγ1 ×
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A Note on Absolute Central Automorphisms of Finite p-Groups 101

Cpγ2 × · · · × Cpγt , where γ1 ≥ γ2 ≥ · · · ≥ γt ≥ 1. Since G/Z(G) is a quotient

group of G/L(G) by [2, Section 25], r ≤ s and αi ≤ βi for all 1 ≤ i ≤ r.

By the above notation, we prove the following corollary:

Corollary 3.3. [18, Corollary 1] Let G be a finite non-abelian p-group. Then

AutL(G) = Inn(G) if and only if G′ ≤ L(G), L(G) is cyclic and either L(G) =

Z(G) or d(G/L(G)) = d(G/Z(G)), αi = γ1 for 1 ≤ i ≤ k and αi = βi for

k + 1 ≤ i ≤ r, where k is the largest integer such that βk > γ1.

Proof. First assume that AutL(G) = Inn(G). Hence by Theorem 3.2, G′ ≤
L(G) and L(G) is cyclic. If exp(G/L(G)) ≤ exp(L(G)), then

G/Z(G) ∼= AutL(G) ∼= Hom(G/L(G), L(G)) ∼= G/L(G),

because L(G) is cyclic and by [12, Proposition 1]. Therefore L(G) = Z(G).

Next, let exp(G/L(G)) > exp(L(G)) and k is the largest integer such that

βk > γ1. Since L(G) and G/L(G) are abelian,

d(G/Z(G)) = d(Hom(G/L(G), L(G))) = d(G/L(G))d(L(G)) = d(G/L(G)).

Now we have Hom(G/L(G), L(G)) ∼= Cpγ1×Cpγ1×· · ·×Cpγ1×Cpβk+1×· · ·×Cpβs
and Hom(G/L(G), L(G)) ∼= G/Z(G) = Cpα1 × Cpα2 × · · · × Cpαr . Hence α1 =

α2 = · · · = αk = γ1 and αi = βi for k + 1 ≤ i ≤ r, as required.

Conversely if L(G) = Z(G), then exp(G/Z(G)) = exp(G′)|exp(Z(G)), since

G′ ≤ L(G) and by [13, Lemma 0.4]. Now

Hom(G/L(G), L(G)) = Hom(G/Z(G), Z(G)) ∼= G/Z(G),

because Z(G) is cyclic and so AutL(G) = Inn(G). Next assume that L(G) <

Z(G), s = d(G/L(G)) = d(G/Z(G)) = r, αi = γ1 for 1 ≤ i ≤ k and αi = βi
for k + 1 ≤ i ≤ r, where k is the largest integer such that βk > γ1. We claim

that Z(G) = L(G)Gp
γ1

. Since exp(G/Z(G)) = exp(L(G)), we have L(G) ≤
L(G)Gp

γ1 ≤ Z(G). It follows that G/Z(G) is a quotient group of G/L(G)Gp
γ1

.

Now let G/L(G)Gp
γ1

= Cpγ1 × Cpδ2 × · · · × Cpδr , where δ1 = γ1 ≥ δ2 ≥ · · · ≥
δr ≥ 1, since d(G/L(G)) = d(G/L(G)Gp

γ1
) and exp(G/L(G)Gp

γ1
) = pγ1 .

Therefore γ1 = αi ≤ δi ≤ γ1 for 1 ≤ i ≤ k, whence we have δi = γ1 = αi
for 1 ≤ i ≤ k. As βi = αi ≤ δi ≤ βi for k + 1 ≤ i ≤ r, it follows that

δi = αi = βi for k+1 ≤ i ≤ r. Hence G/Z(G) = G/L(G)Gp
γ1

and consequently

Z(G) = L(G)Gp
γ1

. Therefore by Theorem 3.2, AutL(G) = Inn(G). This

completes the proof. �

As an application of Theorem 3.2, we get another proof of the main result

of [15].

Theorem 3.4. [15, Theorem 3.2] Let G be a non-abelian autonilpotent finite

p-group of class 2. Then AutL(G) = Inn(G) if and only if L(G) = Z(G) and

L(G) is cyclic.

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
2.

97
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-0

7-
07

 ]
 

                             5 / 12

http://dx.doi.org/10.52547/ijmsi.17.2.97
https://ijmsi.com/article-1-1424-en.html


102 R. Soleimani

Proof. Suppose that AutL(G) = Inn(G). Hence L(G) is cyclic and Z(G) =

L(G)Gp
n

, where exp(L(G)) = pn. Now by [15, Proposition 2.13], exp(G/L(G))

divides exp(L(G)) and so Z(G) = L(G)Gp
n

= L(G). Conversely, assume that

L(G) = Z(G) and L(G) is cyclic. Since G be a non-abelian autonilpotent p-

group of class 2, AutL(G) = Aut(G), by [15, Lemma 2.11]. Therefore Inn(G) ≤
AutL(G), G′ ≤ L(G) and G/L(G) is abelian. Obviously, Z(G) = L(G) =

L(G)Gp
n

, where exp(L(G)) = pn, and so AutL(G) = Inn(G), by Theorem 3.2,

as required. �

Corollary 3.5. Let G be an extraspecial p-group.

(i) If p > 2, then L(G) and AutL(G) is trivial.

(ii) If p = 2, then L(G) ∼= C2 and AutL(G) = Inn(G).

Proof. Let G be an extraspecial p-group. First assume that p > 2. By [10,

Theorem 3], L(G) is trivial and so AutL(G) = 1.

To prove (ii), since |G′| = 2, and G′ is a characteristic subgroup of G, we have

G′ ≤ L(G) ≤ Z(G). Thus G′ = L(G) = Z(G) = Φ(G) is cyclic of order 2. Now

by Theorem 3.2, AutL(G) = Inn(G). �

Let G be a finite non-abelian p-group such that G/L(G) is abelian. Then G

is of class 2 and AutG
′
(G) ≤ AutL(G). Let G/G′ = Cpa1 × Cpa2 × · · · × Cpak ,

where a1 ≥ a2 ≥ · · · ≥ ak ≥ 1. Also let L(G) = Cpb1 × Cpb2 × · · · × Cpbl ,
where b1 ≥ b2 ≥ · · · ≥ bl ≥ 1 and G′ = Cpe1 × Cpe2 × · · · × Cpen , where

e1 ≥ e2 ≥ · · · ≥ en ≥ 1. Since G′ ≤ L(G), by [2, Section 25] we have n ≤ l

and ej ≤ bj for all 1 ≤ j ≤ n. By the above notation, we prove the following

theorem:

Theorem 3.6. Let G be a finite non-abelian p-group. Then AutL(G) =

AutG
′
(G) if and only if G′ = L(G) or G′ < L(G), d(G′) = d(L(G)) and

a1 = et, where t is the largest integer between 1 and n such that bt > et.

Proof. Suppose that AutL(G) = AutG
′
(G) and G′ 6= L(G). By Theorem 2.5

and Lemma 2.3, we have |Hom(G/G′, L(G))| = |Hom(G/G′, G′)|. First, we

claim that d(G′) = d(L(G)). Suppose, for a contradiction, that d(G′) = n <

l = d(L(G)). Since bj ≥ ej for all j such that 1 ≤ j ≤ n, by Lemma 2.1,

|AutG
′
(G)| = |Hom(G/G′, G′)| = |Hom(G/G′, Cpe1 × Cpe2 × · · · × Cpen )|

≤ |Hom(G/G′, Cpb1×Cpb2×· · ·×Cpbn )| < |Hom(G/G′, Cpb1×Cpb2×· · ·×Cpbn )|

×|Hom(G/G′, Cpbn+1 × · · · × Cpbl )| = |Hom(G/G′, Cpb1 × Cpb2 × · · · × Cpbl )|

= |Hom(G/G′, L(G))| = |AutL(G)|,
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A Note on Absolute Central Automorphisms of Finite p-Groups 103

which is a contradiction. So n = l, as required. Next, since |AutL(G)| =

|AutG
′
(G)|, we have∏

1≤i≤k,1≤j≤l

pmin{ai,bj} =
∏

1≤i≤k,1≤j≤l

pmin{ai,ej}.

Since bj ≥ ej for all j such that 1 ≤ j ≤ l, we have min{ai, bj} ≥ min{ai, ej},
where 1 ≤ i ≤ k, 1 ≤ j ≤ l. Thus min{ai, bj} = min{ai, ej}, for all 1 ≤ i ≤
k, 1 ≤ j ≤ l. Next, since G′ < L(G), there exists some 1 ≤ j ≤ l such that

ej < bj . Let t be the largest integer between 1 and n such that et < bt. We

show that a1 ≤ et. Suppose, on the contrary, that a1 > et. Then by the above

equality, we must have min{a1, bt} = min{a1, et} = et, which is impossible.

Hence a1 ≤ et. Let exp(G/Z(G)) = pf , where f ∈ N. Since cl(G) = 2, by

[13, Lemma 0.4], f = e1. But a1 ≤ et ≤ et−1 ≤ · · · ≤ e1 = f ≤ a1. Whence

a1 = et.

Conversely, if G′ = L(G), then AutG
′
(G) = AutL(G). Assume that G′ <

L(G), d(G′) = n = d(L(G)) = l and a1 = et, where t is the largest integer

between 1 and n such that bt > et. Now by Lemma 2.3,

|AutG
′
(G)| = |Hom(G/G′, G′)| =

∏
1≤i≤k,1≤j≤l

pmin{ai,ej},

and by Theorem 2.5,

|AutL(G)| = |Hom(G/G′, L(G))| =
∏

1≤i≤k,1≤j≤l

pmin{ai,bj}.

Since a1 = et, we have 1 ≤ ak ≤ · · · ≤ a2 ≤ a1 = et ≤ et−1 ≤ · · · ≤ e2 ≤ e1.

Thus bj ≥ ej ≥ ai for all 1 ≤ i ≤ k and 1 ≤ j ≤ t, which shows that

min{ai, ej} = ai = min{ai, bj} for 1 ≤ i ≤ k and 1 ≤ j ≤ t. Since ej = bj for all

j ≥ t+ 1, we have min{ai, ej} = min{ai, bj} for all 1 ≤ i ≤ k and t+ 1 ≤ j ≤ l.
Thus min{ai, ej} = min{ai, bj} for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. Therefore

|AutG
′
(G)| = |AutL(G)|. Since G′ < L(G) we have AutG

′
(G) = AutL(G),

which completes the proof. �

In [11], Meng and Guo proved that for a finite group G, if C2 is not a direct

factor of G, then L(G) ≤ Φ(G). We end this section by characterizing the finite

non-abelian p-groups G with cyclic Frattini subgroup for which AutL(G) =

AutΦ(G).

First, we give some basic results about the finite non-abelian p-groups G

with cyclic Frattini subgroup.

Let n > 1. Following [1], we denote by D+
2n+3 and Q+

2n+3 the 2-groups of

order 2n+3 defined by the following presentations.

D+
2n+3 = 〈a, b, c | a2n+1

= b2 = c2 = 1, ab = a−1+2n , ac = a1+2n , [b, c] = 1〉,
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104 R. Soleimani

Q+
2n+3 = 〈a, b, c | a2n+1

= b2 = 1, ab = a−1+2n , ac = a1+2n , a2n = c2, [b, c] = 1〉.
Note that if G is either D+

2n+3 or Q+
2n+3 , then cl(G) = n+ 1.

In [1], Berger, Kovács and Newman proved the following result.

Theorem 3.7. [1, Theorem 2] If G is a finite p-group with Z(Φ(G)) cyclic,

then

G = E × (G0 ∗G1 ∗ · · · ∗Gs),
where E is an elementary abelian, G1, ..., Gs are non-abelian of order p3, of

exponent p for p odd and dihedral for p = 2, while G0 > 1 if E > 1, |G0| > 2

if s > 0, and G0 is one of the following types: cyclic, non-abelian with a cyclic

maximal subgroup, D2n+2 ∗ Z4, S2n+2 ∗ Z4, D
+
2n+3 , Q

+
2n+3 , D

+
2n+3 ∗ Z4, all with

n > 1. Conversely, every such group has cyclic Frattini subgroup.

Theorem 3.8. [20, Theorem 2.3] Let G be a finite non-abelian p-group with

cyclic Frattini subgroup Φ(G).

(i) If p > 2, or p = 2 and cl(G) = 2, then Φ(G) ≤ Z(G).

(ii) If cl(G) > 2, then G′ = Φ(G).

Lemma 3.9. [20, Lemma 2.4] Let G be a finite group with Φ(G) ≤ Z(G). Then

there is a bijection from Hom(G/G′,Φ(G)) onto AutΦ(G) associating to every

homomorphism f : G→ Φ(G) the automorphism x 7→ xf(x) of G. In particu-

lar, if G is a p-group and exp(Φ(G)) = p, then AutΦ(G) ∼= Hom(G/G′,Φ(G)).

In the following theorem, we will make use Theorem 3.7, which is the struc-

tural theorem for p-groups with cyclic Frattini subgroup.

Theorem 3.10. Let G be a finite non-abelian p-group with cyclic Frattini

subgroup. Then AutL(G) = AutΦ(G) if and only if G is one of the following

types: Cm2 ×D
∗(s+1)
8 or Cm2 × (D∗s8 ∗Q8), where s,m ≥ 0.

Proof. Let AutL(G) = AutΦ(G). Hence AutΦ(G) is abelian, G is of class 2 and

by Theorem 3.8, Φ(G) ≤ Z(G). It follows that exp(G′) = exp(G/Z(G)) = p

and so |G′| = p. Assume that |Φ(G) : G′| = pa. Then Φ(G) ∼= Cpa+1 and

we observe that exp(G/G′) ≤ pa+1 = |Φ(G)|. Together with Lemma 3.9, we

have |AutΦ(G)| = |Hom(G,Φ(G))| = |G|/p. Next, we note that G′ ∩ L(G) 6=
1; otherwise, G′ ∩ L(G) = 1 and G′ × L(G) would be a subgroup of Φ(G).

Hence either G′ = 1 or L(G) = 1, a contradiction. Whence G′ ≤ L(G). Now

we are able to show that G′ = L(G) ∼= Cp. To do this, first assume that

L(G) 6= Φ(G). By similar argument that was applied for Theorem 3.6, we have

exp(G/G′) ≤ exp(L(G)), which implies that exp(G/L(G)) ≤ exp(G/G′) ≤
exp(L(G)) = |L(G)|. If L(G) = Φ(G), then exp(G/L(G)) = exp(G/Φ(G)) ≤
exp(L(G)) = |L(G)|. Thus |AutL(G)| = |G/L(G)| = |AutΦ(G)| = |G/G′|, by

[12, Proposition 1] and so G′ = L(G) ∼= Cp. Now, we will make use of the

notation of Theorem 3.7.
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Since cl(G) = 2, by Theorem 3.7 and [5, Theorems 5.4.3 and 5.4.4], G0 is one

of the groups Mp(n, 1), where n ≥ 3, if p = 2; D8 or Q8.

We claim that G′ = G′0 and Φ(G) = Φ(G0). To see this, since G′0
⋂
G′i 6= 1

for 1 ≤ i ≤ s and |G′i| = p, we have G′i ≤ G′0 and so G′ = G′0. Also Φ(G) =

G′Gp = G′0E
pGp0G

p
1 · · ·Gps = G′0G

p
0 = Φ(G0). To continue the proof, we may

consider two cases:

Case I. E = 1.

Let G = G0 ∗ T , where T be one of the groups Mp(1, 1, 1)∗s, while p > 2

or D∗s8 , where all s ≥ 0. Note that if s = 0, then G = G0 and Z(G) =

Z(G0) = Φ(G0) = Φ(G); otherwise, since 1 6= G0

⋂
T = Z(T ) ≤ Z(G0), then

Z(G) = Z(G0), because |Z(T )| = p, which implies that Φ(G) = Φ(G0) =

Z(G0) = Z(G). We claim that G is an extraspecial p-group. To see this, since

G′ = L(G) ∼= Cp, by Theorem 3.2, AutΦ(G) = AutL(G) = Inn(G). This shows

that G is an extraspecial p-group, by Theorem 2.2. If p > 2, then by Corollary

3.5, L(G) = 1, which is impossible. Whence p = 2. If G0
∼= M2(n, 1), n ≥ 3,

then by [5, Theorem 5.4.3], Z(G) = Φ(G) is of order 2n−1. This yields that

n = 2, since |Z(G)| = 2, a contradiction. Therefore G0 is isomorphic either to

D8 or Q8, and G be one of the groups: D
∗(s+1)
8 or Q8 ∗D∗s8 , for some s ≥ 0.

Case II. E 6= 1.

In this case G0 > 1 and G = E × (G0 ∗ T ), where T be one of the groups lying

in Case I.

We claim that AutΦ(G0∗T )(G0 ∗ T ) = AutL(G0∗T )(G0 ∗ T ). Choose a non-

trivial element σ of AutΦ(G0∗T )(G0 ∗ T ). Then the map σ defined by (ef)σ =

efσ, for all e ∈ E, f ∈ G0∗T denotes an automorphism of AutΦ(G) = AutL(G).

Since G′∩L(G0∗T ) 6= 1, then L(G) ≤ L(G0∗T ) and so σ is in AutL(G0∗T )(G0∗
T ). This shows that AutΦ(G0∗T )(G0 ∗ T ) = AutL(G0∗T )(G0 ∗ T ), as required.

Next, by a similar argument as mentioned for the previous case, G0 be one of

the groups: D8 or Q8. Therefore G has one of the following types: Cm2 ×D
∗(s+1)
8

or Cm2 × (D∗s8 ∗Q8), where s ≥ 0,m > 0.

Conversely, assume that G be of the groups in Theorem 3.10. Hence G′ =

L(G) ∼= C2. Now the proof is complete, since |AutL(G)| = |AutΦ(G)| =

|G|/2. �

4. Classify all finite p-groups G of order pn(3 ≤ n ≤ 5), such that

AutL(G) = Inn(G)

Let G be a non-abelian group of order p3. Then by Corollary 3.5, AutL(G) =

Inn(G) if and only if p = 2. In the following corollaries, we use Theorems 4.7

and 5.1 of [11] and classify all finite p-groups G of order pn(4 ≤ n ≤ 5), such

that AutL(G) = Inn(G). First we recall the following concept, which was

introduced by Hall in [6].
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Definition 4.1. Two finite groups G and H are said to be isoclinic if there

exist isomorphisms φ : G/Z(G) → H/Z(H) and θ : G′ → H ′ such that, if

(x1Z(G))φ = y1Z(H) and (x2Z(G))φ = y2Z(H), then [x1, x2]
θ

= [y1, y2].

Notice that isoclinism is an equivalence relation among finite groups and the

equivalence classes are called isoclinism families.

Corollary 4.2. Let G be a non-abelian group of order p4. Then AutL(G) =

Inn(G) if and only if p = 2 and G is one of the following types: M2(3, 1) or

M2(2, 1, 1).

Proof. Assume that |G| = p4 and AutL(G) = Inn(G). We claim that |Z(G)| =
p2. Suppose for a contradiction, that |Z(G)| = p. We observe that G′ ≤
Z(G) ∼= Cp, by Theorem 3.2 and soG is an extraspecial p-group, a contradiction

since the order of G is not of the form p2n+1, for some natural number n.

Therefore G/Z(G) ∼= C2
p , and hence |G′| = p. We consider two cases:

Case I. p an odd prime. It is straightforward to see that the map σ : G → G

by xσ = x1+p, is an automorphism of G. Hence for any element x of L(G),

x = xσ = x1+p, and so xp = 1. Thus exp(L(G)) = p and so G′ = L(G) ∼= Cp,

by Theorem 3.2. If G/L(G) ∼= Cp3 , then by [3, Theorem 2.2], G is cyclic, a

contradiction. Next, we assume that G/L(G) ∼= Cp2×Cp. Then G is an abelian

group by [11, Theorem 5.1], which is impossible. Finally, if G/L(G) ∼= C3
p , then

L(G) = Φ(G) and so AutΦ(G) = Inn(G). Therefore by Theorem 2.2, G is an

extraspecial p-group, a contradiction.

Case II. p = 2. Since |G′| = 2, andG′ be a characteristic subgroup ofG, we have

G′ ≤ L(G) ≤ Z(G). Thus |L(G)| = 2 or 4. If |L(G)| = 4, then L(G) = Z(G)

and G/L(G) ∼= C2
2 . Hence by [11, Theorems 5.1 and 4.7], G ∼= M2(2, 2), and

L(G) ∼= C2
2 , which is a contradiction by Theorem 3.2. Next we assume that

|L(G)| = 2. So G′ = L(G) and |G/L(G)| = 8. By a similar argument, G is

isomorphic to one of the following groups: M2(3, 1) or M2(2, 1, 1). The converse

follows at once from Theorem 3.2. �

Corollary 4.3. Let G be a non-abelian group of order p5. Then AutL(G) =

Inn(G) if and only if p = 2 and G is one of the following types: M2(3, 2),

M2(4, 1), M2(2, 2, 1), D∗28 or D8 ∗Q8.

Proof. Let G be a finite group such that |G| = p5 and AutL(G) = Inn(G). We

consider two cases:

Case I. p > 2. These groups lying in the isoclinism families (5), (4) or (2) of

[8, 4.5] and we show that AutL(G) 6= Inn(G).

First, let G denote one of the groups in the isoclinism family (5). Hence

|Z(G)| = p and G′ = Z(G) = Φ(G) ∼= Cp, by Theorem 3.2. So G is an

extraspecial p-group and by Corollary 3.5, |L(G)| = 1, a contradiction.

Next, let G be one of the groups in the isoclinism family (4). Then G′ ∼= C2
p ,

which is a contradiction, since G′ is cyclic.
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Finally, let G denote one of the groups in the isoclinism family (2). Then

G/Z(G) ∼= C2
p and so d(G/L(G)) > 1. We observe that G′ = L(G) ∼= Cp

and Z(G) = Φ(G), by using Theorems 2.2, 3.2, [3, Theorem 2.2] and [11,

Theorem 5.1]. So d(G) = 2 and by [16], G is a minimal non-abelian p-group.

If G/L(G) ∼= Cp3 × Cp, then G is an abelian group, by [11, Theorem 5.1], a

contradiction. If G/L(G) ∼= C2
p2 , then by [16], G ∼= Mp(3, 2) or G ∼= Mp(2, 2, 1).

Thus L(G) = 1, by [11, Theorem 4.7], a contradiction. Finally, assume that

G/L(G) ∼= Cp2 × C2
p or G/L(G) ∼= C4

p . In this cases, AutL(G) 6= Inn(G), by

Theorem 2.5.

Case II. p = 2. We can see that |L(G)| = 2, 4, by [3, Theorem 2.2] and [11,

Theorem 5.1]. First, we assume that |L(G)| = 4. Since G is a non-cyclic group,

by [3, Theorem 2.2], d(G/L(G)) > 1. It follows that G/L(G) is one of the

groups C3
2 or C4 × C2. Now in the first case, L(G) = Φ(G) and so G is an

extraspecial 2-group by Theorem 2.2. Hence G′ = L(G) ∼= C2, a contradiction.

Therefore G/L(G) ∼= C4×C2 and by [11, Theorems 5.1 and 4.7], G is one of the

groups: M2(2, 3) or M2(3, 1, 1), and L(G) ∼= C2
2 , a contradiction by Theorem

3.2. Now we may suppose that |L(G)| = 2. So G′ = L(G) ∼= C2. We discuss

the following cases.

If G/L(G) ∼= C4
2 , then L(G) = Φ(G) and so AutΦ(G) = Inn(G). Therefore

by Theorem 2.2, G is an extraspecial 2-group. Thus G is one of the groups

D∗28 or D8 ∗ Q8, by [21]. Next, suppose that G/L(G) ∼= C4 × C2
2 . Hence

G/L(G) = 〈ā, b̄, c̄〉, where ā = aL(G), b̄ = bL(G), c̄ = cL(G) and o(ā) = 4,

o(b̄) = o(c̄) = 2. Therefore G = 〈a, b, c, L(G)〉 = 〈a, b, c〉, by [11, Corollary 3.7].

Since 〈a2〉 × G′ ≤ Z(G), we have either Z(G) ∼= C4 × C2 or C2
2 . If Z(G) ∼=

C4×C2, then AutL(G) 6= Inn(G), by Theorem 2.5. Therefore Z(G) ∼= C2
2 . Now

by using GAP [4], we find that there are no such groups. Next, if G/L(G) ∼=
C8 × C2, then G ∼= M2(4, 1), by [11, Theorem 5.1]. Finally, suppose that

G/L(G) ∼= C2
4 . Then d(G) = 2, by [11, Corollary 3.7] and G′ = L(G) ∼= C2.

Hence by [16], G is a minimal non-abelian 2-group. Thus G is isomorphic to

the group M2(3, 2) or M2(2, 2, 1). The converse follows at once from Theorem

3.2. �
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