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ABSTRACT. Topological indices are widely used as mathematical tools to
analyze different types of graphs emerged in a broad range of applications.
The Hyper-Zagreb index (HM) is an important tool because it integrates
the first two Zagreb indices. In this paper, we characterize the trees and
unicyclic graphs with the first four and first eight greatest HM-value,

respectively.
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1. INTRODUCTION

A nonnegative number is assigned to a graph G to define an associated
topological index if it is the same for every isomorphic graph of G, i.e., it is
graph invariant. Topological indices are appropriate tools to mathematically

investigate and properly comprehend molecular structures and their properties
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such as complexity [9, 10]. The first topological index is proposed by Wiener
[24] in order to examine chemical features of paraffin. Since trees demonstrate
a remarkable importance in various applications, authors in [4] specifically in-
vestigate this index for this setting. Moreover, In [20], the extremal unicyclic
graphs with respect to Wiener index is studied. The Hyper-Wiener index for
acyclic structures is due to Randic, where later [15] extends this notion so that
it applies applied for any connected graphs. An interested reader can explore
some chemical applications of the Hyper-Wiener index in [12]. Zagreb indices
were first suggested by Gutman et al. [13] in the 1970s, which absorbed atten-
tion of many scientists in different fields. The reader is encouraged to consult
with [1, 3, 11, 14, 21, 25, 27] for more useful information. A comprehensive
study on relations between the mentioned indices is found in [26].

All graphs in this paper are simple, finite and undirected. The vertex and
edge sets of a graph G are shown by V(G) and E(G), respectively. Also, n(Q)
denotes the number of vertices of GG, which is called its order.

For a graph G, the Hyper-Zagreb index of G is defined as the following

HM(G)= » (do(x)+da(y))’, (1.1)
zy€E(G)

where dg(z) is the degree of vertex x. For the edge zy € E(G), if consider
ha(zy) := (dg(x) + dg(y))?. Then, the above formulation can be equivalently
written as
oM@ = Y halay).
zy€E(G)

This was initially presented by Shirdel et al. [23] in 2013. They consider
two simply connected graphs and compute this distance-based index for the
resulted Cartesian product, composition, join and disjunction graphs. Gao et
al. [7] discuss acyclic, unicyclic, and bicyclic graphs and find sharp bounds for
their Hyper-Zagreb index. The degree of vertices is the main part of some other
graph invariants such as irregularity and total irregularity, see [6, 17, 18, 19].
There is an extensive literature on this topic including [2, 5, 8, 22, 16].

2. PRELIMINARIES AND LEMMAS

In this section, we first bring several notations and definitions. Then, we
propose different propositions which are essential for the subsequent section.

Unicylcic graph G of order n with circuit C),, = x122 ... 2,z of length m is
denoted by C¥1-v2:uk (Ty Ty, ... Tk) in which trees T;’s for i = 1,2,...,k are
all nontrivial components of G — E(Cy,) and u; (i =1,2,..., k) is the common
vertex of T; and C,,. Specially, G = C,, for k = 0. For convenience, we denote
Cuvuzstk (T Ty o Ty) by Cpy (Th, T, . .., T), for any integer number k >
1. Let n(T;) = 1; +1, ¢ = 1,2,...,k, then [ = Zleli = n —m. Also, if
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FIGURE 1. Tree T% (T1,Ts, ..., TA).

a tree T; is the star S;,41 then we replace it by [;, for example we denote
C4 (Tl, 55, Tg, Sg) by C4 (Tl, 4, T3, 8)

Let T be a tree with n vertices (n > 2) such that € V(T') and x has a max-
imum degree of vertices in graph T', i.e. A = dyp(z) = max {dr(u),uv € V(T)}.
T is shown by T% (Ty,Ts,...,Ta), where T; = T + {y;x},i=1,2,..., A, and
17,15, ..., TX are trees with disjoint vertex sets and ny,ng,...,nA are num-
bers of their vertices, respectively. Therefore, we have |V(T;)| = |V(T})|+1 =
n,+1,i=1,2,...,A, and n = |V(T)| = Zle n; + 1 and y; € V(T;*). More-
over, E(T;) = E(T) U{y;x} and V(T;) = V(T;) U {z} (see Figure 1).

The coalescence of G and H is denoted by G(u)oH(v) and obtained by
identifying the vertex u of G with the vertex v of H.

Lemma 2.1. Assume that z € V(H) and {u,w} C V(G) such that the follow-
ing conditions hold:

() da(u) < dg(w),
®) Y data)< Y dala).

z€Ng(u)\{w} z€Ng(w)\{u}

Moreover, let G1 = G(u)oH(z) and G2 = G(w)oH(z), where G1 and Gy are
as shown in Figure 2 . Then, HM(G3) > HM(G1), with the equality if and
only if equality holds in both given conditions.

Proof. Recall that

Z he, (zw) = Z (da(z) + da(w))?,

zENg(w)\{u} ze€Ng(w)\{u}
Yo ha@) = > (dulz) +da(u) + du(@))?
€Ny (2) zENH(z)
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FIGURE 2. The transformation of two graphs.

and hg, (uw) = ha, (uw) = (dg(z) + dg(w) + dg(z))? . In addition, one has
Y hazm) = Y (du(2) +da(w) +du(x))?,

TENy(2) rENH(z)
> helew= 3 (do(w)+dg()’
zENg(u)\{w} z€NG(u)\{w}

and
Yo ha(rw) = > (de(w) +de(z) +du(2))?.
zE€NG(w)\{u} zENG(w)\{z}

We consider two cases where either uw € E(G) or uw ¢ E(G). First, suppose
that uw € E(G). For i =1 and 2, we have

HM(G;) = Z ha(zy) + Z ha, (zu) + Z ha, (zw)

zy€B(G) z€Ng (u)\{w} z€Ng(w)\{u}
z,yé{u,w}
+ he, (uvw) + Z hu(zy) + Z ha, (zz).

T, yFz TENH(2)

On the other hand,
Y. hafwy = Y (do(u)+da(@) +du(z))”.

zENg (u)\{w} z€Ng(u)\{w}

Therefore,
HM(Gs) — HM(Gy)

= Y (Wow) +da(@)’ - (da(u) + da(@) + du(2))*)

zENg (u)\{w}

+ Y (e +do(a) + du(2)* — (do(w) + da(w))?)
€N (w)\{u}

+ Y ((dn(2) + do(w) + du(@))? = (du(2) + da(w) + du (w))*)
TENH(2)
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this implies that

HM(Gs) — HM(Gh) 22d5 (2) (da(u) (do(w) = 1) = da(u) (da(u) = 1))

+2dy(z) Z de(u) — Z de(z)
z€NG(w)\{u} €N (w)\{w}
>0.

Now, suppose that uw € E(G). Then, for i = 1 and 2, we have

HM(G))= > halay)+ > ha(zu)+ > he,(aw)

zy€E(G) zENG (u) zENgG(w)
@,y {u,w}
+ Z hg(zy) + Z he, (xz).

T,Y#z z€Ng;

Also, in this case one has

Z dg(x) = Z dg(x), Z d(;(x) = Z d(;(.r)

zENg(w)\{u} zENG (w) zENg (u)\{w} zENG (u)

Hence, a similar approach as the previous case can be used to prove the result.
O

Lemma 2.2. Suppose u and v are vertices of graphs G1 and G35, respectively.
Let G be the graph obtained by joining u € V(G1) to v € V(G2) by an edge,
and G’ be the graph obtained by identifying u € V(G1) with v € V(G3) and
attaching a pendent vertex to the common vertex as shown in Figure 3. Then
if dg(u),der (v) > 2, we have HM(G) < HM(G').

FIGURE 3. An illustration of graphs in Lemma 2.2.
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Proof. Assume that the graph G’ is obtained by identifying v € V(G;) with
v € V(G4) and attaching a pendent vertex w to the common vertex. Then,

HM(G) =hg(w)+ > haluz)+ > halz)+ > hg(ay)

zE€Ng, (u) zE€Ng, (v) zy€E(G1)

u¢{z,y}
+ Z th(l'y)
ry€E(G2),v¢{z,y}
and
HM(G') =hg/(ww) + D7 ha(we)+ > holwn)+ D he,(ry)
zENG, (u) zENgG, (v) zy€E(G1)
ug{z,y}
+ Z he, (zy).
myEE(GQ)
vé¢{z,y}

Since dg(u) = dG1 (u) + 1, dg(v) = dG1 (1}) + 1, dG/(w) =1 and dG/(u) =
de(v) = dg, (u) + dg, (v) + 1 we have

Z he(uz) < Z har (uz), Z ha(vz) < Z har (vz)

z€Ng, (u) zENG, (u) z€Ng, (v) z€Ng, (v)
and he(uv) = he (uw) = (dg, (u) + dg, (v) + 2)%. Hence,

HM(G') - HM(G) = Z he (uzx) — Z he(uz)

zENG, (u) zENG, (u)

+ Z ha (vz) — Z ha(vz)
zENg, (v) zENgG, (v)

>0.

O

Corollary 2.3. Let T be a tree with n vertices. Then, HM(T) < HM (S,),
with the equality if and only if T = S,.

Corollary 2.4. Let G = Cyp, (Th, To, ..., Tx) be a unicyclic graph and n(T;) =
li+1. Then, HM(G) < HM (Cp, (l1,12,...,1lx)), with the equality if and only
TS, i=1,2,... k.

Lemma 2.5. Let Gy = C,, (I3, 12, . .., 1) be a unicyclic graph and yyu;, u;u;rq1 €
E(Cy,) such that dg, (y1), da, (u;) < dg, (uit1), then for
Gy =0C,, (ll, ceey lifl, li+1 + 1, Zi+2, ceey lk) one has that HM(Gl) < HM(GQ)

PTOOf. Let G = Cm (ll, ey li—lyli+1a lH_Q, ey lk), then 2 = dG(Ui) < 3 S
de(ui41); meaning that the condition (a) in Lemma 2.1 holds. Hence, we now
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show that the second condition in this Lemma is also satisfied. Suppose that
Yyouir1 € E(Cy,). By a simple calculation one can check that

> da(z) =da(y1),

2€Ng (u; )\{wit1}

da(x) = Z de () + Z da ()

TENG (wit1)\{ui} zENG (wit1)\{ui} TENG (wit1)\{ui}
z€V (Chn) ¢V (Chn)
=da(y2) + Z 1
2€ENG (uit1)\{u:}
¢V (Cyp)

=dg(y2) + da(uiy1) — 2.

Moreover, dg, (u;+1) = dg(uir1) and dg(y1) = dg,(y1). On the other hand,
since yo € V(C)y,) then dg(y2) > 2; implying that dg(y2) — 2 > 0. So, we have

D reNe(u\fuisr} 46(@) = da(y1) = da, (1) < dey (Uiv1) = da(Uir1) < 30 eNg (uiwn )\ fui} 96(2)-
Therefore, the condition (b) of Lemma 2.1 holds, which completes the proof. [

Lemma 2.6. Let G = Clbv2rtk (Iy 1y, ... 1) be a unicyclic graph and k > 1.
Then if ujui11 € E(Cr,),i=1,2,...,k=1, then HM(G) < HM (C,, (n —m)).
Otherwise, there exist positive integers 1y, 15, ..., 1. (r < k), such that HM (G) <
HM(G") < HM(G"), where G' = Cy-v2-vr (11,15, ...,11),

G" = Crvsevr (I 4+ 1,15, .1, dar(vi,v5) > 2 for 1 <i<j<r and

{’1}171)2,-..7’[)7-} c {U],U27...,Uk}.

Proof. HM(G) < HM(G') is straightforward in light of Lemma 2.5. Now, by
considering u = vi,w = vg, H = Sy 41 and G = Cp2v3 " (ly,l3,...,1;) and
using Lemma 2.1 we can conclude that HM(G') < HM(G"), as desired. O

Lemma 2.7. Let G = C,, (I1,1a, ..., 1) be a unicyclic graph of order n. Then
HM(G) < HM (Cy, (n —m)), with equality if and only if k = 1.

Proof. The proof is obtained by applying Lemmas 2.5 and 2.6. O

Corollary 2.8. Let G = C,, (T1,Ts,...,Tk) be a unicyclic graph and n(T;) =
Li+1,i=1,2,...,k. Then,

HM(G) < HM (Cpy (11, la, - ... 1)) < HM (Cyy, (0 —m)),

with left equality if and only if T; = 5,41, © = 1,2,..., k, and right equality if
and only if k = 1.

Lemma 2.9. Let G = Cpy(n—m) and Go = Cruy (n—m + 1), m > 4, be
unicyclic graphs of order n. Then, HM(G1) < HM(G53).
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Proof. By a simple calculation we have
HM(Gy) =4(m—2)+2(n—m~+4)° + (n—m) (n —m+ 3)°

<Am=3)+2(n—m+5°+m—m+1)(n—m+4)°

=HM(G3).
As desired. U
Lemma 2.10. Let G = Cy, (T1, T, ..., Tk) be a unicyclic graph. Then,

k
HM@) =Y Y hal)+ Y holey).
i=1 zye B(T;) Y€ E(Cnm)

Proof. The proof is trivial by the Hyper-Zagreb index definition (1.1). O

3. MAIN RESULTS

In this section, we characterize the trees and unicyclic graphs with the first
four and first eight greatest HM-value, respectively.

Theorem 3.1. Let T be a tree with n vertices. If T % S,,, T} or T4, then
HM(T) < HM (T3) < HM (T2) < HM (T,)) < HM (S,),

with the equality if and if T =2 T, where T), T2 and T? are given as in Figure

T} T2 T3 T4

FIGURE 4. Some trees with large Hyper-Zagreb values.

H Graph HM-value H
Sh n3 — n?
i 3 —4n?+Tn+6
Ty 3 —n? +20n + 16
T3 3 —7Tn?+20n

TABLE 1. Trees with large Hyper-Zagreb values.
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Proof. Using Table 1, we have HM (S,,) > HM (T,}) > HM (T?) > HM (T}).
Hence, we need to prove that HM(T) < HM (T?2) when T % T3, Let T =
T* (11,Ts,...,Ta), where A = dp(x). By Corollary 2.3, we have HM (T;) <
HM(S,,), i = 1,2,...,A. Moreover, let TV = T%(Ty,T3,....T4), where
T =8,,,i=1,2,...,A, then we have HM(T) < HM (T"). To complete the
proof, we consider three different cases as follows:

Case 1: assume that dp(y;) = 1,47 =1,2,...,A, then T = S,,. Thisis a
contradiction to the assumption.

Case 2: assume that there exists y; for t = 1,2,..., A such that dr(y;) > 2
and dr(y;) = 1 for ¢ = 1,2,...,A and i # t. In this case, there are three
subcases that can happen:

(i) I |V(T})| = 2, then T = T}*. This is clearly a contradiction.

(i) If |V (T;)| = 3, then we must consider that dr(y:) = 2 or 3. The case
dr(y:) = 3 implies that T =2 T'2, which is a contradiction. If dr(y;) = 2,
then

HM(T)=(n—4)(n—2)°+(n—-1)>+16+9
=n® — % +18n + 10
<n® —7n?+20n
=HM (T3).
t—1 times A—t times

(’LZZ) If |V(Tt*)| Z 4, then T'=T7% SQ, ey SQ, Tt7 SQ, ey SQ . By Corol-

lary 2.3, the Hyper-Zagreb index for 7' is maximum when T} = §,,.
On the other hand, it follows from Lemma 2.1 that if n, = 4 than T
has maximum H M-value, i.e. in this case T has maximum H M-value
when T =2 T (see Figure 4). Hence, applying Lemma 2.1, it is clear
that HM(T) < HM (Ts) <HM (Tff)

Case 3: Suppose that there exist 1 < s,¢t < A such that dr(ys), dr(y:) > 2.
Similar to previous, applying Corollary 2.3 and Lemma 2.1, it can concluded
that HM(T) < HM (TS) O
Theorem 3.2. Let G be a unicylcic graph of ordern > 15. If G % C3 (n — 3),

Cs(l,n—4), Cs (T%_Q) , Ci(n—2), C3(2,n—75), C3(1,1,n—5) and
Cs (T2_;). Then,
HM(G) <HM (Cy (T3_,)) < HM (Cs (T2_,)) < HM (C3 (1, 1,n—5)
<HM (C3(2,n—5)) < HM (Cy (n —4)) < HM (C3 (Tr_,))
<HM(03 (1711—4)) < HM(C3 (n —3)),
with the equality if and only if G = Cs (T372) or G = (C3(Ps3,10) forn =15
(see Figure 5).
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C3(n—3) Cs (T _5) Cy (T7_5) Cs (T _5)

C3(2,n —5) Cy(n—4)

FIGURE 5. The unicyclic graphs with the first eight greatest
Hyper-Zagreb.

H Graph HM-value H

Cg(n— 3) n® —n?+4n+ 18
Cs(l,n—4) 3—4n? +11n+ 38
Cs (T, 5 d4n® £ 11+ 20
Cy(n—4) 3 —4n? +9n+ 28
C3(2,n—5) n® — Tn? + 24n + 68
Cs(1,1,n —5) n3 — Tn? + 24n + 48
Cs (T2_,) n® —n® + 24n + 26

Cs (T3_,) n3 —7n? 4 24n + 10

TABLE 2. Unicyclic graphs with large Hyper-Zagreb values.

Proof. Assume that G = C,,, (T1, T3, . ..,T)) be a unicyclic graph and n(T;) =
li+1,i=1,2,....k. The given Table 2 provides the Hyper-Zagreb index of
some graphs by which the result is trivial. It is enough to discuss about the
equality case. If G = C3 (T3_,), then HM(G) = HM (C3 (T3_,)). Also, if
G = C3(P3,10) for n = 15, then HM(G) = 2170 = HM (C3 (Tf;)). We now
prove that HM (G) < HM (Cs3 (Ts_,)), where G % C3(n —3), C5(1,n — 4),
C3 (T,;_Q) y 04 (TI, — 2) y 03 (2,n — 5) y 03 (1, 1,71 — 5) and 03 (Tg_g). We ex-
amine three cases of m = 3,4 and 5 for G = Cy,, (T1, 5, ..., Ty) as follows:
Case 1: m = 3. We need to discuss three subcases that k = 1,2 and 3.
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(i) k = 1, then G = C5(T1). By assumption, we know that T; %
Sn_2, T} 5, T2 , and T3_,. So, Theorem 3.1 implies that HM (1) <
HM(T?_,). By Lemma 2.10, we get HM(G) < HM (C5 (T3_,)).

(i) k = 2, then G = C3 (T1,T>). By assumption, G ¥ C5(1,n —4) and
C3(2,n —5). By Corollaries 2.3, 2.4 and Lemmas 2.1, 2.10, the maxi-
mum value of HM (G) happens when G = C3 (3,n — 6) or C3 (P3,n — 5).
The first case yields that

HM(G) < HM (C5(3,n — 6)) = n® — 10n? 4 43n + 108.
Hence, we have (for n > 15) that
HM (C3 (T2_3)) — HM(G) >HM (C5 (T2_3)) — HM (C3 (3,n — 6))
= (n3 —Tn? 4 24n + 10)
— (n® = 10n® + 43n + 108)
=3n*> — 19n — 98
>0.
Similarly, for the second case we have
HM (C5 (T2_3)) — HM(G) >HM (C3 (T2_3)) — HM (C3 (P3,n — 5))
= (n® — 7Tn® 4+ 24n + 10) — (n® — Tn* + 22n + 40)
=2n—30
>0.

This means that in both cases HM(G) < HM (C3 (T72_,)).

(iii) k = 3, then G = C3(T1,T»,T5). By Corollary 2.4, it is simple to
see that HM(G) < HM (Cs (l1,12,13)). On the other hand, since by
assumption G % Cs(1,1,n —5), the Hyper-Zagreb index attains its
maximum when
G = (C5(1,2,n — 6). Hence,

HM (C5 (T2_3)) — HM(G) >HM (C5 (T2_3)) — HM (C3(1,2,n — 6))
= (n® — ™® 4 24n + 10) — (n® — 10n” + 43n + 62)
>0.

Case 2: m = 4. This needs to be analyzed for k = 1,2, 3 and 4.

(i) k=1, then G = Cy (T1). Since G % Cy(n —4), we have Ty #* S, _3.
Note that G has a maximum value of the Hyper-Zagreb index if T =
T} 5 by Theorem 3.1 and Lemma 2.10. Moreover, we have (for n > 15)
HM (Co (T2)) — HM(G) =HM (Cy (T2.)) — HM (C4 (1))
=(n® — ™n® 4 24n + 10) — (n® — Tn® + 22n + 20)
>0.
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(ZZ) k= 2, then G = O}:huQ (Tl,Tg)a =Cy (Tl,Tg)a, where o = dG(ul,’UQ).
By Lemma 2.1, G attains maximum HM-value if G = Cy (l1,13)
This lemma also implies that

a=1"

HM (Cy (I1,12)) yey < HM (Cy (1,0 —5)),_; = n® — Tn? + 22n + 38.
Therefore, for n > 15, we have
HM(G) <n®—Tn®+22n+38 <n® —Tn® +24n+ 10 = HM (C5 (T5_,)) .

(#ii) k = 3, then G is considered as Cy (T1,T,T3). By Corollary 2.4 and
Lemmas 2.1, 2.10, for n > 15 we have
HM (C5 (T2_,)) — HM(G) >HM (C3 (T72_5)) — HM (Cy (11,12, 13))
>HM (C3 (Tp_5)) — HM (Cy (1,n —5)),,_,
= (n® = 7Tn* 4 24n + 10) — (n® — Tn® + 22n + 38)
>0.
(i) k =4, then G = Cy(T1,T>,T5,T4). In a similar way, one can see easily
that HM(G) < HM (C5 (T3_,)); completing the proof of the second

case.

Case 3: m > 5. Using Lemmas 2.9, 2.10 and Corollaries 2.3, 2.8, we conclude
that (for n > 15)
HM (C5(T3_,)) — HM(G) >HM (C3 (T3_,)) — HM (Cy, (1,12, . . ., li))
>HM (C5 (T2 _5)) — HM (Cp (n — m))
>HM (Cy (TS_,)) — HM (Cs (n—5))

(n® — Tn® + 24n 4+ 10) — (n® — 7n* + 20n + 30)
>0.

4. CONCLUSION

In this paper, we studied the Hyper-Zagreb index and characterized the trees
and unicyclic graphs with the first four and first eight greatest H M-value. It
would be of interest to investigate its behavior on other classes of graphs with
simple connectivity patterns and cyclic structures.
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