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1. INTRODUCTION

Mathematical modeling of sound wave distribution problems are denote fol-
lowing equation
v 0w
ET) + 90l = g(z,t,v)
is called the Euler-Bernoulli equations. The vibration, buckling and dynamic
behavior of various building elements widely used in nano-technology are rep-
resented by the Euler-Bernoulli equations.Due to the new and exceptionally
its electronic and mechanical properties, carbon nanotubes are considered to
be one of the most useful material in future [4, 8]. These elements are tack-
led by different boundary conditions depending on different loading conditions.
Therefore, investigation of the solution of Euler-Bernoulli equations with differ-
ent boundary conditions used in the mathematical modeling of the structural
components of nano-materials continues to be a focus of interest amongst math-
ematicians.
In mathematics, the classical statement of Euler-Bernoulli equation is in the
following form:

o o
otz Oxt
The inverse problem have been worked by many authors [2, 1, 3, 7]. Tt will

=0.

be examined to inverse Euler Bernoulli equations in this article.

The periodic boundary conditions arise from many important applications
in heat transfer, life sciences[5].

Let T'> 0 and denote by Q:={0 <z <7m,0<t<T}.

The quasi-linear time-dependent equation

v 0w
55 T gz el =g(a,t), (@) € 9, (1.1)

with boundary conditions

v(0,t) = wv(m,t),
v5(0,7) v (T, 1),
Ve (0, 1) Vg (T, 1), (1.2)
Vzzz(0,8) = Vgga(m,t),t € 0,77,

with initial conditions

v(x,0) = p(z),v:(x,0) = ¢(z) ,x € [0,7], (1.3)

and integral overdetermination conditions
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E(t) = /mu(m,t)dm,t € (0,17, (1.4)
0
for nonlinear source term g(z,t,v) and ¢(x), ¥ (z) and E(¢) are known functions
which are positive and continuous,v(z,t) and a(t) are unknown functions. In
heat propagation in a thin rod in which the law of variation E(t) of the total
quantity of heat in the rod is given in [6].

Definition 1.1. {a(t),v(z,t)} is called the solution of the inverse problem
(1.1)-(1.4).

Definition 1.2. w(t,x) € C(Q) is refereed test function that gives following
conditions:

w(T,z) = w(T,z) = 0,w(0,t) = w(m,t),w,(0,t) = wy(m,t), wz(0,t) =
Wy (T, 1), Waze (0,1) = Wagy(m, 1), t€]0,T].

v(z,t) € C(Q) is named generalized solution that gives following equation:

T " .
// ({ %th 64? - a(t)w} v — gw) dxdt—/w(x, O)w(x)dx+/ wy(z,0)p(x)dz = 0.
0 ) )

Nomenclature

(z) Initial function

a(t) Unknown coefficient

E(t) Energy

v(x,t) Temperature distribution

g(z,t,v) Source function

vo(t), vek (1), ver (t) Fourier coefficients

M Arbitrary constant

My, My Dimensionless constants
Q:={0<z <7 0<t<T} Domain of z,t

2. SOLUTION OF THE INVERSE PROBLEM

(S1) E(t) € C?[0,T
(S2) ¢(x) € C°[0, 7], ¥ (x) € CH{0, 7], fﬁw
(S3) g(z,t,v) is provided the following condltlons in Q x (—o00,00),
(1)
Mgz, t,v) Mgz, t,v)
) Uy _ 3 Uy < o~ _ 1.9

o L0 < b, t) o~ n=0,1,2,

where b(x,t) € La(Q), b(z,t) >0,
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(2)g(z,t,v) € @ x (—00,00), t € [0,T],|g(z,t,v)] < M,
(3) a(t) € C[0,T].

By Fourier method, we have

o(z,t) = [soo+1/)ot+ //tff v(&, )+9(§,T,v))d£dT] (2.1)

1/}Ck‘
(2h)?

+ Z cos 2kx <<pck cos(2k)%t +
k=1

sin(2k)2t>
+ ; cos 2kx (71_(22@2 // (a(T)v(&,7) + g(€,7,v)) sin(2k)?(t — 7) cos 2kEdEdT

0 0

Usk . 2
+ Zsm 2kx ((psk cos(2k)?t + k)2 sin(2k)“t

t m
+ Z sin 2kx ( AE // )+ g(&,7,v)) sin(2k)?(t — 7) sin 2k&dédT |
00

where 0o = 2 [ @(z)dx, o = 2 [ p(x) cos2kzdx, oo = 2 [ () sin 2kzdz,
0 0 0
g = %f@/}(x)dx,wpk = %f¢(x) cos 2kxdx, Pgy, = %f?/)(x sin 2kxdz,
0 0 0

go(t,v) = 2 [g(x,t,v)dz, ge(t,v) = 2 [g(x,t,v)cos2kadz, gi(t,v) =
0

O—y

From (2.1) and (2.2),we obtain
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alt) = %(S) (2.3)
7 é (28)* (spuk cos(2h)%t + ks sin(2k)%1))
B E(t)
T k%::l (21@')3 W(gk)Q jof(a(r)v(f, 7)+ g(&,7,v)) sin ((2k)2(t — T)) sin 2k&dEdT

E(t)

Definition 2.1. Denote the following set;
Let {v(t)} = {vo(t),ver(t), vsr(t), k = 1,...,n} satisfy such

that
|vo(f)|
Joax =5 + Z (max [vek (t)] + 1}1&<XT|US/€( )|) < 00.
— |?10(t)|
o0l = s, 42+ 5° (s o (0] + g, a0

is the norm of B; Banach space.

Theorem 2.2. If the conditions (S1)-(S3) be ensured. Then the Euler-Bernoulli
problem has a unique solution.

Proof. Let, iteration to equation (2.1)

v(()N-&-l)(t) = v(o) )+ — //(t <N) (MoWMN(g,7) 4+ g€, T ’l)(N))) dédr

v 0 = o+ W / [ (@™ @€ m) + g6, 7 0™)) sin(2k)2(e — ) cos 2hedean)
0

vijkwrl)(t) = vig)(t) + =(2k)2 // (a<N)(T)v<N)(E,T) +g(§,7',v(N))) sin(2k)2(t — 7) sin 2k€ dédr,

0 0

¢sk’

ul? (t) = oot ul) (t) = per cos(2k) %+ sin(2k)2t, ul®) () = pa, cos(2k)2t+

(2k)?

(2k)?

sin(2k)%t
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a(NJrl)(t) _ E (t) o

E(t)
i (2k)® (cpsk cos(2k)?t + (wc’)“z Sin(2k)2t))

k=1
E(t)
ng:l (2k)° W(22k)2 6;0} (a(m)v(&, ) + g(&, T, v(N))) sin ((2k)?(t — 7)) sin 2k€dédr

E(t)

Of €g (€,1,0M) de
TR

According to the theorem, we obtain v(®)(t) € By, ¢ € [0,T].

w0 = o / / (¢ =) (a® ()€, 7) + g(6,7,0")) der

t
Adding and subtracting | [ ¢(&, 7,0)d€dr and after applying Cauchy, Bessel,

00
Lipschitz inequalities, we obtain

! = H
oA |V (t)’ < ol + T [tho] +2\/7 v (t) o]
+2\/ HU(O 5. @Dl o) +2\/79 (.4,0) 10 -
9 t
vi,lc) (t) = vgz) (t)+7r(2k)2 // (a(o)(r)v(o)(f, )+ g, T, ’U(O))) sin(2k)?(t—7) cos 2k&dEdr.
00

After applying Cauchy, Bessel, Lipschitz ,Holder inequalities, we have

o0 2 o
1) T
> g n| < > lpetl + 33 3o
m/T T
e T I R
5 [*OO,, [«OO] o+ 5 OO, B0y
iy
+ 5 gt 0)l Ly

and by the same approaches,
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1)
ol )] < Z\%kw%Zwsu

k=1
L ©) (4 ‘ 0) (4 H
+ Hv ®) B @ (?) clo,T)
mf
+5 9,1, 0)ll 0 -
we get
(1) ‘ _ ’ ‘ c- ’
o 0lly, = a3 (s O]+
\4P0|

IN

k=1

roy 1 ™) o),

o

c[o0,T]

+<2\/§ + T o ®)] . 15Ol

+2 \/;+ T (e,

According to theorem , vV (t) € By .
Same estimations for the step IV,

v T
AV E,,00
e 0w],, b0z

ol

9 o0
™
2 + E ‘(pck‘ + |905k\ ﬂ E |’(/}ck| + |’(/}sk|
k=1

ol - s 2 (o b+ e b0
< ol S ol i)+ 3 (] + )
k=1 k=1
+(2\/§+ ﬂ) Hv(N) (t)‘ )(t)HC[QT]
) T o) 166w Dl

+<2\/? + i> g, t.0)] 1,0 -

According to v(™¥)(t) € By and theorem we obtain vtV (t) € By,

{o®)} = {vo(t), ver (1), vk (1), k= 1,2,..

} € B;.
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Same estimations for the step NV,

Ha(NJrl)(t)
clo,T]
1 12 > 1" ’
< — (B« ‘ 2
= E(t)( ()+ §(¢0k+¢ck)
T
+— [loM (2 ‘ aM(t H
7 (t) 5 (t) o
T
+— ’v(N) t H b(x,t
V1 GGl I ECDTS

(N)
S (O] I TEROTPS
+m ||g($7ta O)HLQ(Q))

We have aV+1(t) € By.
For N — oo .oV (t),a™N+1) are converged.
After applying Cauchy, Bessel ,Lipschitz, Holder inequalities, we obtain

T 7T
< efg bl
By ( 37r+ 6 [ )
3 T
T Sl N | PICV)
R e =0 LARIO] I LI s
T 7T
+(2y 3T T) lg(z,t,0)[l 1, -

e I

—mf§+%iWWwﬁwmmmwM»

Hv(l)(t) - U(O)(t)‘

o

B c[o,T]

o

Bl clo,T)

M4y _ (0 L‘ 1 _,(0) (0) H
a t a t < v v a t
|la ) 0., = ZeEas I -2, [0l
7T 1 _ <0>H
L 07 e W LLCA Py
For the step IV :
(N+1) (4 _ (N) L’ (N+1) _ ,(N) (N) H
a t)—a t < Vg (O a t
H () () co. \/éE(t)B ’ 1 () C[0,T7]
7T (N+1) _ (N)H
+E(t>B v v 16(z, )]l 1, () -
A
(N+1) () _ o (N) < N
OO M LCD P (2:5)
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™
5= 1,
VBE(t) B
™
D= 1o |
V6E(t)B
o0 [0
E(t)9 clo,T]

||

)

v
Co,T) H r

B

vWVHD 5 y(N) N — 00, then M+ — (V)| N — 0.

Let us show

lim oY (1) = (1),

lim a Nt (1) = a(t).

N—o0 N —oc0

Hv - U<N+1>( < (2\/ﬁ + YT, Ha(t) — a1 (1) v(N“)(t)‘
B 3r 6 clo,7) By
+(2 g—; + ?) v —v(N“)( . aN (1) o
+(2\/§+ #) v—v(NH)H [[o(z t)||L2(Q
ry o 2T v ol

Let us consider |[vV+1)(¢) — U(N)(t)HB1

<

2
o) o™ ()|

2 [ AL e O]

and applying Gronwall’s inequality

(2.6)

H\? 2
X exp 2 (G) (Hb(ﬂc t)Hg;Eslz )
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T 2
¢ = 1= gz [« 575 1°™ O o |
3E(t)B “ c[o,T) 3BE ®) clo,T) v
(2 gs + =T 2 T
P ST o) H o)
C “ ®) C10,T] + 3BE(t) v “ ®) Clo,T]
H N+1)( )‘
\fE By’
i L T8 ﬂ
a - 1_(2\/37r+ 6 ‘ (2\/37r+ 6 H N+1)()‘
C 3BE C[OT C \fE By’

2/ 12 4 =T
Gy + 50 +(2\/T—3+Lﬁ)Ha(N“>H +(2 T—3+L/T).
C B 37 6 C[0,T) 37 6

vV o, aNHD 6, N — o0,
For the uniqueness, let (u,a), (v,b) are two solutions of (1.1)-(1.4). If we
use the same approaches to |u(t) — v(t)| and |a(t) — b(¢)|, we have:

Ju(t) — v@)l5, < W: +i>u (1) = b0)]., . u0)] 5,

v 2 T (] i) - o) Pasar |
0 0

VBE(t)B
+ 55 P Ol ) = v(Ol 5,

H =

|

la(®) = o)l < a2y 0y [[te () = vau ()] g,

3 s e 2 _ﬁ—|—
[u(t) —o@®)lp, < (2\/Z+ [)MBE()” I, ]||u(t)||31+# X

2

//bQ(g,T)\u(r)—U(T)\ngdf . (2.7)
0 O

If Gronwall inequality is applied to (2.7) , u(t) = v(t) then a(t) = b(¢t). O

The proof is completed.

3. STABILITY OF THE SOLUTION (A,U)

Theorem 3.1. If the condition (S1)-(S3) are implemented then the solution
(a,v) of the problem depends continuously on p, ¥, E
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Proof. Suppose ¥ = {p,, E, f} and ¥ = {@,E, E, f} . For M;, i =
0, 1, 2(positiveconstants) such that

1Elc2p0,m < Mo, < Mo, [[llcso,n < M 1@l e < M,

1l 2o,
Illcijg < Mz, HEHcl[o,ﬁ] < M.

Let us show [|¥| = ([[Ellc2o.7 + [I€llcsjon T 1¥llcipo,x))- Let (a,v) and
(@,v) are solutions of problems (1.1)-(1.4) corresponding to the data ¥ =
{p,9, E, f} and ¥ = {@,@, E, f} respectively.

2 — T3 T
lv(®) —v@®lls, < lle-2l_,, +1H¢—¢||01M+(2\/3—W+”Gf)na(t)—a(t)nc[w [u(®)ll 5,

w2 2 T )~ 50,
w2 T T )~ 0, 0

1 —
la(t) @)l cpr < (L_)QW—¢0%M+H¢—MLWM>

VBE(®)

. (1_1> lo(t) = 5@l 3, 1D 10,17
VBE(t)

i —
+6E(t) [o(t) =) 5, 10z )l 1,00+
where
—_ _ 2 A
o= = le-2l,  +57ll0 -7l
1 B _
+ <W> (Ilw =l s, Y- 1/’||C1[0,ﬂ) '
where
B T3 f
My = (2 =t —)/1 *\[T()
T3 wﬁ
M, = ((2 =t - fE()>|()II

lo-72 < 2ME|w -9’

T

t
x exp 2M / / b2 (¢, T)dédT
0 0
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For¥ — W then v — v. Hence a — a. (]

4. NUMERICAL METHOD FOR EULER-BERNOULLI PROBLEM

We obtain the following problem after linearization:

2?2 gty

Z - (n) — (n—1) 9 4.1
6t2 + 81‘4 CL(t)U g(x,t,v )a (ZC,t) € ) ( )
o™ (0,t) = o™(m,t),
v{™(0,t) o{™ (m, 1),
v (0,8) = o{W(m,¢), (4.2)
o™ (0,t) o™ (m,t),t € [0,T7,
V™ (2,0) = (), 0™ (2,0) = ¥(z) ,x € [0,7], (4.3)

2™ (z, t)dz, t € [0,T]. (4.4)

g
I
o\:‘

Let v(™ (z,t) = w(x,t) and g(x,t,v"~V) = G(x,t). Then the problem:

Pw 0w

e + ot a(t)w = g(x,t), (z,t) € Q, (4.5)
w(0,t) = w(m,t),
we(0,t) = wy(m,t),
Wez(0,1) = weg(m,t), (4.6)
Wezr(0,8) = Wype(m,t), t €[0,T7],
w(z,0) = p(x),w(x,0) = Y(x), = €[0,n], (4.7)
E(t) = /zw(x,t)dx, tel0,T]. (4.8)

0
We use finite-difference method for numerical approximation (4.5)-(4.8):

1 ) ) o 1 . . . : . L~
- (0 = 2wl 0l ) (vl — Al 6w — dwly wly) =alul+f]
-

wd = 5,7 (o} —0f) = v (49)
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w) =k 1, (4.10)
w] = U?Vw+27 (4.11)
w ) = vl , (4.12)
wh —wly =why - wh, . (4.13)

The region [0, 7] x [0, 7] is divided into an NV, x Ny mesh with the spatial step
size h = /N, in x direction and the time step size 7 = T/ N, respectively.
Grid points x;, t; are defined by
x; =1th; 1 =0;1;2;...; Ny;
t; =47 k=0;1;2;...; Ny
w] = w(zi,t;), g = g(xi,t;), o = al(t;).
Integrate (4.5) with respect to « from 0 to = and use (4.6) and (4.7), we
obtain

a(t) = %ﬁ) |:E//(t) + TWeay (77', t) — /OW xﬁ(a:, t)dl‘:| . (414)

The discretization of (4.14) is

{((E]"‘rl —9FJ + Ej—l) /72) +7 (wg\,ﬁ_3 — ngvx-rz + 2w§vl — wgvm_l) — (foﬁ xﬁfda@)}
Ei ’

a1l =

where E7 = E(t;), j = 0,1,..., Ny.
We mention that the integral is numerically calculated using trapezoidal

rule.

@), wf(s) J

are the s-th iteration step of a’,w] , respectively. At each s-th

iteration step, a/(®) is

(20 200+ 5m00) 1) 0 (i~ 20 ) — (1§ 50)]

J(s) _
a = Joh

The iteration of (4.9)-(4.13) is

1 j s j (s j—1(s— 1 j (s j (s j (s j (s j (s i (s j (s ~7j(s
= (wZH( +1) 21"3( ) erz? 1( 1))+ﬁ (wziQ) *4wfi1) +6wg< ) 74w3£1) +wz£2)) — ¢ )wlq( )Jrglq( )
(4.15)

wy = @»% (wi —w?) = (4.16)
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wi®) = w%ﬁrp (4.17)
wi® = i) (4.18)
W) = wlf®), (4.19)
wi — ) = Wil — (4.20)

System (4.16)-(4.20) is solved and w! T g determined.

%

EXAMPLE 4.1. The analytical solution is
{a(t), v(z,t)} = {1 +exp(t), (1+ cos2z)exp(t)},

for the given functions

p(x) = (l4cos2z), E(t) = % exp(t),

glz,t,v) = (16cos2zx —v)exp(t).
Here h = 0.0393, 7 = 0.005.
|ak 1+ — gk +1()] < /100 is the convergence criterion for a(t).

The analytical solution and the approximate solution can be seen Figures 1
and 2 when the last time T = 2.

exact k(t)
— — “numerical k()| /|

1 I I I I I I I I I
0 02 04 06 08 1 12 14 16 18 2
t

FIGURE 1. The exact and approximate solutions of a(t). The
approximate solution is shown with dashed line.
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FIGURE 2. The exact and approximate solutions of u(x,2).
The approximate solution is shown with dashed line.

EXAMPLE 4.2. (discontinuous coefficient)
In Example 1, a continuous function is given. Now, a more severe discon-
tinuous function is [cons>idered:
1,t 0,1
alt) _{ ~1,t € 1,2
The step sizes are h = 0.0393, 7 = 0.005. We obtain Figures 3 which shows
the analytical and the approximate solutions of a(¢) when the last time 7' = 2.

1 T T T T T T T T T

exact k(t)
numerical k(f)

0.5

K(t)

FIGURE 3. The exact and approximate solutions of a(t). The
approximate solution is shown with dashed line.
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