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Abstract. Topological indices are widely used as mathematical tools to

analyze different types of graphs emerged in a broad range of applications.

The Hyper-Zagreb index (HM) is an important tool because it integrates

the first two Zagreb indices. In this paper, we characterize the trees and

unicyclic graphs with the first four and first eight greatest HM -value,

respectively.
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1. Introduction

A nonnegative number is assigned to a graph G to define an associated

topological index if it is the same for every isomorphic graph of G, i.e., it is

graph invariant. Topological indices are appropriate tools to mathematically

investigate and properly comprehend molecular structures and their properties
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such as complexity [9, 10]. The first topological index is proposed by Wiener

[24] in order to examine chemical features of paraffin. Since trees demonstrate

a remarkable importance in various applications, authors in [4] specifically in-

vestigate this index for this setting. Moreover, In [20], the extremal unicyclic

graphs with respect to Wiener index is studied. The Hyper-Wiener index for

acyclic structures is due to Randic, where later [15] extends this notion so that

it applies applied for any connected graphs. An interested reader can explore

some chemical applications of the Hyper-Wiener index in [12]. Zagreb indices

were first suggested by Gutman et al. [13] in the 1970s, which absorbed atten-

tion of many scientists in different fields. The reader is encouraged to consult

with [1, 3, 11, 14, 21, 25, 27] for more useful information. A comprehensive

study on relations between the mentioned indices is found in [26].

All graphs in this paper are simple, finite and undirected. The vertex and

edge sets of a graph G are shown by V (G) and E(G), respectively. Also, n(G)

denotes the number of vertices of G, which is called its order.

For a graph G, the Hyper-Zagreb index of G is defined as the following

HM(G) =
∑

xy∈E(G)

(dG(x) + dG(y))
2
, (1.1)

where dG(x) is the degree of vertex x. For the edge xy ∈ E(G), if consider

hG(xy) := (dG(x) + dG(y))
2
. Then, the above formulation can be equivalently

written as

HM(G) =
∑

xy∈E(G)

hG(xy).

This was initially presented by Shirdel et al. [23] in 2013. They consider

two simply connected graphs and compute this distance-based index for the

resulted Cartesian product, composition, join and disjunction graphs. Gao et

al. [7] discuss acyclic, unicyclic, and bicyclic graphs and find sharp bounds for

their Hyper-Zagreb index. The degree of vertices is the main part of some other

graph invariants such as irregularity and total irregularity, see [6, 17, 18, 19].

There is an extensive literature on this topic including [2, 5, 8, 22, 16].

2. Preliminaries and lemmas

In this section, we first bring several notations and definitions. Then, we

propose different propositions which are essential for the subsequent section.

Unicylcic graph G of order n with circuit Cm = x1x2 . . . xmx1 of length m is

denoted by Cu1,u2,...,uk
m (T1, T2, . . . , Tk) in which trees Ti’s for i = 1, 2, . . . , k are

all nontrivial components of G−E(Cm) and ui (i = 1, 2, . . . , k) is the common

vertex of Ti and Cm. Specially, G = Cn for k = 0. For convenience, we denote

Cu1,u2,...,uk
m (T1, T2, . . . , Tk) by Cm (T1, T2, . . . , Tk), for any integer number k ≥

1. Let n(Ti) = li + 1, i = 1, 2, . . . , k, then l =
∑k
i=1 li = n − m. Also, if
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T ∗1 T ∗2 T ∗∆

x

y1 y2 y∆

. . .

Figure 1. Tree T x (T1, T2, . . . , T∆).

a tree Ti is the star Sli+1 then we replace it by li, for example we denote

C4 (T1, S5, T3, S9) by C4 (T1, 4, T3, 8).

Let T be a tree with n vertices (n ≥ 2) such that x ∈ V (T ) and x has a max-

imum degree of vertices in graph T , i.e. ∆ = dT (x) = max {dT (u), u ∈ V (T )}.
T is shown by T x (T1, T2, . . . , T∆), where Ti = T ∗i + {yix}, i = 1, 2, . . . ,∆, and

T ∗1 , T
∗
2 , . . . , T

∗
∆ are trees with disjoint vertex sets and n1, n2, . . . , n∆ are num-

bers of their vertices, respectively. Therefore, we have |V (Ti)| = |V (T ∗i )|+ 1 =

ni + 1, i = 1, 2, . . . ,∆, and n = |V (T )| =
∑∆
i=1 ni + 1 and yi ∈ V (T ∗i ). More-

over, E(Ti) = E(T ∗i ) ∪ {yix} and V (Ti) = V (T ∗i ) ∪ {x} (see Figure 1).

The coalescence of G and H is denoted by G(u)oH(v) and obtained by

identifying the vertex u of G with the vertex v of H.

Lemma 2.1. Assume that z ∈ V (H) and {u,w} ⊆ V (G) such that the follow-

ing conditions hold:

(a) dG(u) ≤ dG(w),

(b)
∑

x∈NG(u)\{w}

dG(x) ≤
∑

x∈NG(w)\{u}

dG(x).

Moreover, let G1 = G(u)oH(z) and G2 = G(w)oH(z), where G1 and G2 are

as shown in Figure 2 . Then, HM(G2) ≥ HM(G1), with the equality if and

only if equality holds in both given conditions.

Proof. Recall that∑
x∈NG(w)\{u}

hG1
(xw) =

∑
x∈NG(w)\{u}

(dG(x) + dG(w))
2
,

∑
x∈NH(z)

hG1(xz) =
∑

x∈NH(z)

(dH(z) + dG(u) + dH(x))
2
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G

H
u = z

w

G1

G

H

u

w = z

G2

Figure 2. The transformation of two graphs.

and hG1(uw) = hG2(uw) = (dG(z) + dG(w) + dH(x))
2
. In addition, one has∑

x∈NH(z)

hG2
(zx) =

∑
x∈NH(z)

(dH(z) + dG(w) + dH(x))
2
,

∑
x∈NG(u)\{w}

hG2
(xu) =

∑
x∈NG(u)\{w}

(dG(u) + dG(x))
2

and ∑
x∈NG(w)\{u}

hG2(xw) =
∑

x∈NG(w)\{x}

(dG(w) + dG(x) + dH(z))
2
.

We consider two cases where either uw ∈ E(G) or uw 6∈ E(G). First, suppose

that uw ∈ E(G). For i = 1 and 2, we have

HM(Gi) =
∑

xy∈E(G)
x,y 6∈{u,w}

hG(xy) +
∑

x∈NG(u)\{w}

hGi
(xu) +

∑
x∈NG(w)\{u}

hGi
(xw)

+ hGi
(uw) +

∑
x,y 6=z

hH(xy) +
∑

x∈NH(z)

hGi
(xz).

On the other hand,∑
x∈NG(u)\{w}

hG1
(xu) =

∑
x∈NG(u)\{w}

(dG(u) + dG(x) + dH(x))
2
.

Therefore,

HM(G2)−HM(G1)

=
∑

x∈NG(u)\{w}

(
(dG(u) + dG(x))

2 − (dG(u) + dG(x) + dH(z))
2
)

+
∑

x∈NG(w)\{u}

(
(dG(w) + dG(x) + dH(z))

2 − (dG(w) + dG(u))
2
)

+
∑

x∈NH(z)

(
(dH(z) + dG(w) + dH(x))

2 − (dH(z) + dG(u) + dH(w))
2
)
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this implies that

HM(G2)−HM(G1) ≥2dH(z) (dG(u) (dG(w)− 1)− dG(u) (dG(u)− 1))

+ 2dH(z)

 ∑
x∈NG(w)\{u}

dG(u)−
∑

x∈NG(w)\{w}

dG(x)


≥0.

Now, suppose that uw 6∈ E(G). Then, for i = 1 and 2, we have

HM(Gi) =
∑

xy∈E(G)
x,y 6∈{u,w}

hG(xy) +
∑

x∈NG(u)

hGi
(xu) +

∑
x∈NG(w)

hGi
(xw)

+
∑
x,y 6=z

hH(xy) +
∑

x∈NGi

hGi
(xz).

Also, in this case one has∑
x∈NG(w)\{u}

dG(x) =
∑

x∈NG(w)

dG(x),
∑

x∈NG(u)\{w}

dG(x) =
∑

x∈NG(u)

dG(x).

Hence, a similar approach as the previous case can be used to prove the result.

�

Lemma 2.2. Suppose u and v are vertices of graphs G1 and G2, respectively.

Let G be the graph obtained by joining u ∈ V (G1) to v ∈ V (G2) by an edge,

and G′ be the graph obtained by identifying u ∈ V (G1) with v ∈ V (G2) and

attaching a pendent vertex to the common vertex as shown in Figure 3. Then

if dG(u), dG′(v) ≥ 2, we have HM(G) < HM(G′).

G1 G2u v

G

G1 G2u v

w

G′

Figure 3. An illustration of graphs in Lemma 2.2.
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Proof. Assume that the graph G′ is obtained by identifying u ∈ V (G1) with

v ∈ V (G2) and attaching a pendent vertex w to the common vertex. Then,

HM(G) =hG(uv) +
∑

x∈NG1
(u)

hG(ux) +
∑

x∈NG2
(v)

hG(vx) +
∑

xy∈E(G1)
u/∈{x,y}

hG1
(xy)

+
∑

xy∈E(G2),v /∈{x,y}

hG2(xy)

and

HM(G′) =hG′(uw) +
∑

x∈NG1
(u)

hG′(ux) +
∑

x∈NG2
(v)

hG′(vx) +
∑

xy∈E(G1)
u/∈{x,y}

hG1(xy)

+
∑

xy∈E(G2)
v/∈{x,y}

hG2
(xy).

Since dG(u) = dG1(u) + 1, dG(v) = dG1(v) + 1, dG′(w) = 1 and dG′(u) =

dG′(v) = dG1(u) + dG2(v) + 1 we have∑
x∈NG1

(u)

hG(ux) <
∑

x∈NG1
(u)

hG′(ux),
∑

x∈NG2
(v)

hG(vx) <
∑

x∈NG2
(v)

hG′(vx)

and hG(uv) = hG′(uw) = (dG1
(u) + dG2

(v) + 2)
2
. Hence,

HM(G′)−HM(G) =
∑

x∈NG1
(u)

hG′(ux)−
∑

x∈NG1
(u)

hG(ux)

+
∑

x∈NG2
(v)

hG′(vx)−
∑

x∈NG2
(v)

hG(vx)

>0.

�

Corollary 2.3. Let T be a tree with n vertices. Then, HM(T ) ≤ HM (Sn),

with the equality if and only if T ∼= Sn.

Corollary 2.4. Let G = Cm (T1, T2, . . . , Tk) be a unicyclic graph and n(Ti) =

li + 1. Then, HM(G) ≤ HM (Cm (l1, l2, . . . , lk)), with the equality if and only

if Ti ∼= Sli+1, i = 1, 2, . . . , k.

Lemma 2.5. Let G1 = Cm (l1, l2, . . . , lk) be a unicyclic graph and y1ui, uiui+1 ∈
E(Cm) such that dG1(y1), dG1(ui) ≤ dG1(ui+1), then for

G2 = Cm (l1, . . . , li−1, li+1 + li, li+2, . . . , lk) one has that HM(G1) < HM(G2).

Proof. Let G = Cm (l1, . . . , li−1, li+1, li+2, . . . , lk), then 2 = dG(ui) < 3 ≤
dG(ui+1); meaning that the condition (a) in Lemma 2.1 holds. Hence, we now
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show that the second condition in this Lemma is also satisfied. Suppose that

y2ui+1 ∈ E(Cm). By a simple calculation one can check that∑
x∈NG(ui)\{ui+1}

dG(x) =dG(y1),

∑
x∈NG(ui+1)\{ui}

dG(x) =
∑

x∈NG(ui+1)\{ui}
x∈V (Cm)

dG(x) +
∑

x∈NG(ui+1)\{ui}
x/∈V (Cm)

dG(x)

=dG(y2) +
∑

x∈NG(ui+1)\{ui}
x/∈V (Cm)

1

=dG(y2) + dG(ui+1)− 2.

Moreover, dG1(ui+1) = dG(ui+1) and dG(y1) = dG1(y1). On the other hand,

since y2 ∈ V (Cm) then dG(y2) ≥ 2; implying that dG(y2)− 2 ≥ 0. So, we have

∑
x∈NG(ui)\{ui+1} dG(x) = dG(y1) = dG1

(y1) ≤ dG1
(ui+1) = dG(ui+1) ≤

∑
x∈NG(ui+1)\{ui} dG(x).

Therefore, the condition (b) of Lemma 2.1 holds, which completes the proof. �

Lemma 2.6. Let G = Cu1,u2,...,uk
m (l1, l2, . . . , lk) be a unicyclic graph and k > 1.

Then if uiui+1 ∈ E(Cm), i = 1, 2, . . . , k−1, then HM(G) < HM (Cm (n−m)).

Otherwise, there exist positive integers l′1, l
′
2, . . . , l

′
r (r ≤ k), such that HM(G) <

HM(G′) < HM(G′′), where G′ = Cv1,v2,...,vrm (l′1, l
′
2, . . . , l

′
r),

G′′ = Cv2,v3,...,vrm (l′1 + l′2, l
′
3, . . . , l

′
r), dG′(vi, vj) ≥ 2 for 1 ≤ i < j ≤ r and

{v1, v2, . . . , vr} ⊆ {u1, u2, . . . , uk}.

Proof. HM(G) < HM(G′) is straightforward in light of Lemma 2.5. Now, by

considering u = v1, w = v2, H = Sl′1+1 and G = Cv2,v3,...,vrm (l′2, l
′
3, . . . , l

′
r) and

using Lemma 2.1 we can conclude that HM(G′) < HM(G′′), as desired. �

Lemma 2.7. Let G = Cm (l1, l2, . . . , lk) be a unicyclic graph of order n. Then

HM(G) ≤ HM (Cm (n−m)), with equality if and only if k = 1.

Proof. The proof is obtained by applying Lemmas 2.5 and 2.6. �

Corollary 2.8. Let G = Cm (T1, T2, . . . , Tk) be a unicyclic graph and n(Ti) =

li + 1, i = 1, 2, . . . , k. Then,

HM(G) ≤ HM (Cm (l1, l2, . . . , lk)) ≤ HM (Cm (n−m)) ,

with left equality if and only if Ti ∼= Sli+1, i = 1, 2, . . . , k, and right equality if

and only if k = 1.

Lemma 2.9. Let G1 = Cm (n−m) and G2 = Cm−1 (n−m+ 1), m ≥ 4, be

unicyclic graphs of order n. Then, HM(G1) < HM(G2).
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Proof. By a simple calculation we have

HM(G1) =4 (m− 2) + 2 (n−m+ 4)
2

+ (n−m) (n−m+ 3)
2

<4 (m− 3) + 2 (n−m+ 5)
2

+ (n−m+ 1) (n−m+ 4)
2

=HM(G2).

As desired. �

Lemma 2.10. Let G = Cm (T1, T2, . . . , Tk) be a unicyclic graph. Then,

HM(G) =

k∑
i=1

∑
xy∈E(Ti)

hG(xy) +
∑

xy∈E(Cm)

hG(xy).

Proof. The proof is trivial by the Hyper-Zagreb index definition (1.1). �

3. Main Results

In this section, we characterize the trees and unicyclic graphs with the first

four and first eight greatest HM-value, respectively.

Theorem 3.1. Let T be a tree with n vertices. If T 6∼= Sn, T
1
n or Tn2 , then

HM(T ) ≤ HM
(
T 3
n

)
< HM

(
T 2
n

)
< HM

(
T 1
n

)
< HM (Sn) ,

with the equality if and if T ∼= Tn3 , where T 1
n , T

2
n and T 3

n are given as in Figure

4.

· · ·
n
−

3

T 1
n

· · ·
n
−

4

T 2
n

· · ·
n
−

5

T 3
n

· · ·
n
−

5

T 4
n

Figure 4. Some trees with large Hyper-Zagreb values.

Graph HM-value

Sn n3 − n2

Tn1 n3 − 4n2 + 7n+ 6

Tn2 n3 − 7n2 + 20n+ 16

Tn3 n3 − 7n2 + 20n

Table 1. Trees with large Hyper-Zagreb values.
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Proof. Using Table 1, we haveHM (Sn) > HM
(
T 1
n

)
> HM

(
T 2
n

)
> HM

(
T 3
n

)
.

Hence, we need to prove that HM(T ) < HM
(
T 3
n

)
when T 6∼= T 3

n . Let T =

T x (T1, T2, . . . , T∆), where ∆ = dT (x). By Corollary 2.3, we have HM (Ti) ≤
HM (Sni), i = 1, 2, . . . ,∆. Moreover, let T ′ = T x (T ′1, T

′
2, . . . .T

′
∆), where

T ′∗i = Sni
, i = 1, 2, . . . ,∆, then we have HM(T ) ≤ HM (T ′). To complete the

proof, we consider three different cases as follows:

Case 1 : assume that dT (yi) = 1, i = 1, 2, . . . ,∆, then T = Sn. This is a

contradiction to the assumption.

Case 2 : assume that there exists yt for t = 1, 2, . . . ,∆ such that dT (yt) ≥ 2

and dT (yi) = 1 for i = 1, 2, . . . ,∆ and i 6= t. In this case, there are three

subcases that can happen:

(i) If |V (T ∗t )| = 2, then T ∼= Tn1 . This is clearly a contradiction.

(ii) If |V (T ∗t )| = 3, then we must consider that dT (yt) = 2 or 3. The case

dT (yt) = 3 implies that T ∼= T 2
n , which is a contradiction. If dT (yt) = 2,

then

HM(T ) = (n− 4) (n− 2)
2

+ (n− 1)
2

+ 16 + 9

=n3 − 7n2 + 18n+ 10

<n3 − 7n2 + 20n

=HM
(
T 3
n

)
.

(iii) If |V (T ∗t )| ≥ 4, then T = T x

 t−1 times︷ ︸︸ ︷
S2, . . . , S2, Tt,

∆−t times︷ ︸︸ ︷
S2, . . . , S2

. By Corol-

lary 2.3, the Hyper-Zagreb index for T is maximum when T ∗t = Snt
.

On the other hand, it follows from Lemma 2.1 that if nt = 4 than T

has maximum HM -value, i.e. in this case T has maximum HM -value

when T ∼= T 4
n (see Figure 4). Hence, applying Lemma 2.1, it is clear

that HM(T ) ≤ HM
(
T 4
n

)
< HM

(
T 3
n

)
.

Case 3 : Suppose that there exist 1 ≤ s, t ≤ ∆ such that dT (ys), dT (yt) ≥ 2.

Similar to previous, applying Corollary 2.3 and Lemma 2.1, it can concluded

that HM(T ) < HM
(
T 3
n

)
. �

Theorem 3.2. Let G be a unicylcic graph of order n ≥ 15. If G 6∼= C3 (n− 3) ,

C3 (1, n− 4) , C3

(
T 1
n−2

)
, C4 (n− 2) , C3 (2, n− 5) , C3 (1, 1, n− 5) and

C3

(
T 2
n−2

)
. Then,

HM(G) ≤HM
(
C3

(
T 3
n−2

))
< HM

(
C3

(
T 2
n−2

))
< HM (C3 (1, 1, n− 5))

<HM (C3 (2, n− 5)) < HM (C4 (n− 4)) < HM
(
C3

(
T 1
n−2

))
<HM (C3 (1, n− 4)) < HM (C3 (n− 3)) ,

with the equality if and only if G ∼= C3

(
T 3
n−2

)
or G ∼= C3 (P3, 10) for n = 15

(see Figure 5).

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

8.
1.

41
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

26
-0

2-
10

 ]
 

                             9 / 14

http://dx.doi.org/10.52547/ijmsi.18.1.41
https://ijmsi.com/article-1-1356-en.html


50 H. Rezapour, R. Nasiri, S. Mousavi

···

n
−

3

C3 (n− 3)

···

n
−

5

C3

(
T 1
n−2

)

···

n
−

6

C3

(
T 2
n−2

)
···

n
−

7

C3

(
T 3
n−2

)

· ·
·
n
−

4

C3 (1, n− 4)

· ·
·
n
−

5

C3 (2, n− 5)

· ·
·
n
−

4

C4 (n− 4)

· ·
·
n
−

5

C3 (1, 1, n− 5)

Figure 5. The unicyclic graphs with the first eight greatest

Hyper-Zagreb.

Graph HM-value

C3 (n− 3) n3 − n2 + 4n+ 18

C3 (1, n− 4) n3 − 4n2 + 11n+ 38

C3

(
T 1
n−2

)
n3 − 4n2 + 11n+ 20

C4 (n− 4) n3 − 4n2 + 9n+ 28

C3 (2, n− 5) n3 − 7n2 + 24n+ 68

C3 (1, 1, n− 5) n3 − 7n2 + 24n+ 48

C3

(
T 2
n−2

)
n3 − 7n2 + 24n+ 26

C3

(
T 3
n−2

)
n3 − 7n2 + 24n+ 10

Table 2. Unicyclic graphs with large Hyper-Zagreb values.

Proof. Assume that G = Cm (T1, T2, . . . , Tk) be a unicyclic graph and n(Ti) =

li + 1, i = 1, 2, . . . , k. The given Table 2 provides the Hyper-Zagreb index of

some graphs by which the result is trivial. It is enough to discuss about the

equality case. If G ∼= C3

(
T 3
n−2

)
, then HM(G) = HM

(
C3

(
T 3
n−2

))
. Also, if

G ∼= C3 (P3, 10) for n = 15, then HM(G) = 2170 = HM
(
C3

(
T 3

13

))
. We now

prove that HM(G) < HM
(
C3

(
T 3
n−2

))
, where G 6∼= C3 (n− 3) , C3 (1, n− 4),

C3

(
T 1
n−2

)
, C4 (n− 2) , C3 (2, n− 5) , C3 (1, 1, n− 5) and C3

(
T 2
n−2

)
. We ex-

amine three cases of m = 3, 4 and 5 for G = Cm (T1, T2, . . . , Tk) as follows:

Case 1 : m = 3. We need to discuss three subcases that k = 1, 2 and 3.
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(i) k = 1, then G = C3 (T1). By assumption, we know that T1 6∼=
Sn−2, T

1
n−2, T

2
n−2 and T 3

n−2. So, Theorem 3.1 implies that HM(T1) <

HM(T 3
n−2). By Lemma 2.10, we get HM(G) < HM

(
C3

(
T 3
n−2

))
.

(ii) k = 2, then G = C3 (T1, T2). By assumption, G 6∼= C3 (1, n− 4) and

C3 (2, n− 5). By Corollaries 2.3, 2.4 and Lemmas 2.1, 2.10, the maxi-

mum value ofHM(G) happens whenG ∼= C3 (3, n− 6) or C3 (P3, n− 5).

The first case yields that

HM(G) ≤ HM (C3 (3, n− 6)) = n3 − 10n2 + 43n+ 108.

Hence, we have (for n ≥ 15) that

HM
(
C3

(
T 3
n−3

))
−HM(G) ≥HM

(
C3

(
T 3
n−3

))
−HM (C3 (3, n− 6))

=
(
n3 − 7n2 + 24n+ 10

)
−
(
n3 − 10n2 + 43n+ 108

)
=3n2 − 19n− 98

>0.

Similarly, for the second case we have

HM
(
C3

(
T 3
n−3

))
−HM(G) ≥HM

(
C3

(
T 3
n−3

))
−HM (C3 (P3, n− 5))

=
(
n3 − 7n2 + 24n+ 10

)
−
(
n3 − 7n2 + 22n+ 40

)
=2n− 30

>0.

This means that in both cases HM(G) < HM
(
C3

(
T 3
n−2

))
.

(iii) k = 3, then G = C3 (T1, T2, T3). By Corollary 2.4, it is simple to

see that HM(G) ≤ HM (C3 (l1, l2, l3)). On the other hand, since by

assumption G 6∼= C3 (1, 1, n− 5), the Hyper-Zagreb index attains its

maximum when

G ∼= C3 (1, 2, n− 6). Hence,

HM
(
C3

(
T 3
n−3

))
−HM(G) ≥HM

(
C3

(
T 3
n−3

))
−HM (C3 (1, 2, n− 6))

=
(
n3 − 7n2 + 24n+ 10

)
−
(
n3 − 10n2 + 43n+ 62

)
>0.

Case 2 : m = 4. This needs to be analyzed for k = 1, 2, 3 and 4.

(i) k = 1, then G = C4 (T1). Since G 6∼= C4 (n− 4), we have T1 6∼= Sn−3.

Note that G has a maximum value of the Hyper-Zagreb index if T1
∼=

T 1
n−3 by Theorem 3.1 and Lemma 2.10. Moreover, we have (for n ≥ 15)

HM
(
C3

(
T 3
n−3

))
−HM(G) ≥HM

(
C3

(
T 3
n−3

))
−HM

(
C4

(
T 1
n−3

))
=
(
n3 − 7n2 + 24n+ 10

)
−
(
n3 − 7n2 + 22n+ 20

)
>0.
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(ii) k = 2, then G = Cu1,u2

4 (T1, T2)α = C4 (T1, T2)α, where α = dG(u1, u2).

By Lemma 2.1, G attains maximum HM -value if G ∼= C4 (l1, l2)α=1.

This lemma also implies that

HM (C4 (l1, l2))α=1 ≤ HM (C4 (1, n− 5))α=1 = n3 − 7n2 + 22n+ 38.

Therefore, for n ≥ 15, we have

HM(G) ≤ n3 − 7n2 + 22n+ 38 < n3 − 7n2 + 24n+ 10 = HM
(
C3

(
T 3
n−2

))
.

(iii) k = 3, then G is considered as C4 (T1, T2, T3). By Corollary 2.4 and

Lemmas 2.1, 2.10, for n ≥ 15 we have

HM
(
C3

(
T 3
n−2

))
−HM(G) ≥HM

(
C3

(
T 3
n−2

))
−HM (C4 (l1, l2, l3))

>HM
(
C3

(
T 3
n−2

))
−HM (C4 (1, n− 5))α=1

=
(
n3 − 7n2 + 24n+ 10

)
−
(
n3 − 7n2 + 22n+ 38

)
>0.

(iv) k = 4, then G = C4(T1, T2, T3, T4). In a similar way, one can see easily

that HM(G) < HM
(
C3

(
T 3
n−2

))
; completing the proof of the second

case.

Case 3 : m ≥ 5. Using Lemmas 2.9, 2.10 and Corollaries 2.3, 2.8, we conclude

that (for n ≥ 15)

HM
(
C3

(
T 3
n−2

))
−HM(G) ≥HM

(
C3

(
T 3
n−2

))
−HM (Cm (l1, l2, . . . , lk))

≥HM
(
C3

(
T 3
n−2

))
−HM (Cm (n−m))

≥HM
(
C3

(
T 3
n−2

))
−HM (C5 (n− 5))

=
(
n3 − 7n2 + 24n+ 10

)
−
(
n3 − 7n2 + 20n+ 30

)
>0.

�

4. Conclusion

In this paper, we studied the Hyper-Zagreb index and characterized the trees

and unicyclic graphs with the first four and first eight greatest HM -value. It

would be of interest to investigate its behavior on other classes of graphs with

simple connectivity patterns and cyclic structures.
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