[ Downloaded from ijmsi.com on 2026-02-04 ]

[ DOI: 10.52547/ijmsi.17.1.227 ]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 17, No. 1 (2022), pp 227-237
DOL: 10.52547/ijmsi.17.1.227

Quaternionic Product of Circles and Cycles and Octonionic
Product for Pairs of Circles

Mircea Crasmareanu
Faculty of Mathematics, University ”Al. 1. Cuza”, lasi, 700506, Romania

E-mail: mcrasm@uaic.ro

ABSTRACT. This paper concerns with a product of circles induced by the
quaternionic product considered in a projective manner. Several proper-
ties of this composition law are derived and on this way we arrive at some
special numbers as roots or powers of unit. We extend this product to
cycles as oriented circles and to pairs of circles by using the algebra of

octonions. Three applications of the given products are proposed.
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1. INTRODUCTION

The aim of this paper is to introduce some products on the set of circles,
cycles and spheres. For circles considered in a projective way we use the well-
known product of quaternions to define a first product, denoted ®., while cycles
are defined as oriented circles. By restring ®. to the set of circles centered in
the origin O we derive a geometric image for a product Ry ®. R by taking into
account the intersection between a fixed circle C'(O, R) and a translated one
C'(O, Ry). In this geometrical setting a new product, denoted ®y,, appears in
a natural manner. A detailed study of both these products is the content of
section 1. By looking to examples as well as to roots/powers of the unit 1 we
obtain some remarkable numbers, some of them algebraic but other of difficult
nature.
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Section 2 deals with an octonionic product of pairs of circles inspired by the
expression of an octonion as a pair of quaternions. For this new composition
law we compute the square of a fixed pair and several products involving the
unit circle S'. We note that the products of the first section are commutative
while the considered product of pairs of circles is not.

In the last section we propose three applications of the circle products. The
first two of them regards hyperbolic objects, namely the equilateral hyperbola
and hyperbolic matrices, but, in general, concerns with multi-valued maps. The
last possible application returns to the Euclidean plane geometry and defines a
chain of labels for a given polygon with lengths of edges greater than or equal
to 1. The usual right triangle with sides (3,4, 5) is exemplified.

2. QUATERNIONIC PRODUCT OF CIRCLES AND QUATERNIONIC PRODUCT OF
CYCLES

The starting point of this paper is the identification of a given circle C' in
the Euclidean plane with coordinates (z,y):

C:2*+y*+ar+by+c=0 (2.1)
with a quaternion:
q(C)=k+ai+bj+c=(ca,b,1)c R (2.2)

The quaternion ¢(C) is pure imaginary if and only if the origin O(0,0) belongs
to C. Let us point out that the given circle is expressed in a projective manner
since the coeflicient of the quadratic part is chosen as being 1. As is presented
in [4, p. 70] the set of circles in a plane is a 3-dimensional projective subspace
of the 5-dimensional projective space of conics. Our study will be a mix of
elements from Euclidean and projective geometry.

From the real algebra structure of the quaternions it follows a product of
circles:

C1 @ C2 =g (¢(C1) - 4(Ca)). (2:3)

For C;,i = 1,2 given by (a;, b;, ¢;) we derive immediately:
q(C1 ©c Ca) = (e1 + c2)k + (by — ba + a1ca + azer )1+ (a2 — a1 + byca + bacy )j+

+(0102 —1—ajas — blbg) (24)

which gives a non-commutative expression for the coefficients of T and 7. We
remark the degenerated case c; = —c;.

Due to the chosen projective setting we restrict our study to circles C'(O, R)
centered in O and having the radius R; hence their set is a 1-dimensional
projective subspace of the projective spaces considered above. For such a circle
we have:

C(O,R) : (a,b,c) = (0,0, —R?) (2.5)
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and hence the equation (2.4) yields:

q(C(O, Rl)GCO(O, Rg)) = (01 +62)EJ+(016271) = 7(R%+R§)]_€+[(R1R2)271]

(2.6)
From the properties of quaternionic product we have that the product above
can be also expressed in matrix product manner:

-R? 0 0 1
0 -R? 1 0
0 -1 —-R? 0

-1 0 0 —R?

= ((R1R2)2_17 0707 —(R?—FR%))

(2.7)
This circle is a real one for Ry, Ro > 1 and we derive the product law:
2-1
C(0, Ry) 00 C(O,Ry) = C(O.R), Ri= | B —1 o g)
R + R

In conclusion, on the set M = [1,4o00] we define a non-internal law of compo-
sition:
(R1R2)? — 1
R} + R}
and the rest of this section concerns with several of its properties.
Property 1 Is commutative, associative and with neutral element R = co:

Ry ®¢c Ry := < min{Rl, RQ} (29)

(R1R2R3)* — (Rf + R + R3)
Ri ©c Ry ©O¢ R3 = . 2.10
1 Oc Bty Oc R \/<R1R2>2 (ol + (Rely) —1 (2.10)
Property 2 With R; = tan ¢; we get:
tan g1 O tan gy == \/ __QCOS(‘”; pcoslprtva) g g
sin” (1 cos? o + sin” g cos? 1

Property 3 Concerning the unit circle we have:

Rool= B =L 1<Rr tim (Rou1) =1 (2.12)
c R2 + 1 - ’ R—+oc0 ¢ o ’

In particular, the unit circle is the square root of the degenerate circle: S! @,
St = {0}; in fact [¢(S1)]? = (k — 1)?> = —2k. Trigonometrically:

tanp O 1 = v/—cos(2¢), @€ {g, g} . (2.13)

Property 4 Concerning the squares we have:

T
R%C = L <R, (tanap)éc =

V2R

Hence, the square root of 1 is the number:

—cos(2¢)

sin(2¢) (2.14)

V1:=4/1+ V2 = 1.553773... = 24 cos g (V1) —2(V1)>—1=0 (2.15)
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while the square root of /1 is the number:

V1= \/1 + V2 {‘/1 +V2=1.844324..., (¥1)%, = V1. (2.16)

Let us remark that +/1 is the usual (i.e. real) square root of the silver ratio
U := 1+ /2 and an interesting property is given in Corollary 10.2. of 2, p.

26]: +/1 cannot be expressed as a finite sum of real numbers of type + "/,
1 <i<r, where r,nq,...,n., a1, ...,a, € N*.

Also, the first relation (2.14) means that ©. is a ”shrinking” composition and
we point out that ¥ is a quadratic Pisot-Vijayaraghavan number considered as
solution of:

z? =22 —1=0. (2.17)
The conjugate of ¥ with respect to this algebraic equation is:
—Ul =1 -V2=-044.... (2.18)

Let us point out that from the point of view of endomorphisms on smooth
manifolds the silver mean is treated in [5, p. 16] and a fourth order square root
of unit is called almost electromagnetic structure in [8, p. 721]. The continuous
fraction of these remarkable numbers are easy to compute with Mathematica:

V1=1[1;1,1,4,6,1,2,2,2,1,1,6,..], ¥1=[1;1,5,2,2,1,3,2,2,4,..]. (2.19)
Property 5 We have an interesting relationship between the right hand

side of the first equation (2.14) and a research of Fagnano on lemniscate from
1718. More precisely, the substitution R = % in the obtained ratio gives:

VR* -1  V1-u?

2.20
3R 3w (2:20)
and we reformulate the Fagnano result after [9, p. 15]:
Proposition 2.1. If:
N
- : (2.21)
V2u 1— It
then: p p
Y : (2.22)

V-2 2/i_A

The usual inverses of /1 and %/1 are:

— = 2—1=0.643594... = 24 sin —, ——= = 0.5442299.... (2.23)
iV S VI

In conclusion, we have the non-internal composition law on the set M~! =
(0,1]:
1-— (’LL1U2)2

2.24

U1 O¢ U =
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For example:

1\ 2 in®(2t
<2> —\/§>1, sint ©®. cost = 1*% (2.25)

Oc

cost sint

— 08t Ol = ——,
V1 +sin?t V1+cos?t
tanp O, 1 = \/cos(2p), ¢ € [07 g} . (2.26)

We think the last relation explains the appearance of lemniscate in our study.
Property 6 Let a < b < ¢ be a Pythagorean triple: a? 4+ > = c2. We

consider Ry = < and Ry = §:

{ €@ <= \/ct—(ab)2 _ Va"1a?b2 1 bt
a

sint ®. 1=

cp =< c (2.27)

c _ b c _ a
Ol =Tomm $01= s

Property 7 From (2.10) we obtain also the third powers:

R*-3

R} =R s Re (V3 = 1.316074, +00) (2.28)
RY—2R%2 1
2 —
(Bo) @l =\ prom —1- (2:29)

Property 8 In the following we propose a geometric interpretation of the
considered product of C;(O, R;). Suppose R; < Ry and translate Cs to have
the new center A(d,0). Suppose that C; and the translated C% intersect in the
points P; o(xo, tyo) and we search d such that yo = Ry @, Re. The points P
are given by the system:

2+’ =R? (z—d)?+y*=R3 (2.30)
Solving for z it results ([1]):
d*>+ R? — R3
= 2.31
"o 2d (2:31)
and returning to the first equation we arrive at the following equation in d:
2 _1 J? 2 p2\ 2
R% _ (leQ) > _ + Rl R2 . (232)
Its solution greater than Ry is:
441 141
g VR + 1+ /Rj+ (2.33)

and the corresponding xg:

4

v/ 1

VIFL Ri. (2.34)
VR?+ R3

o =


http://dx.doi.org/10.52547/ijmsi.17.1.227
https://ijmsi.com/article-1-1418-en.html

[ Downloaded from ijmsi.com on 2026-02-04 ]

[ DOI: 10.52547/ijmsi.17.1.227 ]

232 M. Crasmareanu

The symmetric expression of d above yields the possibility to define a new
commutative product, denoted ®; from ”horizontal”:

\/R4—|—1+\/R4+1

R1 Op Ry := \/m (2.35)
For example, the square is:
2(R*+1)
2 2
R, = — 5 >R, 13, =2 (2.36)
This means that there is no root for 1 and:
av 2 V34
13, = \/E\f =2493273..., 13, = —5— = 2:915475. (2.37)
The above ratio is solution of the algebraic equation:
5zt — 3827 + 45 = 0. (2.38)

Also, allowing in (2.33) strictly positive numbers not necessary greater then 1
we have other examples:

sint ®p, cost = \/sin4t—|—1+\/cos4t+1>2,
a b Vat+cA+Vbr et

E On E = 2 > 2. (2.39)
Recall that the quaternion (2.1) has an Euclidean norm:
lg ) =1+a*+b*+c* =1+ R* (2.40)

and then the given products are:
lg(COIl + [lg(C |l

VIO 1+ VTGl —

2 2l 1)
Ta(C? =

VaCE - D(la(Ca? — 1) — 1
VIg@COIE =1+ VIa(@)I? -1’

. _ [a@F -2

CiopCy = C(O Ry) &n, C(O, R2

ChL 0. Cy =

0. = (2.42)

2y/[la(O)]1* =

Property 9 Since R? + R2 > 2R; R, we have the inequalities:
R1R2
Ry ®¢ Re < RiR <
1 Oc g < \/ < 14vg — R1R2>
R 1

R} < 7 < R<R?, < (R+ R) : (2.43)
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Property 10 Returning to the circles C; and C} discussed in the property
8 we have the power of the point A with respect to C1:

P(A,Cy) =d* - R} (2.44)

Also in order to get a quaternionic product of non-concentric circles we compute
with (2.4):

q(C1 ©.C%) = (d* — R} — R3)k + 2dR3%i — 2dj — [R3(d* — R3) +1] (2.45)

and the coefficient of k is:

21+ /(RF+1)(R3 + 1) — (R1R2)?|
R? + R3

d—(Ri+R3) = = P(A,C1) + P(A, CY)

(2.46)
while the real part of the quaternion (1.45) is P(O,Cy) - P(O,C%) — 1. The
equation (2.6) is the limit d — 0 of (2.45).

Property 11 We extend the previous products from circles to cycles i.e.
oriented circles. Hence a cycle C is a pair C := (C, e := 1) with e = +1 if the
sense of the circle C' is trigonometric and € = —1 if the sense of C' is clockwise.
Then we introduce:

Cl ®p C2 = (Cl ®p C¥2;€1 . 52)7 pe {C7 h} (247)

Also, the products ®. can be considered for general n-dimensional spheres
S™(0, R) C R™™! with n > 2 by using the expressions (2.8) respectively (2.35).
For example, the well-known Hopf fibration is the Riemannian submersion
S3(1) = S%(3) ([3, p. 1205]) and hence we compute:

3 1 4vV2+17
1@62:\[, 1o, == ——TF—, 2.48
5 "2 2v/5 (2.48)

We finish this section with the remark that we can avoid the degeneration
(S1)%_ = {O} by considering the para-complex algebra R[X]/(x? — 1) instead
of the complex algebra. Since in this new algebra the square of k is +1 we
arrive at a new product @, on R% = (0, 4+00):

(zy)? +1

—_— 2.49
1‘2 + y2 ( )

T Opc Yy =

The triple (R%, ®pc,1) is a commutative monoid with:

(zyz)? + 22 + y2 + 22
c c <~ = . 2.50
T Ope Y Ope 2 \/($y)2 (e () 1 ( )

Several interesting relationships between commutative monoids, Pythagorean
triples and products on conics are studied on [7].
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3. OCTONIONIC PRODUCT FOR PAIRS OF CIRCLES

Recall that an octonion o € O can be thought as a pair of quaternions
0:= (q1,42) and their non-associative product is:

o102 = (p1,p2) - (01, q2) = (P11 — @2P2, @21 + P2G1) (3.1)

with bar the usual conjugation of quaternions. It follows that a pair of circles
P = (C4,C3) can be considered as an octonion o(P) := (¢(C1), ¢(C2)) and we
define the product:

P1 @6 P2 = 0(P1) - o(P2). (3.2)
If C; = Ci(O,R;), 1 < i < 4 then a long but straightforward computation
yields:

(RiRs)? — (RoRa)?— 2 [(RiRa)? + (RaRs)?
Ry, Ry) ©, (R, Ra) = ,
(Br, Bz) O (Ra Ra) (\/ R+B+RB-F \BtRB+R -8
(33)

with the conditions:
(RiR3)* > (RoRy)* +2, RI+ R3 > max{R3 — R3 R3 — R3}. (3.4)

Remark 3.1. i) The quaternionic product is not commutative but the products
Oc,n are commutative. The octonionic product ©, is also non-commutative.
ii) Having the model of the first section we can introduce an octonionic product
on pairs of cycles (with (e1€3,£2¢4) on the second level) as well as for pairs of
n-spheres.

ExAMPLE 3.2. i) Considering the unit circle on the first pair it results:

R R 2

(51,51 ©6(Cs ~ R3, Cy ~ Ry) = ( RE-RZ+2

1), R2 > R3+2. (3.5)

ii) Considering the unit circle in the second pair we have:

2 _ 2_2 2 2
(ClNR]_,CQNRQ) ®o (51751): (\/Rl RQ 7\'/ R1+R2 >,

R? + R} R} —R3+2
R? > R3 +2. (3.6)

iii) The squares are given by:

> _ (VRI—R3-2 4o pi
(Cr ~ Ry, Co ~ Ro)? = Sp R | RizZR+2 (3.7)
1

For example (v2,1)% = (3,1) and (2,1)2 = (2—‘/\1;;’, ). The condition of (3.7)
gives the non-existence of square for pairs of equal circles.

iii) If the unit circle is distributed in both factors we have:

(R1R3)?> -3

1 1y
(ClaS )@o(c?ns >_< R%+R§ 3

1), RiR3 >3  (3.8)
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while the product (S',Cs) ®, (S, Cy4) is impossible since the first condition
(2.4) does not holds. The last products with S are:
RZ_RZ_2 RiRa)2+1
(Clasl) (O (51704): (\/R§7R§+2’ ( R%i}i; )7 R% ZR421+2>

2__R2_
(81.C2) 00 (Con 8 = (Bt Ttz ) - B3 = B3 +2

(3.9)
From (3.8) it results the squares:

(€, 812 = (@;};3,1) ., R> V3. (3.10)

4. APPLICATIONS
In this section we consider three applications of the given products.

Application 1 We define a 2-valued composition law on the main sheet of
the equilateral hyperbola:

H.:zy=1, z,9¢€(0,+00). (4.1)
For a point P € H, let:
max P := max{z(P),y(P)} > 1. (4.2)
We define a product on H,:
P, op P, ={A,B € H.;;max A = 2(A) = max(P;) ©p max(Pz),

max B = y(B) = max(P;) ®p max(Ps)}. (4.3)
For example:
(L2, ={A(2, %),3(3,2)}. (4.4)

The point E(1,1) € H, does not belongs to the image of this composition law.
O

Application 2 Another multi-valued product can be introduced on the set
of hyperbolic matrices following the approach of Section 3.3 from [6, p. 300]. A
matrix v € SLy(R) is called hyperbolic if its eigenvalues are real and distinct; let
us denotes SLI(R) their set. Since the characteristic polynomial of arbitrary
7 is:

fo(z) = 2% —tr(y)z +1 (4.5)
it follows that v € SLE (R) if and only if |tr(y)| > 2 and then its eigenvalues
are reciprocal numbers. Let e(y) be the eigenvalue which is larger than 1 and
define the norm of ~ as:

N(y) = e()*. (4.6)
We introduce a product on SLE (R):
n On 72 = {7 € SLY (R);e(v) = e(71) @n e(12)}- (4.7)
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From (2.35) the norm of an arbitrary v € v1 ®p, 2 is:

N)? 4+ N(2)?+2+2/(N()2 + 1)(N(y2)2 + 1).

N = 4.8
&) N(m) + N(y2) (5)
For example fix v € SLE(R) of diagonal form:
1

v =v(R) = diag(R, E), R>1. (4.9)

The relation (2.36) yields the norm of an arbitrary v € v(R)2, :

2(R* +1

N(y) = % > 2R* = 2N (y(R)). (4.10)

0

Remark 4.1. Before the next application we introduce here a matrix intermezzo
in relationship with the matrix product (2.7). We associate a 2 x 2 matrix to
the circle C(O, R) through:

m(C(O, R)) := ( —R ) = —R%’I, + ( 01 ) = —R?I, + m(k)

-1 —R? -1 0
(4.11)
and then, as is expected:
m(C(0, Ry ®. R2)) = m(C(0, Ry)) - m(C(O, Ry)). (4.12)

The elements of this correspondence are:
tr(m(C)) = —2R?, det(m(C))=R*+1, f(m(C)) = (z+ R?)?*+1 (4.13)

and we can derive expressions for ®p similar to (2.41 — 2) but in terms of
trace and/or determinant of the corresponding matrices.

Application 3 In this application we associate a p-label to each vertex of

a polygon P = P;...P, with p € {c, h}. Suppose that any length I; = || P; P11 ||
belongs to M = [1,+00) and then the p-number of the vertex P; is defined as:
pi = li—1 Op ;. (4.14)

For example, let the right triangle AABC with legs |AB|| = 3 and ||AC| = 4.
Then the c-chain of AABC is:

((AABC) = (ca,cn, ) = (@,,/ﬁ,,/f) NRTS)

Also, a regular polygon with sides of length 1 has a vanishing c-chain and a
constant h-chain (2,...,2). O
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Remark 4.2. We finish this work with another geometrical interpretation for

the initial product ®.. Suppose that a = R; and b = R, are the legs of the

right triangle AABC having the hypotenuse c¢. Then:

452(ABC) -1
c

Ry ©c Ry =
where S(ABC) is the area of AABC.

(4.16)

ACKNOWLEDGMENTS

The authors would like to thank the referee for useful and helpful comments
and suggestions.

REFERENCES

1. http://mathworld.wolfram.com/Circle-CircleIntersection.html

2. T. Albu, Some Examples in Cogalois Theory with Applications to Elementary Field
Arithmetic, J. Algebra Appl., 1(1), (2002), 1-29.

3. C. Calin, M. Crasmareanu, Slant and Legendre Curves in Berger su(2), the Lancret
invariant and quantum spherical curves, Taiwanese J. Math., 19(4), (2015), 1203-1214.

4. V. Dragovié¢, M. Radnovié¢, Poncelet porisms and Beyond. Integrable Billiards, hyperel-
liptic Jacobians and pencils of quadrics, Frontiers in Mathematics. Basel: Birkh&user,
2011.

5. C.-E. Hretcanu, M. Crasmareanu, Metallic Structures on Riemannian Manifolds, Rev.
Unién Mat. Argent., 54(2), (2013), 15-27.

6. E. Ghate, E. Hironaka, The Arithmetic and Geometry of Salem Numbers, Bull. Am.
Math. Soc. New Ser., 38(3), (2001), 293-314.

7. N. Murru, M. Abrate, S. Barbero, U. Cerruti, Groups and Monoids of Pythagorean
Triples Connected to Conics, Open Math., 15, (2017), 1323-1331.

8. F. C.)zdernyr7 M. Crasmareanu, Geometrical Objects Associated to a Substructure, Turk.
J. Math., 35(4), (2011), 717-728.

9. P. Popescu-Pampu, What Is the Genus?, Lecture Notes in Mathematics 2162, History
of Mathematics Subseries. Cham, Springer, 2016.


http://dx.doi.org/10.52547/ijmsi.17.1.227
https://ijmsi.com/article-1-1418-en.html
http://www.tcpdf.org

