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Abstract. This paper establishes a study on some important latest

innovations in the uniqueness of solution for Caputo fractional Volterra-

Fredholm integro-differential equations. To apply this, the study uses

Banach contraction principle and Bihari’s inequality. A wider applicabil-

ity of these techniques are based on their reliability and reduction in the

size of the mathematical work.
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1. Introduction

In the fractional calculus the various integral inequalities plays an impor-

tant role in the study of qualitative and quantitative properties of solution of

differential and integral equations.

In recent years, many authors focus on the development of techniques for dis-

cussing the solutions of fractional integro-differential equations. For instance,

we can remember the following works:
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136 A. A. Hamoud, K. P. Ghadle

Ahmad and Sivasundaram [1] studied some existence and uniqueness results

in a Banach space for the fractional integro-differential equation (1.1) with

nonlinear condition h(x0) = h0− f(x). Momani et al.[2], proved the Local and

global uniqueness result by using Bihari’s inequality for the fractional integro-

differential equation (1.1) with the initial condition h(x0) = h0, Wu and Liu

[3] discussed the existence and uniqueness of solutions for fractional integro-

differential equations (1.1) with conditions h(x0)+f(x) = h0. Karthikeyan and

Trujillo [4], proved existence and uniqueness of solutions for fractional integro-

differential equations with boundary value conditions.

cDαh(x) = g(x, h(x)) +

∫ x

x0

K(x, t, h(t))dt, 0 < α ≤ 1, (1.1)

Recently, in [2, 5] the author’s obtained the result on uniqueness of solu-

tions for fractional integro-differential with initial condition using the Bihari’s

inequality.

Motivated by above work, in this paper we discuss new uniqueness results for

Caputo fractional Volterra-Fredholm integro-differential equation of the form

[6, 7]:

cDαh(t) = f(t)h(t)+g(t, h(t))+

∫ t

t0

Z1(t, s, h(s))ds+

∫ b

t0

Z2(t, s, h(s))ds, (1.2)

with the initial condition

h(t0) = h0, (1.3)

where cDα is the Caputo’s fractional derivative, 0 < α ≤ 1 and h : J −→ R,

where J = [t0, b] is the continuous function which has to be determined,

g : J × R −→ R and Zi : J × J × R −→ R, i = 1, 2 are continuous func-

tions.

The main objective of the present paper is to study the new uniqueness re-

sults of the solution for Caputo fractional Volterra-Fredholm integro-differential

equation.

The rest of the paper is organized as follows: In Section 2, some prelimi-

naries, basic definitions and Lemma related to fractional calculus are recalled.

In Section 3, the new uniqueness results of the solution for Caputo fractional

Volterra-Fredholm integro-differential equation have been proved. Finally, we

will give a report on our paper and a brief conclusion is given in Section 4.

2. Preliminaries

The mathematical definitions of fractional derivative and fractional integra-

tion are the subject of several different approaches. The fractional derivative

and applications have been addressed extensively by several researchers. For

example, we refer the reader to [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24] and
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Some New Uniqueness Results of Solutions for Fractional Integro-Differential Equations 137

the references cited therein. In this section, we show the most frequently used

definitions of the fractional calculus involves the Riemann-Liouville fractional

derivative, Caputo derivative [7, 8, 19, 20, 21, 22, 23]. Let C(J,R) is the Banach

space endowed with the infinity norm ‖h‖∞ = sup{|h(x)| : x ∈ J = [t0, b]}, for

any h ∈ C(J,R).

Definition 2.1. [25] (Riemann-Liouville fractional integral). The Riemann-

Liouville fractional integral of order α > 0 of a function h is defined as

Jαh(x) =
1

Γ(α)

∫ x

0

(x− t)α−1h(t)dt, x > 0, α ∈ R+,

J0h(x) = h(x),

where R+ is the set of positive real numbers.

Definition 2.2. [25] (Caputo fractional derivative). The fractional deriv-

ative of h(x) in the Caputo sense is defined by

cDα
xh(x) = Jm−αDmh(x)

=


1

Γ(m−α)

∫ x
0

(x− t)m−α−1 d
mh(t)
dtm dt, m− 1 < α < m,

dmh(x)
dxm , α = m, m ∈ N,

(2.1)

where the parameter α is the order of the derivative and is allowed to be real

or even complex. In this paper, only real and positive α will be considered.

Hence, we have the following properties:

(1) JαJvh = Jα+vh, α, v > 0.

(2) Jαhβ = Γ(β+1)
Γ(β+α+1)h

β+α,

(3) Dαhβ = Γ(β+1)
Γ(β−α+1)h

β−α, α > 0, β > −1, x > 0.

(4) JαDαh(x) = h(x)−
∑m−1
k=0 h(k)(0+)x

k

k! , x > 0, m− 1 < α ≤ m.

Definition 2.3. [25] (Riemann-Liouville fractional derivative). The Rie-

mann Liouville fractional derivative of order α > 0 is normally defined as

Dαh(x) = DmJm−αh(x), m− 1 < α ≤ m, m ∈ N. (2.2)

Lemma 2.4. [26] (Banach contraction principle). Let (X, d) be a com-

plete metric space, then each contraction mapping Ψ : X −→ X has a unique

fixed point x of Ψ in X i.e. Ψx = x.

Lemma 2.5. [2] (Bihari’s inequality). Let g : [0,+∞) −→ (0,+∞) is

continuous and monotone-increasing. h: [a, b] −→ R+ be a continuous function

that satisfies the inequality

h(t) ≤ a+

∫ t

t0

K(s)g(h(s))ds.
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Then the following inequality hold

h(t) ≤ θ−1

[
θ(a) +

∫ t

t0

K(s)ds.

]
where θ : R −→ R is a primitive of 1

g(t) , ie. θ(x) =
∫ u
uo

ds
g(s) , x ∈ R.

3. Main Results

In this section, we will display and prove the uniqueness results of problem

(1.2) − (1.3). Before starting and proving our main results, we present the

following lemma and some useful hypotheses:

(H1): Z1, Z2 : J × J × R → R are continuous on D = {(t, s) : 0 ≤ t0 ≤
s ≤ t ≤ b} such that∫ t

s

|Z1(τ, s, h1(s))− Z1(τ, s, h2(s))|dt ≤ Lz1λ|h1(s)− h2(s)|

∫ b

s

|Z2(τ, s, h1(s))− Z2(τ, s, h2(s))|dt ≤ Lz2λ|h1(s)− h2(s)|

(H2): The function g : J × R→ R is continuous.

|g(t, h1)− g(t, h2)| ≤ λ|h1 − h2|

(H3): The function f : J → R is continuous.

where h1, h2 ∈ C(J,R), λ : R+ −→ R+ is nondecreasing continuous function

with λ(0) = 0 and
∫ R

0
dt
λ(t) = +∞, 0 < t < 1, and Lz1 , Lz2 are positive

constants.

Lemma 3.1. If h0(t) ∈ C(J,R), then h(t) ∈ C(J,R+) is a solution of the

problem (1.2)− (1.3) iff h satisfying

h(t) = h0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)h(s)ds+
1

Γ(α)

∫ t

t0

(t− s)α−1g(s, h(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(∫ t

s

Z1(τ, s, h(s))dτ +

∫ b

s

Z2(τ, s, h(s))dτ

)
ds,(3.1)

for t ∈ J.

Proof. It can be proved easily by applying the integral operator (2.1) to both

sides of (1.2) to get the integral equation (3.1). �

Our first result depends on Bihari’s inequality.

Theorem 3.2. Assume that (H1)–(H3) hold. If

‖f‖∞ bα

Γ(α+ 1)
< 1. (3.2)

Then there exists a unique solution h(t) ∈ C(J) to (1.2)− (1.3).
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Some New Uniqueness Results of Solutions for Fractional Integro-Differential Equations 139

Proof. By Lemma 3.1. we know that a function h is a solution to (1.2)− (1.3)

iff h satisfies

h(t) = h0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)h(s)ds+
1

Γ(α)

∫ t

t0

(t− s)α−1g(s, h(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(∫ t

s

Z1(τ, s, h(s))dτ +

∫ b

s

Z2(τ, s, h(s))dτ

)
ds.

Let h1, h2 ∈ C(J,R) and for any t ∈ J such that

h1(t) = h0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)h1(s)ds+
1

Γ(α)

∫ t

t0

(t− s)α−1g(s, h1(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(∫ t

s

Z1(τ, s, h1(s))dτ +

∫ b

s

Z2(τ, s, h1(s))dτ

)
ds.

and

h2(t) = h0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)h2(s)ds+
1

Γ(α)

∫ t

t0

(t− s)α−1g(s, h2(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(∫ t

s

Z1(τ, s, h2(s))dτ +

∫ b

s

Z2(τ, s, h2(s))dτ

)
ds.

Consequently, by (H1), (H2) and (H3), then for t ∈ J , we have

|h1(t)− h2(t)| ≤ 1

Γ(α)

∫ t

t0

(t− s)α−1|f(s)||h1(t)− h2(t)|ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1|g(s, h1(s))− g(s, h2(s))|ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1
(∫ t

s

|Z1(τ, s, h1(s))− Z1(τ, s, h2(s))|dτ

+

∫ b

s

|Z2(τ, s, h1(s))− Z2(τ, s, h2(s))|dτ
)
ds.

≤ 1

Γ(α)

∫ t

t0

(t− s)α−1‖f‖∞|h1(s)− h2(s)|ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1λ|h1(s)− h2(s)|ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1
(
Lz1λ|h1(s)− h2(s)|+ Lz2λ|h1(s)− h2(s)|

)
ds.

≤ ‖f‖∞bα

Γ(α+ 1)
|h1(t)− h2(t)|+ (1 + Lz1 + Lz2)

Γ(α)

∫ t

t0

(t− s)α−1λ|h1(s)− h2(s)|ds.
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Thus

|h1(t)− h2(t)| ≤ σ +
(1 + Lz1 + Lz2)

Γ(α)

∫ t

t0

(t− s)α−1λ|h1(s)− h2(s)|ds.

where σ > 0, now we can apply Bihari’s inequality to obtain

|h1(t)− h2(t)| ≤ θ−1
[
θ(σ) +

Nbα

αΓ(α)

]
(3.3)

where θ(h) is a primitive of the function 1
θ(h) , and θ−1 denotes the inverse

of θ and N =
(1+Lz1+Lz2 )

1−‖f‖∞ . It follows that θ−1
[
θ(σ) + Nbα

αΓ(α)

]
−→ 0. We

shall prove that the right-hand side of (3.3) tends toward zero as σ −→ 0.

Since |h1(t) − h2(t)| is independent of σ, it follows that h1(t) = h2(t). So,

h(t) ∈ C(J,R) is the unique solution of the initial value problem (1.2) − (1.3)

and the proof is completed.

�

We shall next discuss another uniqueness result for the initial value problem

(1.2)− (1.3) using the Banach contraction principle.

Before starting and proving we introduce the new following hypotheses:

(I): Z1, Z2 : J × J ×R→ R are continuous on D = {(t, s) : 0 ≤ t0 ≤ s ≤
t ≤ b} such that

|Z1(τ, s, h1(s))− Z1(τ, s, h2(s))|dt ≤ L∗z1‖h1(s)− h2(s)‖

|Z2(τ, s, h1(s))− Z2(τ, s, h2(s))|dt ≤ L∗z2‖h1(s)− h2(s)‖

(II): The function g : J × R→ R is continuous.

|g(t, h1)− g(t, h2)| ≤ L∗g‖h1 − h2‖

(III): The function f : J → R is continuous.

where L∗z1 , L
∗
z2 and L∗g are positive constants.

Theorem 3.3. Assume that the hypotheses (I)–(III) are satisfied. And let β

and γ be two positive real numbers such that 0 < β < 1 and[‖f‖∞ + L∗g
Γ(α+ 1)

+
(L∗z1 + L∗z2)b

α+ 1Γ(α)

]
bα = β,

|h0|+
[ g0

Γ(α+ 1)
+

(z∗1 + z∗2)b

α+ 1Γ(α)

]
bα = (1− β)γ.

Then the initial value problem (1.2)−(1.3) has a unique solution continuous on

[t0, b], where g0 = max{|g(s, 0)| : s ∈ J}, z∗1 = max{|Z1(τ, s, 0)| : (τ, s) ∈ D}
and z∗2 = max{|Z2(τ, s, 0)| : (τ, s) ∈ D}.
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Proof. Let the operator T : C(J,R)→ C(J,R) be defined by

(Th)(t) = h0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s)h(s)ds+
1

Γ(α)

∫ t

t0

(t− s)α−1g(s, h(s))ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(∫ t

s

Z1(τ, s, h(s))dτ +

∫ b

t0

Z2(τ, s, h(s))dτ

)
ds,

and define Φγ = h ∈ C(J,R) : ‖h‖∞ ≤ γ for some γ > 0. Now, we need to

prove that the operator T has a fixed point on Φγ ⊂ C(J,R). This fixed point

is the unique solution of the initial value problem (1.2)− (1.3). In order that,

we present the proof in two steps:

Step 1. We need to prove that the operator TΦγ ⊂ Φγ .

By the above hypotheses, then for any h ∈ Φγ and for t ∈ J , we have

|(Th)(t)| ≤ |h0|+
1

Γ(α)

∫ t

t0

(t− s)α−1|f(s)||h(s)|ds+
1

Γ(α)

∫ t

t0

(t− s)α−1|g(s, h(s))|ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1

(∫ t

s

|Z1(τ, s, h(s))|dτ +

∫ b

t0

|Z2(τ, s, h(s))|dτ

)
ds,

≤ |h0|+
1

Γ(α)

∫ t

t0

(t− s)α−1‖f‖∞‖h‖∞ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1(|g(s, h(s))− g(s, 0)|+ |g(s, 0)|)ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1
(∫ t

s

(|Z1(τ, s, h(s))− Z1(τ, s, 0)|+ |Z1(τ, s, 0)|)dτ

+

∫ b

t0

(|Z2(τ, s, h(s))− Z2(τ, s, 0)|+ |Z2(τ, s, 0)|)dτ
)
ds,

≤ |h0|+
‖f‖∞bαγ
Γ(α+ 1)

+
bα

Γ(α+ 1)
(L∗gγ + g0) +

b(α+1)

(α+ 1)Γ(α)
(L∗z1γ + z∗1)

+
b(α+1)

(α+ 1)Γ(α)
(L∗z2γ + z∗2)

≤ |h0|+
( g0

Γ(α+ 1)
+

(z∗1 + z∗2)b

(α+ 1)Γ(α)

)
bα +

(‖f‖∞ + L∗g
Γ(α+ 1)

+
(L∗z1 + L∗z2)b

(α+ 1)Γ(α)

)
bαγ

= (1− β)γ + βγ = γ.

It follows that ‖Th‖ ≤ γ, this implise that Th ∈ Φγ which leads to TΦγ ⊂
Φγ .

Step 2. We need to prove that T is contraction mapping.
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142 A. A. Hamoud, K. P. Ghadle

Let h1, h2 ∈ Φγ we get:

|(Th1)(t)− (Th2)(t)|

≤ 1

Γ(α)

∫ t

t0

(t− s)α−1 |f(s)| |h1(s)− h2(s)| ds

1

Γ(α)

∫ t

t0

(t− s)α−1 |g(s, h1(s))− g(s, h2(s))| ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1
(∫ t

s

|Z1(τ, s, h1(s))− Z1(τ, s, h2(s))| dτ

+

∫ b

s

|Z2(τ, s, h1(s))− Z2(τ, s, h2(s))| dτ
)
ds

≤
‖f‖∞ bα

Γ(α+ 1)
‖h1 − h2‖+

L∗gb
α

Γ(α+ 1)
‖h1 − h2‖+

L∗z1b
α+1 + L∗z2b

α+1

(α+ 1)Γ(α)
‖h1 − h2‖

=
(‖f‖∞ + L∗g

Γ(α+ 1)
+

(L∗z1 + L∗z2)b

(α+ 1)Γ(α)

)
bα ‖h1 − h2‖

= ε ‖h1 − h2‖ .

Since ε =
(
‖f‖∞+L∗g

Γ(α+1) +
(L∗z1

+L∗z2
)b

(α+1)Γ(α)

)
bα < 1, we get

‖Th1 − Th2‖ ≤ ε ‖h1 − h2‖ .

This implies that T is contraction mapping. As consequence of Lemma 2.2,

there exists a fixed point h ∈ C(J,R) such that Th = h which is the unique

solution of the initial value problem (1.2)−(1.3), and the proof is completed. �

4. Conclusions

The main purpose of this paper was to present new uniqueness results of

the solution for Caputo fractional Volterra-Fredholm integro-differential. The

techniques used to prove our results are a variety of tools such as Bihari’s

inequality, some properties of fractional calculus and Banach contraction map-

ping principle. Moreover, the results of references [2, 4, 5] appear as special

cases of our results.
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