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1. INTRODUCTION AND STATEMENT OF RESULTS

Let p be a polynomial of degree atmost n. Then, according to a famous
result known as Bernsteins inequality [8]

max [p’(z)| < nmax [p(z)], (1.1)
|z|=1 |z|=1

whereas concerning the maximum modulus of p on a large circle |z = R > 1,
we have [20]
max |[p(z)| < R" max |p(z)]. (1.2)
|z|=R |z|=1
If we restrict ourselves to the class of polynomials having no zeros in |z| < 1,
then inequalities (1.1) and (1.2) can be sharpened. In fact, if p(z) # 0 in
|z] < 1, then (1.1) and (1.2) can respectively be replaced by
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n
max < —max [p(z)]. 1.3
max |p/(2)| < § max p(:) (1.3)
and
R"+1
max p(z)| < =5 max p(2), B> 1 (1.4)
zl=

Inequality (1.3) was conjectured by Erdds and later verified by Lax [19], whereas
Ankeny and Rivlin [5] used (1.3) to prove (1.4).

In the literature, there are already various generalizations and refinements
of (1.3) and (1.4), for example (see Aziz [6], Bidkham et al. [9, 10, 11], Kho-
jastehnezhad and Bidkham [17], Zireh [21], etc).

Inequalities (1.3) and (1.4) were sharpened by Dewan et.al [12, 13] proving
that under the same hypothesis, for every real or complex number § with
I8l <1, R>1and |z| = 1, we have

/() + 5 p(a)| < L+ 51+ 15D max 2] = 1+ 51 = [51) min o))
(15)
and
() + B3 )8 < SR+ A=)+ L+ B )"]) max p(a)] -
(R" + (50" = 1+ B min lp(2)])
(1.6)

Also they [12] proved if p has all its zeros in |z| < 1, then for every real or
complex number 8 with || < 1, we have
np B .
min [2p'(2) + p()] 2 ml1+ 5| min [p(2). (17)
In this paper, we first prove an interesting result which is a compact gener-
alization of inequality (1.7).

Theorem 1.1. If p is a polynomial of degree n having all its zeros in |z| <
k, k > 0, then for all a, 8 € C with |o| <1, |3 <1, R>r, rR > k* and
|z| =1, we have

Ip(R2) — ap(r2)+B1( jk> ~ lal}p(r2)] =
L R—Hc . (1.8)
R = ar™ s+ B — ol min [p(2)].

Assuming oo = 1 in Theorem 1.1, we have the following result.
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Corollary 1.2. Let p be a polynomial of degree n such that does not vanish in
|z| > k, k>0, then for all B € C with |3| <1, R>r, rR>k? and |z| = 1,
we get
R+k
[p(R2) = p(rz)+B{(-——-)" = 1p(rz)| 2

k—nmn— " B — U i ()]

(1.9)

By dividing the two sides of the inequality (1.9) by (R—r) and letting R — r,
we get the following interesting result.

Corollary 1.3. Let p be a polynomial of degree n such that does not vanish in
|z| >k, k>0. Then for all 8 € C with || <1, r >k and |z| = 1, we get

B i (2| (1.10)

n—1
Ir +r+k |z|=

|2 (r2) + —2p(rz)

-l—k ‘_k”

Assuming k =1, » =1 in Corollary (1.3), we have the inequality (1.7).

Using Theorem 1.1, we prove the following theorem, which provides a compact
generalization of inequalities (1.5), (1.6).

Theorem 1.4. Let p be a polynomial of degree n such that it does not vanish
in |z| <k, k> 0. Then for all o, € C with |a| <1, |3| <1, R>7r, rR> 5
and |z| =1,

[P(RK22) — ap(rk?2) + B{( et )7 — Jaf}p(rk?2)]| <

k+1
1 RE+1 Rk +1
- n n __ n n __ n 1_ n __ _
BB = ar 4 B = ol 1= o A" ~ fal) ] max (=)
RE+1 Rk‘+1

[K"|R" —ar™ + B{(-

1) el = mat BTG — lafd] min p(2)1)-

(1.11)

Equality holds for the polynomials az™ + bk™, |a| = |b].
Assuming o = 1 in Theorem 1.4, we have the following result.

Corollary 1.5. Let p be a polynomial of degree n such that does not vam'sh
in |z| < k, k> 0. Then for every B € C with |8 <1, R>r, rR > 7% and
|z| =1, we get

p(RK?) — p(rk?2) + B )" = 1p(ri?2)| < o
B =17 Bt )" = D+ [B(Cer )" — 1) max ()]~
KR = 17 4+ B ) = 1] = B{( )" — 1] min ()]

o (1.12)
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By dividing the two sides of the inequality (1.12) by (R — r) and letting
R — r, we get the following interesting result.

Corollary 1.6. Let p be a polynomial of degree n such that does not vanish in
|z| < k, k> 0. Then for every g € C with |f| <1, r > % and |z| = 1, we
have

npBk Bk

2 (0.2 2 3 < "rn|m—1 Bk . _
K22 (rk2) + S p(rk? )] < SR S| | ma ()
_ Bk .
L[ 1 n| .
B g = g min ()
(1.13)

Remark 1.7. Assuming k = 1 and r = 1 in Corollary 1.6 we have the inequality
(L.5).

2. LEMMAS

To prove of these theorems, we need the following lemmas. The first lemma
is due to Aziz and Zargar [7].

Lemma 2.1. Let p be a polynomial of degree n having all its zeros in |z| < k,

k > 0. Then for every R >r and rR > k2, we have
R+k
> (——)" =1. 2.1
PR > () b2l 12 (21)
Lemma 2.2. Let p be a polynomial of degree n such that does not vanish in
2| <k, k>0, and q(z) = 2"p(2). Then for all a, B € C with |a| <1, |B] <
1, R>r, rR> % and |z| = 1, we have
Rk+1,, 9
— <
I~ lalpp(ri?) | <

k"q(Rz) — aq(rz) + ﬁ{(f:j:ll)n — |al}q(rz)|.

Proof. Based on the hypotheses that the polynomial p has no zeros in |z| < k,

Ip(RE2) — ap(rk®z) + B{(
(2.2)

therefore the polynomial ¢(z) = 2"p(%) has all its zeros in |2| < 4. Since

= p(k?2)| = |q(2)| for |2| = 1, therefore the function ¢(z) = z,(,]f;‘é; is analytic
in the disc |z| > § and |¢(z)| = 1 on |2| = ;. Hence based on the the maximum
modulus principle [¢(z)| < 1 for |z| > 1, or equivalently
1

p(k*2)| < K"la(=)l, |2 > . (2:3)
Since 2= |[p(k?2)| = |q(2)] for |2| = %, therefore for every real or complex number
§ with 6| < 1 and |z| = £, |6p(k?2)| < |k"q(z)|. Now using Rouche’s theorem
it follows that all the zeros of H(z) := k"q(z) + 6p(k?z) lie in |z| < 1. While
applying Lemma 2.1, we have
RE+1

R > (S

)*|H(rz)| > [H(r2)], |2 =1, (2.4)
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where R > r, TR > 1712

It follows that for every a € C with |a| < 1, we get
Rk +1
rk+1

|H(Rz) —aH (rz)| > |H(Rz)| = |al[H(rz)| = {( )" —lal}H(rz)], 2] =1

i.e.

RE+1
rk+1
Since H(Rz) has all its zeros in |z| < 7z < 1, and |H(rz)| < |H(Rz)| for
|z| = 1, a direct application of Rouche’s theorem shows that the polynomial
H(Rz) — aH(rz) has all its zeros in |z| < 1. Using Rouche’s theorem again, it

follows that for every 8 € C with |3| <1 and R >r, rR > k%, all the zeros of

[H(Rz) — aH(rz)| = {(

)" — |a|}|H(rz)| for |z| = 1. (2.5)

the polynomial
RE+1

T(z) = H(Rz) — aH(rz) + 8{( ]

)" = lal}H(rz)

lie in |2] < 1.
Replacing H(z) by k"q(z) + ép(k?z), we conclude that all the zeros of

T(:) = Ka(R=) — ag(r2) + AL )" = lal}a(ra)]+ oo
2.6
S(p(RI?) — aplrk?2) + B{( )" ~ lal}p(rk?2))

lie in |z| < 1, for every R > 7, TR > 75, |a| < 1, || < 1 and [§] < 1. We
now show that (2.6) implies (2.2). Indeed, suppose otherwise. Then, there is a
point z = zg with |z9| = 1 such that

Ip(Rk?20) — ap(rk?z0) + p{(2n T

)"~ lallp(rkzo)]| >

RE+1
rk+1

k"lq(Rz0) — aq(rzo) + B{( )" = lalkq(rzo)l-

We take

_ k"a(Rzo) — ag(rzo) + B{(EED)" — lel}a(rzo)]

N p(Rk229) — ap(rk229) + B{(f,fill ) — |al}p(rk2z)’
then |0] < 1 and with this choice of §, we have, T'(z9) = 0 for |z9| = 1. But
this contradicts that 7" has all its zeros in |z| < 1. For the case 8, with || = 1,

(2.2) follows by continuity. For R = r inequality (2.2) follows by inequality
(2.3). This completes the proof of Lemma 2.2. O

Lemma 2.3. Let p be a polynomial of degree n. Then for all o, B € C with
la| <1, |8 <1, R>r, rR>kK? k>0 and |z| =1, we have

p(R2) — ap(ra)+A{ (2 Eyn _apypira)) <

r+k
R+k

) (2.7)
kin‘R — Qar +B{(7"+k

)" = lal}r max fp(2)].
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Proof. Let M = ‘mlai |p(2)|, then for § with |6] > 1, we can conclude from

Rouche’s theorem that all zeros of polynomial H(z) = p(z) —dM (%)™ lie in the
closed disk |z| < k, k > 0. Using Lemma 2.1, we have

R+k
>
H(R) = (o

)" [H(rz)| > [H(rz)], |z =1, (2.8)

where R > r, rR > k2.
It follows that for every o € C with |o| < 1, we get

H(R:) ~ aH(r2)] 2 [H(R)| ~ ol H(r)| 2 (-0~ )| H ), 2 =1,
[H(R2) - (r2)] 2 ()" ~ o [H(r2)], o] =1 (29)

Since H(Rz) has all its zeros in |2| < % < 1, and |H(rz)| < |[H(Rz)|, a direct
application of Rouche’s theorem shows that the polynomial H(Rz) — aH (rz)
has all its zeros in |z| < 1. Using Rouche’s theorem again ,implies that for
every B € C with |8] <1 and R > r, rR > k?, all the zeros of the polynomial

R+k

T(z) = H(Rz) - aH(rz) + B{(--)"

— al}H(rz)

lie in 2] < 1.
Replacing H(z) by p(z) — dM ()", we conclude that all the zeros of
R+k
T(2) = [p(R2) — ap(rz) + BU( )" — lalip(r2)l+

SR — a4 BT ol

(2.10)

lie in |2| < 1, for every R > r, TR > k?, |a| <1, |8] < 1 and |§| > 1. This
implies

- <

R~ ar™ 4 () ~ o}

[p(Rz) — ap(rz) + B{(
(2.11)

/4;"7
where |z| = 1.

For 3, with |B] = 1, (2 11) follows by continuity. For R = r inequality (2.1

1)
reduces to [p(rz)| < &= ‘m‘ax |p(2)| which it follows by taking p(kz) and |z| = ¢
(]

where £ > 1 in inequality (1.2). This completes the proof of Lemma 2.3.
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Lemma 2.4. If p is a polynomial of degree n, then for all o, f € C with
la| <1, |8/ <1, R>r, rR> % and |2| =1,

p(RK?=) — ap(rk?2) + B{( )" ~ [al}p(rk?2) |+

Kla(R2) — ag(r2) + ﬁ{(R,fjb" ~ lal}a(ra)] <

Rk +1 Rk +1
L Jal} 4 1= o B

[ R = ar™ + B max
(2.12)

where q(z) = 2"p(1/Z).

Proof. Assume that M = Im‘zu]i |p(2)]. Then, for § with |§] > 1, we can conclude

from Rouche’s theorem that the polynomial G(z) = p(z) — M does not vanish

n |z| < k. If we take H(z) = 2"G(1/%), then |G(k*2)| = k"|H (z)| for |2 |
Usmg Lemma 2.2, for all «, B € C with |a| <1, [3| <1, R>r rR> 5% and
|z| =1, we have

(GRIS) — aGlrk?2) + B{( 1 )" ~ lal} k)| < s
FH(RE) = alT(r2) + B{(0)" — ol =) |
Therefore, by using the equality
1) = G() = ol L)~ St
— q(2) — SMz"
we get
[{D(RIZ2) = aplrk?2) + B{( )" = lal}p(rk?2)} -
51— a+ B — ol ] <
Fi{a(R2) — ag(r2) + B{C )" ~ fal}a(r=)) - o
BUR — ar™ + B{( )" ~[al}r"} M,
Since L [p(k22)| = |q(2)| for |2| = L, therefore
mas [o(2)] = 7 mas (=)
max Jg(2)] = =

)" = lad}} max |p(z)],


http://dx.doi.org/10.52547/ijmsi.17.1.111
https://ijmsi.com/article-1-1389-en.html

[ Downloaded from ijmsi.com on 2025-07-06 ]

[ DOI: 10.52547/ijmsi.17.1.111 ]

118 E. Khojastehnezhad, M. Bidkham

Now by applying Lemma 2.3 to g(z) for ; > 0, we have

RE+1
rk+1

lq(Rz) — aq(rz) + B{(

RE+1
rk+1

)" = lalkq(rz)] <

{R" —ar”™ + B{( )" = laf}r" pE" max lq(2)]-

i.e.
RE+1

no_ <
)" — lal}a(r2)] <

o RE+1
{R" — ar +5{(rk—|—1

lg(Rz) — aq(rz) + B{(

)" = lafyr™ M.

Now by suitable choice of argument of §, we get

Rk +1

)"~ lall(r2)}-
R+1

SR — ar™ + B{(5)" ~ lalyr™} M| =

[g(Rz) — aq(rz) + B{(

(2.15)
R+1
no_ n n _ M —
SR — ar” 4 Ly o))
Rk+1.,
(=) ~ aq(r2) + (1) ~ falja(ra).
Combining right hand sides of (2.14) and (2.15) we can obtain
Rk +1
2.\ 2 n_ 2. —
p(RK?2) — ap(rk?2) + AL ol )p(rk2)
Rk +1
_ n_ <
S~ e+ AL~ Jaly | <
RE+1
nipn __ . ..n n __ M| —
K1 — a0 4 B Ly o
. Rk+1,,
Fla(R2) — ag(r2) + B )" ~ Jal}a(r)],
which implies
Rk +1
2.y _ 2 n_ 2
p(RK?2) — ap(r?2) + B{( )" ~ ol }p(rk?2)] +
Fla(Re) = aqlrz) + B )" ~ lal}a(rs)| <
o " Rk+1., " B Rk+1.,
SR — ar® + AL~ falkr 4+ 1 - o ()"~ al} 1M,
Making |§] — 1, we have the result. O

Lemma 2.5. Let p be a polynomial of degree n having no zeros in |z| < k, k >
0. Then for all a, B € C with |a| <1, |B| <1, R>r, Rr> 2 and |z| =1,
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we have
Rk+1 1
2.\ 2 2 -
Ip(RE*2) — ap(rk=z) + B{( " 1) — lal}p(rk®z)| < B)
I Rk +1 n Rk +1
R —ar® + B{( )" — lalbr® [+ 1L —a+ B{( )" —|Oé|}|}gl‘i>]§|p(2)|
(2.16)
Proof. Since p does not vanish in |z| < k, k > 0, Lemma 2.2, yields
RE+1,,
Ip(RE?z) — ap(rk?z) + B{( )" = la[}p(rk?z)| <
rk+1 (2.17)

¥ la(Rz) — ag(ra) + B{( )" ~lal}a(r),

Now by combining the inequalities (2.12) and (2.17), we have

20p(RK?) — aplrk?2) + 621" ~ lal}p(ri?2)] <

p(RK?2) — aplrk?2) + {1 )" — lal}p(ri?) -+

Fla(Re) ~ aqlrz) + B )"~ lal}a(ra)| <

Rk+1 Rk+1

(KR —ar® + B{(—7)" — lal}r"| + 1 —a+ B{(—=)" IOéI}I}‘mgX Ip(2)]-
(2.18)
This gives the result. O

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. If p has a zero on |z| = k, then inequality is trivial.

Therefore, we assume that p(z) has all its zeros in |z| < k. If m = ‘H‘lirk Ip(2)],
z|l=

then m > 0 and |p(z)| > m for |z| = k. If |\| < 1, then it follows by Rouche’s
theorem that the polynomial p(z) —Am(%)", has all its zeros in |z| < k, k > 0.
Proceeding similarly as in the proof of Lemma 2.3, it follows that all the zeros
of

R+E

S lalkp(r2)+

(2R = ar + B~ falhr)

lie in |z| < 1, for every R > r, Rr > k?, |a| <1, |3| < 1 and |A| < 1. This
implies

p(Rz) — ap(rz) + B{(
(3.1)

m R+k .
R — ar™+ S{(EE)" o} < .
p(R=) = ap(r2) + B )" — [al}p(r=)],
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where |z| = 1. This completes the proof. O
Proof of Theorem 1.4. If p(z) has a zero on |z| = k, then lnllir}C Ip(z)] =0

and in this case the result follows from Lemma 2.5. Hence we assume that
p(z) # 0 in |z| < k. In this case we have m = ‘rr‘lir}g |p(2)| > 0 and for v with
z|=

lv] < 1, we get |[ym| < m < |p(z)|, where |z] = k. Now we conclude from
Rouche’s theorem that the polynomial G(z) = p(z) — ym does not vanish in
|z| < k. If we take H(z) = 2"G(1/Z), then by using the polynomials G(z) and
H(z) in Lemma 2.2, we have

(GRIZ2) — aGlrk®2) + B )" — al}Grk?2)| < s
3.3
FH(RS) - a(r2) + B{(o )" — [l H ()]
Using the fact that
H(z) = 2"G(3) = 2"p(3) ~ me" = q(z) — 7=
H(z) = 4(2) ~ me",
and substituting G(z) and H(z) in (3.3), we get
[P(RES) = ap(ri?2) + B )" — lalbo(rk2)) ~
1 -t BCLE" ~ fal}m < -
3.4
FI{a(R2) — ag(r2) + B{C )" ~ lal}a(r=)) -
TR~ ar" 4+ B{(e Ly ~ o} me",

k+1

Since the polynomial ¢(z) = z p( ) has all zeros in | 2| < ¢ and m = lmm Ip(2)] =

K" min |g(2)], hence by applying Theorem 1.1 for the polynomial g(z) with ,16,
lzl=%
we obtain

RE+1
rk+1

(R2) — aq(r2) + B

[R" —ar™ + B{(

)" = laf}r”|m <

)" = lal}q(rz)].
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Therefore, by suitable choice of argument of v, we get

{a(R2) ~ ag(r=) + ({1 )" ~laf}a(r=)} -
R = ar™ 4+ B~ ol ] =
(=) — ag(r2) + By )" lalalra) -
AIR" — ar + B = Jal}r"fm.

Now combining (3.4) and (3.5), we get

p(RI?2) — ap(r2) + B )" = lal}plrk?2)] -
Il = a+ B )" ~ laf}m <

Fla(R2) ~ aq(r=) + B{(p )" = al}a(r2)|-
e Gt S L ) P

k+1
This implies

k
p(RI?2) — ap(rk?2) + B0 — lal}p(ri?=)] <
RE+1
Klg(R2) - aq(rz) + B{(S =1 )" = lal}a(r2) -
REk+1
AR R? = ar™ + B{(S )" = lalb™ 7] = L= a+ B{(
Letting |y| — 1, we have
2 2 RE+1., 2
IP(RK®2) — ap(r2) + B{(5 )" = lal}plrk®2)]| <
RE+1
E"la(Rz) — aq(r=) + B{( jl "~ lalba(r2)|-
Rk+1 Rk+1
(R — ar” + ()" — falb = 11—+ B
On the other hand, based on Lemma 2.4, we have
k
p(RI?) — ap(rk?2) + B )" — lal}p(rk?2) |+
RE+1
Fla(R2) = aq(r2) + B jl = lal}a(r2)| <
Rk+1 Rk+1
R = ar™ 4 B )" el + L= a+ Bl )"

121

(3.5)

Rk;+1

)"~ lal}ym.

)"~ ladldm.

(3.6)

— |al}} max Ip(2)]-
(3.7)
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Combining (3.6) and (3.7), we get (1.11) and this completes the proof of The-
orem 1.4. g
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