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ABSTRACT. The QIF (Quadrant Interlocking Factorization) method of
Evans and Hatzopoulos solves linear equation systems using WZ factor-
ization. The WZ factorization can be faster than the LU factorization
because, it performs the simultaneous evaluation of two columns or two
rows. Here, we present a method for computing the real and integer WZ
and ZW factorizations by using the null space generators of some special

nested submatrices of a matrix A.
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1. INTRODUCTION

Linear systems arise frequently in scientific and engineering computing.
Various serial and parallel algorithms have been introduced for their serial so-
lution [9, 4]. The QIF (Quadrant Interlocking Factorization) algorithm, intro-
duced by Evans and Hatzopoulos, is a numerical method for finding a solution
for systems of the type Ax = b, where A is a nonsingular matrix of dimensions
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n X n, £ is an unknown column vector, and b is the independent term vector
provided. The QIF method is based on the WZ factorization of the coefficient
matrix A. The main advantage of this factorization is that it presents a com-
plexity order less than of the LU decomposition due to the fact that it performs
the simultaneous evaluation of two columns or two rows. A detailed description
of this algorithm for real and complex matrices can be found in [4, 5, 10, 11].
Golpar-Raboky and Mahdavi-Amiri presented new algorithms for computing
the real and integer WZ and ZW matrix factorizations using AB.S algorithms
and the extended rank reduction process [6, 7, 8, 16]. Recently, some authors
have considered simultaneous matrix decompositions [12, 13, 14].

The WZ factorization is used for solving Markovian linear systems [2] and
network modeling [3], preconditioning of sparse matrices [18] and eigenvalue

problems [15].

Let R and R™*" stand for the real number, and the set of all m x n matrices

over R and AT denotes the transpose of A. Let A = (ay,---,a;,)T € R™*",

Assume that a;fl, e ,a;*:i be the rows of A and H; € R"*" be an arbitrary
nonsingular matrix. For j = 1,---,¢ update H; by
H.a, wlH;

Hi\=H; — e e Bt} 1.1

J+ J w}"Hjak] ( )

where w; € R™ such that w] Hjay; # 0. Then, we have
ap,H =0, i=1,-- ] (1.2)

and the linear combination of the columns of H/,, generates the null space of
{ak,, -~ ax, } (see [1]).

Matrices H; are generalizations of (oblique) projection matrices. They proba-
bly first appeared in a book by Wedderburn [19]. They have been named Ab-
bafians since the First International Conference on ABS methods(Luoyang,
China, 1991) and this name will be used here.

Notation: Let A € R"*™. Here and subsequently J,, = {j1,-- ,jn} denotes
a permutation of Z,, = {1,2,--- ,n} and, for k = 1,--- ,n, Jp = {j1, - ,jx}
denotes a subset of J,,. Let

AJk = (ai,j)v 1,7 € Jg. (1.3)
denotes a submatrix of A, and

J1 CJyC - C oy, (1.4)
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and {Aj, }}_, be a sequence of nested submatrices of A. The following theo-
rem describes a necessary and sufficient condition for nonsingularity A;,, k =
]_7 PR ’n.

Theorem 1.1. (Nested submatrices) Let A € R™*™ and Hy = I. Then the
nested submatrices Ay,, i =1,--- ,n, are nonsingular if and only if e}l Hia;, #
0, i=1,---,n.

Proof. Follow the lines of the proof for Theorem 6.5 in [1] by replacing i to
Ji- 0

From (1.1) and Theorem 1.1 we have the following result.

Theorem 1.2. Let A € R™*" Hy =1, and fori=1,--- ,n, e;‘CAHieji # 0.
Then,
Hiaji(f}:,Hz‘

Hz’+1 = Hi -
eﬁHiaji ’

(1.5)

is well defined.

The parameter choices in Theorem 1.2, induce a structure in the matrix H;,
described by the following theorem.

Theorem 1.3. Let the conditions of Theorem 1.2 be satisfied and H; 1 defined
by (1.5). Then, the following properties hold:

(a) The jth row of H;y1 is zero, for j € J;.

(b) The jth column of H;y1 is equal to the jth column of Hy, for j & J;.
Proof. See Theorem 6.3 in [1]. O

In this paper we present new algorithms for computing the WZ and ZW
factorizations using null space of special submatrices of the matrix A.

The structure of this paper is organized as follows. In Section 2, we discuss
our proposed algorithm for the WZ factorization of a matrix A by using null
space of special submatrices of A. In Section 3, we propose a new algorithm for
computing the WZ and ZW factorizations. In Section 4, we report a numerical
experiment. We conclude in Section 5.

2. THE WZ FACTORIZATION

The WZ factorization is a parallel method for solving dense linear systems
of the form

Az = b, (2.1)

where A is a square n X n matrix, and b is an n-vector.
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Definition 2.1. Let s be a real number and denote by |s| ([s]), the greatest
(least) integer less (greater) than or equal to s.

Definition 2.2. We say that a matriz A is factorized in the form WZ if

A=WZ, (2.2)
where the matrices W and Z have the following structures:
£ 0 - 0 =* Xk ok ok ok
* x 0 % % 0 * =* 0
W= |x =* x x|, Z=1" 0 % 0 (2.3)
X Koox 0  * x 0
* 0 0 X ok x k%

where stars stand for possible nonzero entries.

The matrices W and Z have two zero opposite quadrants. Then, we refer to
W and Z as the interlocking quadrant factors of A. The factorization is unique
if W has 1’s on the main diagonal and 0's on the cross diagonal entries(see [17]).

Now, we give a characterization for the existence of the WZ factorization of A.
Theorem 2.1. Let A € R"*™ be a nonsingular matriz. A has quadrant inter-
locking factorization QIF, A=WZ, if and only if for every k, 1 < k < s, where
s=1|n/2] if nis even and s = [n/2] if n is odd, the 2k x 2k submatriz

a1 ce aik a1,n—k+1 ce a1,n
ar,1 O,k kn—k+1 ak
Ay = ’ ’ R " (2.4)
An—k+1,1 e Qn—k+1,k On—k+1,n—k+1 o Qn—k+1,n
an,1 ce Qn k. Onn—k+1 s Un,n
of A is invertible. Moreover, the factorization is unique.
Proof. See Theorem 2 in [17]. O

If A € R™ ™ is nonsingular, then the WZ factorization with pivoting can
always be carried out. Whenever Ay is nonsingular, it is always possible to
interchange the rows k < i < (n—k+1). These row interchanges can be viewed
in a matrix form as premultiplication by a permutation matrix. Thus, we have
the following result.

Theorem 2.2. If A € R"*" is nonsingular, then the with pivoting WZ factor-
ization can always be carried out, that is, a row permutation matriz P and the

factors W and Z exist so that, PA=WZ.
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75

O

Let A € R™*™ and there exists a WZ factorization without pivoting of A.
Let, » be an even number. Here, we present a new algorithm for computing
the WZ factorization of A using null space of the sequence submatrices

AL CAy C--CAy.

(2.5)

For k=1,---,s, where s = g consider Ay defined by (2.4). Let, the rows of
Hj, generate the null space of Ay expect the kth and the (k+1)th rows. Let

e; € R?* be the jth unit vector, then we have,

eI AVH,T =0, i Ak k41, (2.6)
and
(e et i) ArHLT 0. (2.7)
Therefore, there exist 1 < ji,j2 < 2k such that,
oy = ejTl HkA;‘gek #0,a0 = eszHkA{ekH #0. (2.8)
Let Tr = (t1,-+ ,tox) = Hy'ej/or € R%* and Yo = (y1,-++ ,y2) =
H"ej,/as € R?*. Then, we have
_ T _ T
ArTe = (0...0,1,0,...,0)", ApdYk =(0...0,1,0,...,0)". (2.9)
k-1 k k k—1
Now, let
2]@ = (tla e 7tk707 e 707tk+17 T atQk)Ta (210)
——
n—2k
and
2n7k+1 - (yh e 7yk707 e 707yk+1u e 7y2k)T7 (211)
——
n—2k
then, we have
Wy = Azk = (07 e 70) 17wk+1,k7 e 7wn7k,k; 07 e )O)T (212)
—— ——
k—1 k
and
wnkarl - A2n7k+1 - (07 tee 70, wk+1,n7k+17 e aw’nfk,nfk+17 ]-a 07 tee 70)T'
——— ——
k k—1
(2.13)
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Z=(Z1, %), W= (w1, - ,wp), (2.14)
then, we have,

AZ=W = A=WZ, Z=2"1.

Here, we are ready to present the WZ algorithm. Without loss of general-
ity we assume that A is an even order matrix.

Algorithm 1. WZ algorithm
(1) Let AO =A k=1,s=n/2.

(2) Compute Py, A®) = P A*=1 where, P is a permutation matrix and
Ag is nonsingular.

(3) Compute HJ, so that the rows of HJ present the null space of the rows of
Ay except the kth and (k + 1)th rows.

(4) Determine 1 < jq, jo < 2k such that,

o = e?lHkA;{ek #0,00 = e};HkA;fekH #0. (2.15)
(5) Compute,

T = (tr, - tor) = Hy' ej, Jar and Vi = (y1, -+ ,yax) = Hi" ej, /.

(6) Compute,

Zk = (tla to 7tka07 o aovtk-i-lv te 7t2k)T’ (216)
~——
n—2k
and
Zn—k-‘rl = (ylv e ,ykvoa e 707yk+13 e 7y2k)T7 (217)
———
n—2k

(7) If k < s then k=k+1 and go to (2).

(8) Compute
PA=WZ,
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where, P=P,--- Py, Z = (31, ,7,), W = PAZ and Z = 7.
(9) Stop.

The integer WZ factorization of an integer matrix, can be calculated as the
real case if it exists. Here, we present the conditions for existence of the integer
WZ factorization of an integer matrix.

Definition 2.3. A € Z™*™ is a unimodular matriz if and only if |det(A)| = 1.
If A is unimodular, then A™! is also unimodular.

Definition 2.4. We say that a matriz A is factorized in an integer WZ form
if
A=WZ, (2.18)

where the matrices W and Z are matrices with integer entries defined by (2.3).
According to Theorem 2.1, we have the following result.

Theorem 2.3. Let A € Z"*™ and the submatrices Ay defined by (2.4) be
unimodular, then A has an integer WZ factorization.

For computing an integer W Z factorization (if there exits), in the kth step Hj,
generates the integer null space of Ay expect the kth and the (k + 1)th rows.
Furthermore, in (2.8) we choose two integer vectors j; and js such that

o = 6]T1 HkAgek = gcd(HkAgek), oy = e};HkAZek_‘_l = gcd(HkAgek_H),
(2.19)
where, ged(z) is the greatest common divisor of entries of .

Definition 2.5. A matriz A € Z™*" is called totally unimodular if each square
submatriz of A has determinant equal to 0, +1, or —1. In particular, each entry
of a totally unimodular matriz is 0, +1, or —1.

Corollary 2.1. Every totally unimodular symmetric positive definite matriz
has an integer WZ factorization.

3. THE ZW FACTORIZATION
Definition 3.1. We say that a matriz A is factorized in the form ZW if
A=ZW, (3.1)
where the matrices W and Z are defined as (2.3)

where the empty bullets stand for zero and the other bullets stand for possible
nonzero entries.

The factorization is unique if Z has 1’s on the main diagonal and 0’s on the
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cross diagonal.

Without loss of generality, suppose that n be an even number and s = 3.
Here, we present a new algorithm for computing the ZW factorization of A
using null space of the sequence of submatrices

A CA T CAyp (3.2)
where
Gs—k+1,s—k+1 " As—k+1,s+k
Ax = : cee : (3.3)
As+k,s—k+1 ce As+k,s+k 2%, 2k

Theorem 3.1. Let A € R"™ " be a nonsingular matriz. A has o ZW factor-
ization, if and only if for every k, 1 < k < n/2, the submatriz Ay defined by
(3.3) be invertible.

Proof. The proof follows the lines of the proof for Theorem 2 in [17] replacing

Let Ay be nonsingular, for k = 1,--- ,n/2. Let, the rows of H} generates the
null space of A, expect the first and the last rows. Let e; € R?* be the ith unit
vector (i.e. the ith element is 1, otherwise 0). Then, we have,

el N HT =0, 0 # 1,2k, (e, el )AL HT #0, (3.4)
then there exists 1 < j1, jo < 2k such that,

oy = elekAfel #0,09 = eszHkA{egk #£0. (3.5)

Let T = (t1, - ,tor) = Hy ej /oq and Vi = (y1,- - ,yox) = Hy,  ej, /o
Then, we have

— _ T
Akt = (1, 0 0) 5 Aky = (OO7 1) (3 6)
2k—1 2k—1
Now, let
w%*k#»l - (Oa 7Oat17 7t2ka0 aO)T7 (3 7)
(n—2k)/2 (n—2k)/2
and
w%""k:(of"a07y17"'7y2k507"'50)Ta (38)
—— ——
(n—2k)/2 (n—2k)/2
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then, we have

zn_ g1 = AWz _py1 =

T
(21,5*k+1, az(ﬂ;2k)7%7k+17130a 70az(ﬂ+22k)+17%7k+17 7Zn,5*k+1)
2k—1
(3.9)
and
Z%Jrk = Aw%+k = .
(217%+k, s ,Z(n—22k) ok 0,---,0,1, Z(n+22k)+1’%+k, s 7Zn,%+k) . (3.10)
2k—1

W:(wlv"' ;'U_}n); Z:(Zla"' 7zn),

then, we have,
AW =Z=A=2ZW, W =W"!

Here, we are ready to present the ZW algorithm. Without loss of general-
ity we assume that A is an even order matrix.

Algorithm 2. ZW algorithm
(1) Let AO = A, k=1, s =n/2.

(2) Compute Py, A*®) = P,A¥*~1) where, P, is a permutation matrix and
A}, is nonsingular.

(3) Let the rows of Hj generate the null space of Ay expect the first and
the last rows.

(4) Determine 1 < j1, jo < 2k such that,
o = ejTlHkAgel #0,00 = e;‘ngAgegk # 0. (3.11)
(5) Compute,
T = (t1, - ,tor) = HiTej Jag and Vi, = (y1, -+, yor) = Hy, e, /2.

(6) Compute,

w%—k-‘rl :(Oa 7Oat1a"' 7t2k}a07"' aO)T7 (312)
S—— N——
(n—2k)/2 (n—2k)/2
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and

w%+k:(0a"' 307y17"' ,y2ka0>"' aO)Ta (313)
—— ——
(n—2k)/2 (n—2k)/2

(7) If k < s then k=k+1 and go to (2).

(8) Compute
PA=ZW,

where, P = P, --- P, W = (Wy,-++ ,W,), Z=PAW and W = WL
(9) Stop.

We can also calculate the integer ZW factorization of an integer matrix A.
The existence conditions are the same as Theorem 2.3 by replacing A by A.

Theorem 3.2. Let A € Z"*™ and the submatrices Ay be unimodular, then A
has an integer ZW factorization.

For computing an integer ZW factorization (if there exits), in the kth step
Hj, generates the integer null space of Ay expect the first and the last rows.
Furthermore, in (3.5) we choose two integer vectors j; and js such that

o) = ejTlH;cAfel = gcd(HkAgel),ag = e;‘ngAfegk = gcd(HkAgegk). (3.14)

Corollary 3.1. Every totally unimodular symmetric positive definite matrix
has an integer ZW factorization.

4. EXAMPLES

In this section, we present some numerical illustrations of our proposed
algorithms to compute the WZ and ZW factorizations of real and integer
matrices.

EXAMPLE 4.1. Consider the following matrix,

— = Aot
— o= O
N = = =
I N
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Upon an application of Algorithm 1 for computing the W Z factorization, we
obtain the following results:

1 0 0 0 ) 4 1 1

W= 0.7895 1 0 0.0526 _ 0 1.7895 0.1053 0
0.1053 0 1 0.4737]° 0 0.1053 29474 0

0 0 0 1 1 1 2 4

EXAMPLE 4.2. Consider the following matrix

1 3 15 2 25 25
3 3 35 25 3 25
1.5 35 1 25 2 25
2 25 25 4 15 3°
25 3 2 15 2 25
25 25 25 3 25 1

A:

By applying Algorithm 2 for computing the ZW factorization we have

1 0.3219 1.5 0.5  0.6452 —0.8439
0 1 3.5  0.6250 1.6613 0
7 0 0 1 0.6250 0 0
0 0 2.5 1 0 0 ’
0 0.7055 2 0.3750 1 0

—1.5774 0.3425 2.5000 0.7500 0.7419 1.0000

and
—0.4855 0 0 0 0 0
6.2826 81111 0 O 0 8.5331
W —0.4444 —-3.4444 1 0 -—1.8889 -—1.1111
3.1111  11.1111 0 4 6.2222 5.7778
—2.2100 0 0 0 34444 —3.4644
0 0 0 0 0 —0.9075

ExXAMPLE 4.3. Consider the following integer real matrix

1 0 -1 1 -1 -1
0 2 0 3 1 1
-1 0 5 -1 2
A= 1 3 -1 8 2 1
-11 7 2 15 4
-1 1 2 1 4 2

Upon an application of Algorithm 1 for computing the integer W Z factoriza-
tion, we obtain the following results:


http://dx.doi.org/10.52547/ijmsi.17.1.71
https://ijmsi.com/article-1-1358-en.html

[ Downloaded from ijmsi.com on 2026-02-04 ]

[ DOI: 10.52547/ijmsi.17.1.71]

82 E. Babolian, E. Golpar-Raboky

1 0 00 0 O 10 -1 1 -1 -1
0 1 00 0 1 01 -1 1 -2 0
-1 -1 10 1 1 00 1 0 0 0
w 1101—12’2_000100
-1 -2 00 1 3 00 1 -1 1 0
-1 0 00 0 1 01 1 2 3 1

ExXAMPLE 4.4. Consider the following matrix
5 4 -1 1 =3 =2

4 7T -1 1 -4 0
-1 -1 1 0 1 1
A= 1 1 0 1 -1 0
-3 -4 1 -1 3 1
-2 0 1 0 1 3

By applying Algorithm 2 for computing the integer ZW factorization we have

10 -1 1 -1 -1 1 0 00 0 O

01 -1 1 -2 0 0 1 0 0 0 1

0 0 1 0 0 0 -1 -1 1 0 1 1
Z = =

0 0 O 1 0 0|’ W 1 1 01 -1 0

00 1 -1 1 0 -1 -2 0 0 1 0

01 1 0 0 1 -1 0 0 0 0 1

5. CONCLUSION

Parallel implicit matrix elimination schemes for the solution of linear sys-
tems were introduced by Evans. In this paper we showed how to compute the
real (integer) WZ and ZW factorizations by using the null space generators of
particular submatrices of a given matrix A.
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