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1. Introduction and statement of results

Let p be a polynomial of degree atmost n. Then, according to a famous

result known as Bernsteins inequality [8]

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|, (1.1)

whereas concerning the maximum modulus of p on a large circle |z| = R > 1,

we have [20]

max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)|. (1.2)

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1,

then inequalities (1.1) and (1.2) can be sharpened. In fact, if p(z) 6= 0 in

|z| < 1, then (1.1) and (1.2) can respectively be replaced by
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max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.3)

and

max
|z|=R

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)|, R > 1. (1.4)

Inequality (1.3) was conjectured by Erdös and later verified by Lax [19], whereas

Ankeny and Rivlin [5] used (1.3) to prove (1.4).

In the literature, there are already various generalizations and refinements

of (1.3) and (1.4), for example (see Aziz [6], Bidkham et al. [9, 10, 11], Kho-

jastehnezhad and Bidkham [17], Zireh [21], etc).

Inequalities (1.3) and (1.4) were sharpened by Dewan et.al [12, 13] proving

that under the same hypothesis, for every real or complex number β with

|β| ≤ 1, R > 1 and |z| = 1, we have

|zp′(z) +
nβ

2
p(z)| ≤ n

2
{(|1 +

β

2
|+ |β

2
|) max
|z|=1

|p(z)| − (|1 +
β

2
| − |β

2
|) min
|z|=1

|p(z)|},

(1.5)

and

|p(Rz) + β(
R+ 1

2
)np(z)| ≤ 1

2
{(|Rn + β(

R+ 1

2
)n|+ |1 + β(

R+ 1

2
)n|) max

|z|=1
|p(z)|−

(|Rn + β(
R+ 1

2
)n| − |1 + β(

R+ 1

2
)n|) min

|z|=1
|p(z)|}.

(1.6)

Also they [12] proved if p has all its zeros in |z| ≤ 1, then for every real or

complex number β with |β| ≤ 1, we have

min
|z|=1

|zp′(z) +
nβ

2
p(z)| ≥ n|1 +

β

2
| min
|z|=1

|p(z)|. (1.7)

In this paper, we first prove an interesting result which is a compact gener-

alization of inequality (1.7).

Theorem 1.1. If p is a polynomial of degree n having all its zeros in |z| ≤
k, k > 0, then for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ k2 and

|z| = 1, we have

|p(Rz)− αp(rz)+β{(R+ k

r + k
)n − |α|}p(rz)| ≥

1

kn
|Rn − αrn + β{(R+ k

r + k
)n − |α|}rn| min

|z|=k
|p(z)|.

(1.8)

Assuming α = 1 in Theorem 1.1, we have the following result.
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On Bernstein Type Inequalities for Complex Polynomial 113

Corollary 1.2. Let p be a polynomial of degree n such that does not vanish in

|z| > k, k > 0, then for all β ∈ C with |β| ≤ 1, R > r, rR ≥ k2 and |z| = 1,

we get

|p(Rz)− p(rz)+β{(R+ k

r + k
)n − 1}p(rz)| ≥

1

kn
|Rn − rn + β{(R+ k

r + k
)n − 1}rn| min

|z|=k
|p(z)|.

(1.9)

By dividing the two sides of the inequality (1.9) by (R−r) and letting R→ r,

we get the following interesting result.

Corollary 1.3. Let p be a polynomial of degree n such that does not vanish in

|z| > k, k > 0. Then for all β ∈ C with |β| ≤ 1, r ≥ k and |z| = 1, we get

|zp′(rz) +
nβ

r + k
p(rz)| ≥ n

kn
|rn−1 +

β

r + k
rn| min
|z|=k

|p(z)|. (1.10)

Assuming k = 1, r = 1 in Corollary (1.3), we have the inequality (1.7).

Using Theorem 1.1, we prove the following theorem, which provides a compact

generalization of inequalities (1.5), (1.6).

Theorem 1.4. Let p be a polynomial of degree n such that it does not vanish

in |z| < k, k > 0. Then for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1
k2

and |z| = 1,

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)| ≤

1

2
{[kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|+ |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|] max

|z|=k
|p(z)|−

[kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn| − |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|] min

|z|=k
|p(z)|}.

(1.11)

Equality holds for the polynomials azn + bkn, |a| = |b|.

Assuming α = 1 in Theorem 1.4, we have the following result.

Corollary 1.5. Let p be a polynomial of degree n such that does not vanish

in |z| < k, k > 0. Then for every β ∈ C with |β| ≤ 1, R ≥ r, rR ≥ 1
k2 and

|z| = 1, we get

|p(Rk2z)− p(rk2z) + β{(Rk + 1

rk + 1
)n − 1}p(rk2z)| ≤ 1

2
{

[kn|Rn − rn + β{(Rk + 1

rk + 1
)n − 1}rn|+ |β{(Rk + 1

rk + 1
)n − 1}|] max

|z|=k
|p(z)|−

[kn|Rn − rn + β{(Rk + 1

rk + 1
)n − 1}rn| − |β{(Rk + 1

rk + 1
)n − 1}|] min

|z|=k
|p(z)|}.

(1.12)
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By dividing the two sides of the inequality (1.12) by (R − r) and letting

R→ r, we get the following interesting result.

Corollary 1.6. Let p be a polynomial of degree n such that does not vanish in

|z| < k, k > 0. Then for every β ∈ C with |β| ≤ 1, r ≥ 1
k and |z| = 1, we

have

|k2zp′(rk2z) +
nβk

rk + 1
p(rk2z)| ≤ n

2
{[kn|rn−1 +

βk

rk + 1
rn|+ | βk

rk + 1
|] max
|z|=k

|p(z)|−

[kn|rn−1 +
βk

rk + 1
rn| − | βk

rk + 1
|] min
|z|=k

|p(z)|}.

(1.13)

Remark 1.7. Assuming k = 1 and r = 1 in Corollary 1.6 we have the inequality

(1.5).

2. Lemmas

To prove of these theorems, we need the following lemmas. The first lemma

is due to Aziz and Zargar [7].

Lemma 2.1. Let p be a polynomial of degree n having all its zeros in |z| ≤ k,
k > 0. Then for every R ≥ r and rR ≥ k2, we have

|p(Rz)| ≥ (
R+ k

r + k
)n|p(rz)|, |z| = 1. (2.1)

Lemma 2.2. Let p be a polynomial of degree n such that does not vanish in

|z| < k, k > 0, and q(z) = znp( 1
z ). Then for all α, β ∈ C with |α| ≤ 1, |β| ≤

1, R ≥ r, rR ≥ 1
k2 and |z| = 1, we have

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)| ≤

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|.

(2.2)

Proof. Based on the hypotheses that the polynomial p has no zeros in |z| < k,

therefore the polynomial q(z) = znp( 1
z ) has all its zeros in |z| ≤ 1

k . Since
1
kn |p(k2z)| = |q(z)| for |z| = 1

k , therefore the function φ(z) = p(k2z)
knq(z) is analytic

in the disc |z| ≥ 1
k and |φ(z)| = 1 on |z| = 1

k . Hence based on the the maximum

modulus principle |φ(z)| < 1 for |z| > 1
k , or equivalently

|p(k2z)| ≤ kn|q(z)|, |z| ≥ 1

k
. (2.3)

Since 1
kn |p(k2z)| = |q(z)| for |z| = 1

k , therefore for every real or complex number

δ with |δ| < 1 and |z| = 1
k , |δp(k2z)| < |knq(z)|. Now using Rouche’s theorem

it follows that all the zeros of H(z) := knq(z) + δp(k2z) lie in |z| ≤ 1
k . While

applying Lemma 2.1, we have

|H(Rz)| ≥ (
Rk + 1

rk + 1
)n|H(rz)| > |H(rz)|, |z| = 1, (2.4)
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On Bernstein Type Inequalities for Complex Polynomial 115

where R > r, rR ≥ 1
k2 .

It follows that for every α ∈ C with |α| ≤ 1, we get

|H(Rz)−αH(rz)| ≥ |H(Rz)|−|α||H(rz)| ≥ {(Rk + 1

rk + 1
)n−|α|}|H(rz)|, |z| = 1

i.e.

|H(Rz)− αH(rz)| ≥ {(Rk + 1

rk + 1
)n − |α|}|H(rz)| for |z| = 1. (2.5)

Since H(Rz) has all its zeros in |z| ≤ 1
Rk < 1, and |H(rz)| < |H(Rz)| for

|z| = 1, a direct application of Rouche’s theorem shows that the polynomial

H(Rz)− αH(rz) has all its zeros in |z| < 1. Using Rouche’s theorem again, it

follows that for every β ∈ C with |β| < 1 and R > r, rR ≥ 1
k2 , all the zeros of

the polynomial

T (z) = H(Rz)− αH(rz) + β{(Rk + 1

rk + 1
)n − |α|}H(rz)

lie in |z| < 1.

Replacing H(z) by knq(z) + δp(k2z), we conclude that all the zeros of

T (z) = kn[q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)]+

δ{p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)}

(2.6)

lie in |z| < 1, for every R > r, rR ≥ 1
k2 , |α| ≤ 1, |β| < 1 and |δ| < 1. We

now show that (2.6) implies (2.2). Indeed, suppose otherwise. Then, there is a

point z = z0 with |z0| = 1 such that

|p(Rk2z0)− αp(rk2z0) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z0)| >

kn|q(Rz0)− αq(rz0) + β{(Rk + 1

rk + 1
)n − |α|}q(rz0)|.

We take

δ = −
kn[q(Rz0)− αq(rz0) + β{(Rk+1

rk+1 )n − |α|}q(rz0)]

p(Rk2z0)− αp(rk2z0) + β{(Rk+1
rk+1 )n − |α|}p(rk2z0)

,

then |δ| < 1 and with this choice of δ, we have, T (z0) = 0 for |z0| = 1. But

this contradicts that T has all its zeros in |z| < 1. For the case β, with |β| = 1,

(2.2) follows by continuity. For R = r inequality (2.2) follows by inequality

(2.3). This completes the proof of Lemma 2.2. �

Lemma 2.3. Let p be a polynomial of degree n. Then for all α, β ∈ C with

|α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ k2, k > 0 and |z| = 1, we have

|p(Rz)− αp(rz)+β{(R+ k

r + k
)n − |α|}p(rz)| ≤

1

kn
|Rn − αrn + β{(R+ k

r + k
)n − |α|}rn|max

|z|=k
|p(z)|.

(2.7)
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Proof. Let M = max
|z|=k

|p(z)|, then for δ with |δ| > 1, we can conclude from

Rouche’s theorem that all zeros of polynomial H(z) = p(z)−δM( z
k )n lie in the

closed disk |z| ≤ k, k > 0. Using Lemma 2.1, we have

|H(Rz)| ≥ (
R+ k

r + k
)n|H(rz)| > |H(rz)|, |z| = 1, (2.8)

where R > r, rR ≥ k2.

It follows that for every α ∈ C with |α| ≤ 1, we get

|H(Rz)−αH(rz)| ≥ |H(Rz)|− |α||H(rz)| ≥ {(R+ k

r + k
)n−|α|}|H(rz)|, |z| = 1,

i.e.

|H(Rz)− αH(rz)| ≥ {(R+ k

r + k
)n − |α|}|H(rz)|, |z| = 1. (2.9)

Since H(Rz) has all its zeros in |z| ≤ k
R < 1, and |H(rz)| < |H(Rz)|, a direct

application of Rouche’s theorem shows that the polynomial H(Rz) − αH(rz)

has all its zeros in |z| < 1. Using Rouche’s theorem again ,implies that for

every β ∈ C with |β| < 1 and R > r, rR ≥ k2, all the zeros of the polynomial

T (z) = H(Rz)− αH(rz) + β{(R+ k

r + k
)n − |α|}H(rz)

lie in |z| < 1.

Replacing H(z) by p(z)− δM( z
k )n, we conclude that all the zeros of

T (z) = [p(Rz)− αp(rz) + β{(R+ k

r + k
)n − |α|}p(rz)]+

δ
Mzn

kn
{Rn − αrn + β{(R+ k

r + k
)n − |α|}rn}

(2.10)

lie in |z| < 1, for every R > r, rR ≥ k2, |α| ≤ 1, |β| < 1 and |δ| > 1. This

implies

|p(Rz)− αp(rz) + β{(R+ k

r + k
)n − |α|}p(rz)| ≤

|Rn − αrn + β{(R+ k

r + k
)n − |α|}rn|M

kn
,

(2.11)

where |z| = 1.

For β, with |β| = 1, (2.11) follows by continuity. For R = r inequality (2.11)

reduces to |p(rz)| ≤ rn

kn max
|z|=k

|p(z)| which it follows by taking p(kz) and |z| = r
k

where r
k ≥ 1 in inequality (1.2). This completes the proof of Lemma 2.3. �
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Lemma 2.4. If p is a polynomial of degree n, then for all α, β ∈ C with

|α| ≤ 1, |β| ≤ 1, R ≥ r, rR ≥ 1
k2 and |z| = 1,

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)|+

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)| ≤

{kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|+ |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|}max

|z|=k
|p(z)|,

(2.12)

where q(z) = znp(1/z).

Proof. Assume that M = max
|z|=k

|p(z)|. Then, for δ with |δ| > 1, we can conclude

from Rouche’s theorem that the polynomial G(z) = p(z)− δM does not vanish

in |z| < k. If we take H(z) = znG(1/z), then |G(k2z)| = kn|H(z)| for |z| = 1
k .

Using Lemma 2.2, for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R ≥ r rR ≥ 1
k2 and

|z| = 1, we have

|G(Rk2z)− αG(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}G(rk2z)| ≤

kn|H(Rz)− αH(rz) + β{(Rk + 1

rk + 1
)n − |α|}H(rz)|.

(2.13)

Therefore, by using the equality

H(z) = znG(
1

z
) = znp(

1

z
)− δMzn

= q(z)− δMzn,

we get

|{p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)}−

δ{1− α+ β{(R+ 1

r + 1
)n − |α|}}M | ≤

kn|{q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)}−

δ{Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn}M |.

(2.14)

Since 1
kn |p(k2z)| = |q(z)| for |z| = 1

k , therefore

max
|z|= 1

k

|q(z)| = 1

kn
max
|z|=k

|p(z)|,

max
|z|= 1

k

|q(z)| = M

kn
.
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Now by applying Lemma 2.3 to q(z) for 1
k > 0, we have

|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)| ≤

{Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn}kn max

|z|= 1
k

|q(z)|.

i.e.

|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)| ≤

{Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn}M.

Now by suitable choice of argument of δ, we get

|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)}−

δ{Rn − αrn + β{(R+ 1

r + 1
)n − |α|}rn}M | =

|δ||Rn − αrn + β{(R+ 1

r + 1
)n − |α|}rn|M−

|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|.

(2.15)

Combining right hand sides of (2.14) and (2.15) we can obtain

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)|−

|δ||1− α+ β{(Rk + 1

rk + 1
)n − |α|}|M ≤

|δ|kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|M ||−

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|,

which implies

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)|+

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)| ≤

|δ|{kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|+ |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|}M.

Making |δ| → 1, we have the result. �

Lemma 2.5. Let p be a polynomial of degree n having no zeros in |z| < k, k >

0. Then for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R ≥ r, Rr ≥ 1
k2 and |z| = 1,
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we have

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)| ≤ 1

2

{kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|+ |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|}max

|z|=k
|p(z)|

(2.16)

Proof. Since p does not vanish in |z| < k, k > 0, Lemma 2.2, yields

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)| ≤

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|,

(2.17)

Now by combining the inequalities (2.12) and (2.17), we have

2|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)| ≤

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)|+

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)| ≤

{kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|+ |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|}max

|z|=k
|p(z)|.

(2.18)

This gives the result. �

3. Proofs of the theorems

Proof of Theorem 1.1. If p has a zero on |z| = k, then inequality is trivial.

Therefore, we assume that p(z) has all its zeros in |z| < k. If m = min
|z|=k

|p(z)|,

then m > 0 and |p(z)| ≥ m for |z| = k. If |λ| < 1, then it follows by Rouche’s

theorem that the polynomial p(z)−λm( z
k )n, has all its zeros in |z| < k, k > 0.

Proceeding similarly as in the proof of Lemma 2.3, it follows that all the zeros

of

p(Rz)− αp(rz) + β{(R+ k

r + k
)n − |α|}p(rz)+

λm(
z

k
)n{Rn − αrn + β{(R+ k

r + k
)n − |α|}rn}

(3.1)

lie in |z| < 1, for every R ≥ r, Rr ≥ k2, |α| ≤ 1, |β| < 1 and |λ| < 1. This

implies

m

kn
|Rn − αrn + β{(R+ k

r + k
)n − |α|}rn| ≤

|p(Rz)− αp(rz) + β{(R+ k

r + k
)n − |α|}p(rz)|,

(3.2)
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where |z| = 1. This completes the proof. �
Proof of Theorem 1.4. If p(z) has a zero on |z| = k, then min

|z|=k
|p(z)| = 0

and in this case the result follows from Lemma 2.5. Hence we assume that

p(z) 6= 0 in |z| ≤ k. In this case we have m = min
|z|=k

|p(z)| > 0 and for γ with

|γ| < 1, we get |γm| < m ≤ |p(z)|, where |z| = k. Now we conclude from

Rouche’s theorem that the polynomial G(z) = p(z) − γm does not vanish in

|z| < k. If we take H(z) = znG(1/z), then by using the polynomials G(z) and

H(z) in Lemma 2.2, we have

|G(Rk2z)− αG(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}G(rk2z)| ≤

kn|H(Rz)− αH(rz) + β{(Rk + 1

rk + 1
)n − |α|}H(rz)|.

(3.3)

Using the fact that

H(z) = znG(
1

z
) = znp(

1

z
)− γmzn = q(z)− γmzn,

or

H(z) = q(z)− γmzn,

and substituting G(z) and H(z) in (3.3), we get

|{p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)}−

γ{1− α+ β{(Rk + 1

rk + 1
)n − |α|}}m| ≤

kn|{q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)}−

γ{Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn}mzn|.

(3.4)

Since the polynomial q(z) = znp( 1
z ) has all zeros in |z| ≤ 1

k andm = min
|z|=k

|p(z)| =

kn min
|z|= 1

k

|q(z)|, hence by applying Theorem 1.1 for the polynomial q(z) with 1
k ,

we obtain

|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|m ≤

|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|.
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Therefore, by suitable choice of argument of γ, we get

|{q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)}−

γ{Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rnm| =

|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|−

|γ||Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|m.

(3.5)

Now combining (3.4) and (3.5), we get

|p(Rk2z)− αp(rz) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)|−

|γ||1− α+ β{(Rk + 1

rk + 1
)n − |α|}|m ≤

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|−

|γ|kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|m.

This implies

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)| ≤

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|−

|γ|{kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|zn| − |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|}m.

Letting |γ| → 1, we have

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)| ≤

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)|−

{kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn| − |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|}m.

(3.6)

On the other hand, based on Lemma 2.4, we have

|p(Rk2z)− αp(rk2z) + β{(Rk + 1

rk + 1
)n − |α|}p(rk2z)|+

kn|q(Rz)− αq(rz) + β{(Rk + 1

rk + 1
)n − |α|}q(rz)| ≤

{kn|Rn − αrn + β{(Rk + 1

rk + 1
)n − |α|}rn|+ |1− α+ β{(Rk + 1

rk + 1
)n − |α|}|}max

|z|=k
|p(z)|.

(3.7)
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Combining (3.6) and (3.7), we get (1.11) and this completes the proof of The-

orem 1.4. �
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