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1. Introduction

Mathematical modeling of sound wave distribution problems are denote fol-

lowing equation

∂2v

∂t2
+
∂4v

∂x4
= g(x, t, v)

is called the Euler-Bernoulli equations. The vibration, buckling and dynamic

behavior of various building elements widely used in nano-technology are rep-

resented by the Euler-Bernoulli equations.Due to the new and exceptionally

its electronic and mechanical properties, carbon nanotubes are considered to

be one of the most useful material in future [4, 8]. These elements are tack-

led by different boundary conditions depending on different loading conditions.

Therefore, investigation of the solution of Euler-Bernoulli equations with differ-

ent boundary conditions used in the mathematical modeling of the structural

components of nano-materials continues to be a focus of interest amongst math-

ematicians.

In mathematics, the classical statement of Euler-Bernoulli equation is in the

following form:

∂2v

∂t2
+
∂4v

∂x4
= 0.

The inverse problem have been worked by many authors [2, 1, 3, 7]. It will

be examined to inverse Euler Bernoulli equations in this article.

The periodic boundary conditions arise from many important applications

in heat transfer, life sciences[5].

Let T > 0 and denote by Ω := {0 < x < π, 0 < t < T} .

The quasi-linear time-dependent equation

∂2v

∂t2
+
∂4v

∂x4
− a(t)v = g(x, t, v), (x, t) ∈ Ω, (1.1)

with boundary conditions

v(0, t) = v(π, t),

vx(0, t) = vx(π, t),

vxx(0, t) = vxx(π, t), (1.2)

vxxx(0, t) = vxxx(π, t), t ∈ [0, T ] ,

with initial conditions

v(x, 0) = ϕ(x), vt(x, 0) = ψ(x) , x ∈ [0, π] , (1.3)

and integral overdetermination conditions
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E(t) =

π∫

0

xu(x, t)dx, t ∈ [0, T ] , (1.4)

for nonlinear source term g(x, t, v) and ϕ(x), ψ(x) and E(t) are known functions

which are positive and continuous,v(x, t) and a(t) are unknown functions. In

heat propagation in a thin rod in which the law of variation E(t) of the total

quantity of heat in the rod is given in [6].

Definition 1.1. {a(t), v(x, t)} is called the solution of the inverse problem

(1.1)-(1.4).

Definition 1.2. w(t, x) ∈ C(Ω) is refereed test function that gives following

conditions:

w(T, x) = wt(T, x) = 0, w(0, t) = w(π, t), wx(0, t) = wx(π, t), wxx(0, t) =

wxx(π, t), wxxx(0, t) = wxxx(π, t), tǫ [0, T ] .

v(x, t) ∈ C(Ω) is named generalized solution that gives following equation:

T∫

0

π∫

0

({
∂2w

∂t2
+
∂4w

∂x4
− a(t)w

}
v − gw

)
dxdt−

π∫

0

w(x, 0)ψ(x)dx+

π∫

0

wt(x, 0)ϕ(x)dx = 0.

Nomenclature

ϕ(x) Initial function

a(t) Unknown coefficient

E(t) Energy

v(x, t) Temperature distribution

g(x, t, v) Source function

v0(t), vck(t), vck(t) Fourier coefficients

M Arbitrary constant

M1,M2 Dimensionless constants

Ω := {0 < x < π, 0 < t < T} Domain of x, t

2. Solution of the Inverse Problem

(S1) E(t) ∈ C2[0, T ].

(S2) ϕ(x) ∈ C3[0, π], ψ(x) ∈ C1[0, π], E(0) =
π∫
0

xϕ(x)dx,

(S3) g(x, t, v) is provided the following conditions in Ω× (−∞,∞) ,

(1)
∣∣∣∣
∂(n)g(x, t, v)

∂xn
− ∂(n)g(x, t, ṽ)

∂xn

∣∣∣∣ ≤ b(x, t) |v − ṽ| , n = 0, 1, 2,

where b(x, t) ∈ L2(Ω), b(x, t) ≥ 0,
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(2)g(x, t, v) ∈ Ω× (−∞,∞) , t ∈ [0, T ], |g(x, t, v)| ≤M,

(3) a(t) ∈ C[0, T ].

By Fourier method, we have

v(x, t) =
1

2


ϕ0 + ψ0t+

2

π

t∫

0

π∫

0

(t− τ) (a(τ)v(ξ, τ) + g(ξ, τ, v)) dξdτ


 (2.1)

+

∞∑

k=1

cos 2kx

(
ϕck cos(2k)

2t+
ψck
(2k)2

sin(2k)2t

)

+
∞∑

k=1

cos 2kx


 2

π(2k)2

t∫

0

π∫

0

(a(τ)v(ξ, τ) + g(ξ, τ, v)) sin(2k)2(t− τ) cos 2kξdξdτ




+

∞∑

k=1

sin 2kx

(
ϕsk cos(2k)

2t+
ψsk
(2k)2

sin(2k)2t

)

+

∞∑

k=1

sin 2kx


 2

π(2k)2

t∫

0

π∫

0

(a(τ)v(ξ, τ) + g(ξ, τ, v)) sin(2k)2(t− τ) sin 2kξdξdτ


 ,

where ϕ0 = 2
π

π∫
0

ϕ(x)dx, ϕck = 2
π

π∫
0

ϕ(x) cos 2kxdx, ϕsk = 2
π

π∫
0

ϕ(x) sin 2kxdx,

ψ0 = 2
π

π∫
0

ψ(x)dx, ψck = 2
π

π∫
0

ψ(x) cos 2kxdx, ψsk = 2
π

π∫
0

ψ(x) sin 2kxdx,

g0(t, v) = 2
π

π∫
0

g(x, t, v)dx, gck(t, v) = 2
π

π∫
0

g(x, t, v) cos 2kxdx, gsk(t, v) =

2
π

π∫
0

g(x, t, v) sin 2kxdx, k = 1, 2, 3, ... .

Using (S1)-(S3), differentiating (1.4), we have

π∫

0

xvt(x, t)dx = E
′

(t), 0 ≤ t ≤ T. (2.2)

From (2.1) and (2.2),we obtain
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a(t) =
E

′′

(t)

E(t)
(2.3)

−
π

∞∑
k=1

(2k)
3
(
ϕsk cos(2k)

2t+ ψck

(2k)2 sin(2k)
2t)
)

E(t)

−
π

∞∑
k=1

(2k)
3 2
π(2k)2

t∫
0

π∫
0

(a(τ)v(ξ, τ) + g(ξ, τ, v)) sin
(
(2k)2(t− τ)

)
sin 2kξdξdτ

E(t)

−

π∫
0

ξg (ξ, t, v) dξ

E(t)
.

Definition 2.1. Denote the following set;

Let {v(t)} = {v0(t), vck(t), vsk(t), k = 1, ..., n} satisfy such

that

max
0≤t≤T

|v0(t)|
2 +

∞∑
k=1

(
max
0≤t≤T

|vck(t)|+ max
0≤t≤T

|vsk(t)|
)
<∞.

‖v(t)‖ = max
0≤t≤T

|v0(t)|
2 +

∞∑
k=1

(
max
0≤t≤T

|vck(t)|+ max
0≤t≤T

|vsk(t)|
)

is the norm of B1 Banach space.

Theorem 2.2. If the conditions (S1)-(S3) be ensured. Then the Euler-Bernoulli

problem has a unique solution.

Proof. Let, iteration to equation (2.1)

v
(N+1)
0 (t) = v

(0)
0 (t) +

2

π

t
∫

0

π
∫

0

(t− τ)
(

a(N)(τ)v(N)(ξ, τ) + g(ξ, τ, v(N))
)

dξdτ

v
(N+1)
ck

(t) = v
(0)
ck

(t) +
2

π(2k)2

t
∫

0

π
∫

0

(

a(N)(τ)v(N)(ξ, τ) + g(ξ, τ, v(N))
)

sin(2k)2(t− τ) cos 2kξdξdτ,(2.4)

v
(N+1)
sk

(t) = v
(0)
sk

(t) +
2

π(2k)2

t
∫

0

π
∫

0

(

a(N)(τ)v(N)(ξ, τ) + g(ξ, τ, v(N))
)

sin(2k)2(t− τ) sin 2kξ dξdτ,

u
(0)
0 (t) = ϕ0+ψ0t, u

(0)
ck (t) = ϕck cos(2k)

2t+
ψck
(2k)2

sin(2k)2t, u
(0)
sk (t) = ϕsk cos(2k)

2t+
ψsk
(2k)2

sin(2k)2t.
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a(N+1)(t) =
E

′′

(t)

E(t)
−

−
π

∞∑
k=1

(2k)
3
(
ϕsk cos(2k)

2t+ ψck

(2k)2 sin(2k)
2t)
)

E(t)

−
π

∞∑
k=1

(2k)
3 2
π(2k)2

t∫
0

π∫
0

(
a(τ)v(ξ, τ) + g(ξ, τ, v(N))

)
sin
(
(2k)2(t− τ)

)
sin 2kξdξdτ

E(t)

−

π∫
0

ξg
(
ξ, t, v(N)

)
dξ

E(t)
.

According to the theorem, we obtain v(0)(t) ∈ B1, t ∈ [0, T ].

v
(1)
0 (t) = v

(0)
0 (t) +

2

π

t∫

0

π∫

0

(t− τ)
(
a(0)(τ)v(0)(ξ, τ) + g(ξ, τ, v(0))

)
dξdτ

Adding and subtracting
t∫
0

π∫
0

g(ξ, τ, 0)dξdτ and after applying Cauchy, Bessel,

Lipschitz inequalities, we obtain

max
0≤t≤T

∣∣∣v(1)0 (t)
∣∣∣ ≤ |ϕ0|+ T |ψ0|+ 2

√
T 3

3π

∥∥∥v(0)(t)
∥∥∥
B1

∥∥∥a(0)(t)
∥∥∥
C[0,T ]

+2

√
T 3

3π

∥∥∥v(0)(t)
∥∥∥
B1

‖b(x, t)‖L2(Ω) + 2

√
T 3

3π
‖g(x, t, 0)‖L2(Ω) .

v
(1)
ck (t) = v

(0)
ck (t)+

2

π(2k)2

t∫

0

π∫

0

(
a(0)(τ)v(0)(ξ, τ) + g(ξ, τ, v(0))

)
sin(2k)2(t−τ) cos 2kξdξdτ.

After applying Cauchy, Bessel, Lipschitz ,Hölder inequalities, we have

∞∑

k=1

max
0≤t≤T

∣∣∣v(1)ck (t)
∣∣∣ ≤

∞∑

k=1

|ϕck|+
π2

24

∞∑

k=1

|ψck|

+
π
√
T

12

∥∥∥v(0)(t)
∥∥∥
B1

∥∥∥a(0)(t)
∥∥∥
C[0,T ]

+
π
√
T

12

∥∥∥v(0)(t)
∥∥∥
B1

‖b(x, t)‖L2(Ω)

+
π
√
T

12
‖g(x, t, 0)‖L2(Ω) ,

and by the same approaches,
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∞∑

k=1

max
0≤t≤T

∣∣∣v(1)sk (t)
∣∣∣ ≤

∞∑

k=1

|ϕsk|+
π2

24

∞∑

k=1

|ψsk|

+
π
√
T

12

∥∥∥v(0)(t)
∥∥∥
B1

∥∥∥a(0)(t)
∥∥∥
C[0,T ]

+
π
√
T

12

∥∥∥v(0)(t)
∥∥∥
B1

‖b(x, t)‖L2(Ω)

+
π
√
T

12
‖g(x, t, 0)‖L2(Ω) .

we get

∥∥∥v(1)(t)
∥∥∥
B1

= max
0≤t≤T

∣∣∣v(1)0 (t)
∣∣∣

2
+

∞∑

k=1

(
max
0≤t≤T

∣∣∣v(1)ck (t)
∣∣∣+ max

0≤t≤T

∣∣∣v(1)sk (t)
∣∣∣
)

≤ |ϕ0|
2

+

∞∑

k=1

(|ϕck|+ |ϕsk|) +
π2

24

∞∑

k=1

(|ψck|+ |ψsk|)

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(0)(t)

∥∥∥
B1

∥∥∥a(0)(t)
∥∥∥
C[0,T ]

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(0)(t)

∥∥∥
B1

‖b(x, t)‖L2(D)

+(2

√
T 3

3π
+
π
√
T

6
) ‖g(x, t, 0)‖L2(Ω) .

According to theorem , v(1)(t) ∈ B1 .

Same estimations for the step N,

∥∥∥v(N+1)(t)
∥∥∥
B1

= max
0≤t≤T

∣∣∣v(N)
0 (t)

∣∣∣
2

+
∞∑

k=1

(
max
0≤t≤T

∣∣∣v(N)
ck (t)

∣∣∣+ max
0≤t≤T

∣∣∣v(N)
sk (t)

∣∣∣
)

≤ |ϕ0|
2

+

∞∑

k=1

(|ϕck|+ |ϕsk|) +
π2

24

∞∑

k=1

(|ψck|+ |ψsk|)

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(N)(t)

∥∥∥
B1

∥∥∥a(N)(t)
∥∥∥
C[0,T ]

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(N)(t)

∥∥∥
B1

‖b(x, t)‖L2(Ω)

+(2

√
T 3

3π
+
π
√
T

6
) ‖g(x, t, 0)‖L2(Ω) .

According to v(N)(t) ∈ B1 and theorem we obtain v(N+1)(t) ∈ B1,

{v(t)} = {v0(t), vck(t), vsk(t), k = 1, 2, ...} ∈ B1.
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Same estimations for the step N,
∥∥∥a(N+1)(t)

∥∥∥
C[0,T ]

≤ 1

E(t)
(
∣∣∣E

′′

(t)
∣∣∣+ 2

∞∑

k=1

(∣∣∣ϕ
′′′

ck

∣∣∣+
∣∣∣ψ

′

ck

∣∣∣
)

+
π√
6

∥∥∥v(N)
xx (t)

∥∥∥
B1

∥∥∥a(N)(t)
∥∥∥
C[0,T ]

+
π√
6

∥∥∥v(N)(t)
∥∥∥
B1

‖b(x, t)‖L2(Ω)

+π
∥∥∥v(N)(t)

∥∥∥
B1

‖b(x, t)‖L2(Ω)

+π ‖g(x, t, 0)‖L2(Ω)).

We have a(N+1)(t) ∈ B1.

For N → ∞ ,v(N+1)(t), a(N+1) are converged.

After applying Cauchy, Bessel ,Lipschitz, Hölder inequalities, we obtain

∥∥∥v(1)(t)− v(0)(t)
∥∥∥
B1

≤ (2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(0)(t)

∥∥∥
B1

∥∥∥a(0)(t)
∥∥∥
C[0,T ]

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(0)(t)

∥∥∥
B1

‖b(x, t)‖L2(Ω)

+(2

√
T 3

3π
+
π
√
T

6
) ‖g(x, t, 0)‖L2(Ω) .

A = (2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(0)(t)

∥∥∥
B1

∥∥∥a(0)(t)
∥∥∥
C[0,T ]

+

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(0)(t)

∥∥∥
B1

‖b(x, t)‖L2(Ω) +M).

∥∥∥a(1)(t)− a(0)(t)
∥∥∥

C[0,T ]

≤ π√
6E(t)B

∥∥∥v(1)xx − v(0)xx

∥∥∥
B1

∥∥∥a(0)(t)
∥∥∥
C[0,T ]

+
π

E(t)B

∥∥∥v(1) − v(0)
∥∥∥
B1

‖b(x, t)‖L2(Ω) .

For the step N :

∥∥∥a(N+1)(t)− a(N)(t)
∥∥∥

C[0,T ]

≤ π√
6E(t)B

∥∥∥v(N+1)
xx − v(N)

xx

∥∥∥
B1

∥∥∥a(N)(t)
∥∥∥
C[0,T ]

+
π

E(t)B

∥∥∥v(N+1) − v(N)
∥∥∥
B1

‖b(x, t)‖L2(Ω) .

∥∥∥v(N+1)(t)− v(N)(t)
∥∥∥
B1

≤ A

D
√
N !

E ‖b(x, t)‖NL2(Ω) . (2.5)
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B = 1− π√
6E(t)

∥∥∥v(N)
∥∥∥
B1

,

D = 1− π√
6E(t)B

∥∥∥v(N)
∥∥∥
B1

− π

3E(t)

∥∥∥a(N)(t)
∥∥∥
C[0,T ]

∥∥∥v(N)
x

∥∥∥
B1

−
√
6π

E(t)9

∥∥∥a(N)(t)
∥∥∥
2

C[0,T ]

∥∥∥v(N)
∥∥∥
B1

.

v(N+1) → v(N) , N → ∞, then a(N+1) → a(N), N → ∞.

Let us show

lim
N→∞

v(N+1)(t) = v(t), lim
N→∞

a(N+1)(t) = a(t).

∥∥∥v − v(N+1)
∥∥∥
B1

≤ (2

√
T 3

3π
+
π
√
T

6
)
∥∥∥a(t)− a(N+1)(t)

∥∥∥
C[0,T ]

∥∥∥v(N+1)(t)
∥∥∥
B1

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v − v(N+1)

∥∥∥
B1

∥∥∥a(N+1)(t)
∥∥∥

C[0,T ]

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v − v(N+1)

∥∥∥
B1

‖b(x, t)‖L2(Ω)

+(2

√
T 3

3π
+
π
√
T

6
)
∥∥∥v(N+1) − v(N)

∥∥∥
B1

‖b(x, t)‖L2(Ω) .

Let us consider
∥∥v(N+1)(t)− v(N)(t)

∥∥
B1

and applying Gronwall’s inequality

∥∥∥v(t)− v(N+1)(t)
∥∥∥
2

B1

≤

2

[
A√
N !

F

G
‖b(x, t)‖L2(Ω)

]2
(2.6)

× exp 2

(
H

G

)2 (
‖b(x, t)‖N+1

L2(Ω)

)2
.
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C = 1− π

3E(t)B

∥∥∥a(N+1)
∥∥∥
C[0,T ]

∥∥∥v(N)
x

∥∥∥
B1

− π

3BE(t)

∥∥∥a(N+1)(t)
∥∥∥
2

C[0,T ]

∥∥∥v(N+1)
∥∥∥
B1

,

F =
(2
√

T 3

3π + π
√
T

6 )

C

∥∥∥v(N+1)
∥∥∥
B1

∥∥∥a(N+1)(t)
∥∥∥
2

C[0,T ]
+

π2

3BE(t)

∥∥∥v(N+1)
∥∥∥
B1

∥∥∥a(N+1)(t)
∥∥∥
C[0,T ]

+
π√
6E(t)

∥∥∥v(N+1)(t)
∥∥∥
B1

,

G = 1−
(2
√

T 3

3π + π
√
T

6 )

C

π

3BE(t)

∥∥∥v(N+1)
∥∥∥
B1

∥∥∥a(N+1)
∥∥∥
3

C[0,T ]
+

(2
√

T 3

3π + π
√
T

6 )

C

π√
6E(t)

∥∥∥v(N+1)(t)
∥∥∥
B1

,

H =
(2
√

T 3

3π + π
√
T

6 )π

C

∥∥∥v(N+1)
∥∥∥
B1

+ (2

√
T 3

3π
+
π
√
T

6
)
∥∥∥a(N+1)

∥∥∥
C[0,T ]

+ (2

√
T 3

3π
+
π
√
T

6
).

v(N+1) → u, a(N+1) → a, N → ∞.

For the uniqueness, let (u, a) , (v, b) are two solutions of (1.1)-(1.4). If we

use the same approaches to |u(t)− v(t)| and |a(t)− b(t)|, we have:

‖u(t)− v(t)‖B1
≤ (2

√
T 3

3π
+
π
√
T

6
) ‖a(t)− b(t)‖

C[0,T ]
‖u(t)‖B1

+(2

√
T 3

3π
+
π
√
T

6
)




t∫

0

π∫

0

b2(ξ, τ) |u(τ)− v(τ)|2 dξdτ




1
2

,

‖a(t)− b(t)‖C[0,T ] ≤ π√
6E(t)B

‖a(t)‖
C[0,T ]

‖uxx(t)− vxx(t)‖B1

+
π

BE(t)
‖b(x, t)‖L2(Ω) ‖u(t)− v(t)‖B1

,

‖u(t)− v(t)‖B1
≤


(2
√
T 3

3π
+
π
√
T

6
)

π

MBE(t)
‖a(t)‖

C[0,T ]
‖u(t)‖B1

+
(2
√

T 3

3π + π
√
T

6 )

M


×




t∫

0

π∫

0

b2(ξ, τ) |u(τ)− v(τ)|2 dξdτ




1
2

. (2.7)

If Gronwall inequality is applied to (2.7) , u(t) = v(t) then a(t) = b(t). �

The proof is completed.

3. Stability of the solution (a,u)

Theorem 3.1. If the condition (S1)-(S3) are implemented then the solution

(a, v) of the problem depends continuously on ϕ,ψ,E.
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Proof. Suppose Ψ = {ϕ,ψ, E, f} and Ψ =
{
ϕ,ψ, E, f

}
. For Mi, i =

0, 1, 2(positiveconstants) such that

‖E‖
C2[0,T ] ≤ M0,

∥∥E
∥∥
C2[0,T ]

≤M0, ‖ϕ‖C3[0,π] ≤M1, ‖ϕ‖C3[0,π] ≤M1,

‖ψ‖
C1[0,π] ≤ M2,

∥∥ψ
∥∥
C1[0,π]

≤M2.

Let us show ‖Ψ‖ = (‖E‖C2[0,T ] + ‖ϕ‖C3[0,π] + ‖ψ‖C1[0,π]). Let (a, v) and

(a, v) are solutions of problems (1.1)-(1.4) corresponding to the data Ψ =

{ϕ,ψ, E, f} and Ψ =
{
ϕ,ψ, E, f

}
respectively.

‖v(t)− v(t)‖
B1

≤ ‖ϕ− ϕ‖
C3[0,π]

+
π2

24

∥∥ψ − ψ
∥∥

C1[0,π]

+ (2

√
T 3

3π
+
π
√
T

6
) ‖a(t)− a(t)‖

C[0,T ] ‖u(t)‖B1

+(2

√
T 3

3π
+
π
√
T

6
) ‖v(t)− v(t)‖

B1
‖a(t)‖

C[0,T ]

+(2

√
T 3

3π
+
π
√
T

6
) ‖v(t)− v(t)‖

B1
‖b(x, t)‖

L2(Ω) ,

‖a(t)− a(t)‖C[0,T ] ≤
(

1

1− π√
6E(t)

)(
‖ϕ− ϕ‖

C3[0,π]
+
∥∥ψ − ψ

∥∥
C1[0,π]

)

+

(
1

1− π√
6E(t)

)
‖v(t)− v(t)‖B1

‖a(t)‖C[0,T ]

+
π

6E(t)
‖v(t)− v(t)‖B1

‖b(x, t)‖L2(Ω) ,

where

∥∥Ψ−Ψ
∥∥ = ‖ϕ− ϕ‖

C3[0,π]
+
π2

24

∥∥ψ − ψ
∥∥

C1[0,π]

+

(
1

1− π√
6E(t)

)(
‖ϕ− ϕ‖

C3[0,π]
+
∥∥ψ − ψ

∥∥
C1[0,π]

)
.

where

M3 = (2

√
T 3

3π
+
π
√
T

6
)/1− π√

6E(t)
,

M4 =

(
(2

√
T 3

3π
+
π
√
T

6
)/1− π√

6E(t)

)
‖u(τ)‖

B1
,

‖v − v‖2
B1

≤ 2M2
3

∥∥Ψ−Ψ
∥∥2

× exp 2M2
4




t∫

0

π∫

0

b2(ξ, τ)dξdτ


 .
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ForΨ → Ψ then v → v. Hence a→ a. �

4. Numerical Method for Euler-Bernoulli Problem

We obtain the following problem after linearization:

∂2v(n)

∂t2
+
∂4v(n)

∂x4
− a(t)v(n) = g(x, t, v(n−1)), (x, t) ∈ Ω, (4.1)

v(n)(0, t) = v(n)(π, t),

v(n)x (0, t) = v(n)x (π, t),

v(n)xx (0, t) = v(n)xx (π, t), (4.2)

v(n)xxx(0, t) = v(n)xxx(π, t), t ∈ [0, T ] ,

v(n)(x, 0) = ϕ(x), v
(n)
t (x, 0) = ψ(x) , x ∈ [0, π] , (4.3)

E(t) =

π∫

0

xv(n)(x, t)dx, t ∈ [0, T ] . (4.4)

Let v(n)(x, t) = w(x, t) and g(x, t, v(n−1)) = g̃(x, t). Then the problem:

∂2w

∂t2
+
∂4w

∂x4
− a(t)w = g̃(x, t), (x, t) ∈ Ω, (4.5)

w(0, t) = w(π, t),

wx(0, t) = wx(π, t),

wxx(0, t) = wxx(π, t), (4.6)

wxxx(0, t) = wxxx(π, t), t ∈ [0, T ] ,

w(x, 0) = ϕ(x), wt(x, 0) = ψ(x), x ∈ [0, π] , (4.7)

E(t) =

π∫

0

xw(x, t)dx, t ∈ [0, T ] . (4.8)

We use finite-difference method for numerical approximation (4.5)-(4.8):

1

τ2

(
wj+1
i − 2wji + wj−1

i

)
+

1

h4

(
wji+2 − 4wji+1 + 6wji − 4wji−1 + wji−2

)
= ajwji+f̃

j
i

w0
i = φi,

1

τ

(
v1i − v0i

)
= ψi (4.9)

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
1.

19
1 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

26
-0

2-
04

 ]
 

                            12 / 16

http://dx.doi.org/10.52547/ijmsi.17.1.191
https://ijmsi.com/article-1-1401-en.html


Solution of Inverse Euler-Bernoulli Problem with Integral Overdetermination ... 203

wj0 = vjNx+1, (4.10)

wj1 = vjNx+2, (4.11)

wj−1 = vjNx
, (4.12)

wj2 − wj−2 = wjNx+3 − wjNx−1. (4.13)

The region [0, π]× [0, T ] is divided into an Nx ×Nt mesh with the spatial step

size h = π/Nx in x direction and the time step size τ = T/Nt, respectively.

Grid points xi, tj are defined by

xi = ih; i = 0; 1; 2; ...;Nx;

tj = jτ ; k = 0; 1; 2; ...;Nt;

wji = w(xi, tj), g
j
i = g̃(xi, tj), a

j = a(tj).

Integrate (4.5) with respect to x from 0 to π and use (4.6) and (4.7), we

obtain

a(t) =
1

E(t)

[
E′′(t) + πwxxx(π, t)−

∫ π

0

xg̃(x, t)dx

]
. (4.14)

The discretization of (4.14) is

aj+1 =

[((
Ej+1 − 2Ej + Ej−1

)
/τ2
)
+ π

(
wjNx+3 − 2wjNx+2 + 2wjNx

− wjNx−1

)
−
(∫ π

0
xg̃ji dx

)]

Ej
,

where Ej = E(tj), j = 0, 1, ..., Nt.

We mention that the integral is numerically calculated using trapezoidal

rule.

aj(s), w
j(s)
i are the s-th iteration step of aj , wji , respectively. At each s-th

iteration step, aj(s) is

aj(s) =

[((
Ej+1(s+1) − 2Ej(s) + Ej−1(s−1)

)
/τ2

)
+ π

(
w

j(s)
Nx+3 − 2w

j(s)
Nx+2 + 2w

j(s)
Nx

− w
j(s)
Nx−1

)
−

(∫ π

0
xg̃

j(s)
i dx

)]

Ej
.

The iteration of (4.9)-(4.13) is

1

τ2

(
w

j+1(s+1)
i − 2w

j(s)
i + w

j−1(s−1)
i

)
+

1

h4

(
w

j(s)
i+2 − 4w

j(s)
i+1 + 6w

j(s)
i − 4w

j(s)
i−1 + w

j(s)
i−2

)
= aj(s)w

j(s)
i +g̃

j(s)
i

(4.15)

w0
i = φi,

1

τ

(
w1
i − w0

i

)
= ψi (4.16)
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w
j(s)
0 = w

j(s)
Nx+1, (4.17)

w
j(s)
1 = w

j(s)
Nx+2, (4.18)

w
j(s)
−1 = w

j(s)
Nx

, (4.19)

w
j(s)
2 − w

j(s)
−2 = w

j(s)
Nx+3 − w

j(s)
Nx−1, (4.20)

System (4.16)-(4.20) is solved and w
j+1(s+1)
i is determined.

Example 4.1. The analytical solution is

{a(t), v(x, t)} = {1 + exp(t), (1 + cos 2x) exp(t)} ,
for the given functions

ϕ(x) = (1 + cos 2x) , E(t) =
π2

2
exp(t),

g(x, t, v) = (16 cos 2x− v) exp(t).

Here h = 0.0393, τ = 0.005.∣∣ak+1(s+1) − ak+1(s)
∣∣ ≤ h/100 is the convergence criterion for a(t).

The analytical solution and the approximate solution can be seen Figures 1

and 2 when the last time T = 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

1

2

3

4

5

6

7

8

k
(t

)

exact k(t)
numerical k(t)

Figure 1. The exact and approximate solutions of a(t). The

approximate solution is shown with dashed line.
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0 0.5 1 1.5 2 2.5 3 3.5
26

28

30

32

34

36

38

40

42

x

u
(x

,t
)

 

 
exact u(x,t)
numerical u(x,t)

Figure 2. The exact and approximate solutions of u(x,2).

The approximate solution is shown with dashed line.

Example 4.2. (discontinuous coefficient)

In Example 1, a continuous function is given. Now, a more severe discon-

tinuous function is considered:

a(t) =

{
1, t ∈ [0, 1)

−1, t ∈ [1, 2]
The step sizes are h = 0.0393, τ = 0.005. We obtain Figures 3 which shows

the analytical and the approximate solutions of a(t) when the last time T = 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-1.5

-1

-0.5

0

0.5

1

k
(t

)

exact k(t)
numerical k(t)

Figure 3. The exact and approximate solutions of a(t). The

approximate solution is shown with dashed line.
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