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1. Introduction

Many topological properties are defined or characterized in terms of the

following classical selection principles. LetA and B be sets consisting of families

of subsets of an infinite set X. Then:

S1(A,B) is the selection hypothesis: for each sequence (An : n ∈ N) of

elements of A there is a sequence {bn}n∈N such that for each n, bn ∈ An, and

{bn : n ∈ N} is an element of B.

Sfin(A,B) is the selection hypothesis: for each sequence (An : n ∈ N) of

elements of A there is a sequence {Bn}n∈N of finite sets such that for each n,

Bn ⊆ An, and
⋃
n∈NBn ∈ B.

Ufin(A,B) is the selection hypothesis: whenever U1, U2, ... ∈ A and none

contains a finite subcover, there are finite sets Fn ⊆ Un, n ∈ N, such that

{
⋃
Fn : n ∈ N} ∈ B.
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100 A. V. Osipov

Many equivalences hold among these properties, and the surviving ones ap-

pear in the following Scheepers Diagram (Fig. 1) (where an arrow denotes

implication) [11].

Fig. 1. The Scheepers Diagram for Lindelöf space.

The papers [11, 15, 32, 35, 36, 37, 38] have initiated the simultaneous con-

sideration of these properties in the case where A and B are important families

of open covers of a topological space X.

In papers [1-8, 12-32] (and many others) were investigated the applications

of selection principles in the study of the properties of function spaces. In

particular, the properties of the space Cp(X) were investigated.

In [9] (see also [10]), Hurewicz introduced a covering property of a space X,

nowadays called the Hurewicz property in this way: for each sequence (Un :

n ∈ N) of open covers of X there is a sequence (Vn : n ∈ N) such that for each

n ∈ N, Vn is a finite subset of Un and each x ∈ X belongs to ∪Vn for all but

finitely many n (i.e., X satisfies Ufin(O,Γ)).

In this paper we continue to study different selectors for sequences of dense

sets of Cp(X) and we study a functional characterization of the covering prop-

erty of Hurewicz.

2. Main definitions and notation

Throughout this paper, all spaces are assumed to be Tychonoff. The set of

positive integers is denoted by N. Let R be the real line and Q be the rational

numbers. For a space X, we denote by Cp(X) the space of all real-valued

continuous functions on X with the topology of pointwise convergence.
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A Functional Characterization of the Hurewicz Property 101

Basic open sets of Cp(X) are of the form

[x1, ..., xk, U1, ..., Uk] = {f ∈ C(X) : f(xi) ∈ Ui, i = 1, ..., k}, where each

xi ∈ X and each Ui is a non-empty open subset of R. Sometimes we will write

the basic neighborhood of the point f as 〈f,A, ε〉 where 〈f,A, ε〉 := {g ∈ C(X) :

|f(x)− g(x)| < ε ∀x ∈ A}, A is a finite subset of X and ε > 0.

The symbol 0 denote the constantly zero function in Cp(X). Because Cp(X)

is homogeneous we can work with 0 to study local properties of Cp(X).

If X is a space and A ⊆ X, then the sequential closure of A, denoted by

[A]seq, is the set of all limits of sequences from A. A set D ⊆ X is said to be

sequentially dense if X = [D]seq. A space X is called sequentially separable if

it has a countable sequentially dense set.

We recall that a subset of X that is the complete preimage of zero for a

certain function from C(X) is called a zero-set. A subset O ⊆ X is called a

cozero-set of X if X \O is a zero-set.

In this paper, by a cover we mean a nontrivial one, that is, U is a cover of

X if X =
⋃
U and X /∈ U .

An open cover U of a space X is:

• an ω-cover if every finite subset of X is contained in a member of U .

• a γ-cover if it is infinite and each x ∈ X belongs to all but finitely many

elements of U . Note that every γ-cover contains a countably γ-cover.

• a γF -shrinkable cover U if it is a γ-cover U of X by co-zero sets and there

exists a γ-cover {F (U) : U ∈ U} of X by zero-sets with F (U) ⊂ U for some

U ∈ U .

For a topological space X we denote:

• O — the family of all open covers of X;

• Γ — the family of all countable open γ-covers of X;

• Ω — the family of all open ω-covers of X;

• ΓF — the family of all γF -shrinkable covers of X.

For a topological space Cp(X) we denote:

• D — the family of all dense subsets of Cp(X);

• S — the family of all sequentially dense subsets of Cp(X).

In the case of Ufin note that for any class of covers B of Lindelöf space X,

Ufin(O,B) is equivalent to Ufin(Γ,B) because given an open cover {Un : n ∈ N}
we may replace it by {

⋃
i<n Ui : n ∈ N}, which is a γ-cover (unless it contains

a finite subcover) of X.

Recall that the i-weight iw(X) of a space X is the smallest infinite cardinal

number τ such that X can be mapped by a one-to-one continuous mapping

onto a Tychonoff space of the weight not greater than τ .

Theorem 2.1. (Noble [18]) A space Cp(X) is separable iff iw(X) = ℵ0.
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102 A. V. Osipov

Let X be a topological space, and x ∈ X. A subset A of X converges to x,

x = limA, if A is infinite, x /∈ A, and for each neighborhood U of x, A \ U is

finite. Consider the following collection:

• Ωx = {A ⊆ X : x ∈ A \A};
• Γx = {A ⊆ X : x = limA}.
Note that if A ∈ Γx, then there exists {an} ⊂ A converging to x. So, simply

Γx may be the set of non-trivial convergent sequences to x.

We write Π(Ax,Bx) without specifying x, we mean (∀x)Π(Ax,Bx).

So we have three types of topological properties described through the se-

lection principles:

• local properties of the form S∗(Φx,Ψx);

• global properties of the form S∗(Φ,Ψ);

• semi-local properties of the form S∗(Φ,Ψx).

3. Ufin(O,Ω)

For a function space Cp(X), we represent the following selection principle

Ffin(S,D): whenever S1, S2, ... ∈ S there are finite sets Fn ⊆ Sn, n ∈ N,

such that for each f ∈ Cp(X) and a base neighborhood 〈f,K, ε〉 of f where

ε > 0 and K = {x1, ..., xk} is a finite subset of X, there is n′ ∈ N such that for

each j ∈ {1, ..., k} there is g ∈ Fn′ such that g(xj) ∈ (f(xj)− ε, f(xj) + ε).

It is clear that the condition of the selection principle Ffin(S,D) can be

written more briefly: whenever S1, S2, ... ∈ S there are finite sets Fn ⊆ Sn,

n ∈ N, such that for each f ∈ Cp(X), ε > 0 and K ∈ [X]<ω, there is n′ ∈ N
such that min

h∈Fn′
{|f(x)− h(x)|} < ε for each x ∈ K.

Similarly, Ffin(Γ0,Ω0): whenever S1, S2, ... ∈ Γ0 there are finite sets Fn ⊆
Sn, n ∈ N, such that for ε > 0 and K ∈ [X]<ω, there is n′ ∈ N such that

min
h∈Fn′

{|h(x)|} < ε for each x ∈ K.

Theorem 3.1. For a space X, the following statements are equivalent:

(1) Cp(X) satisfies Ffin(Γ0,Ω0);

(2) X satisfies Ufin(ΓF ,Ω).

Proof. (1) ⇒ (2). Let {Ui}i∈N ⊂ ΓF and let Ui = {Umi } for each i ∈ N. We

consider Ki = {fmi ∈ C(X) : fmi � F (Umi ) = 0 and fmi � (X \ Umi ) = 1 for

m ∈ N}.
Since Fi = {F (Umi ) : m ∈ N} is a γ-cover of X, we have that Ki converges

to 0 for each i ∈ N. Since Cp(X) satisfies Ffin(Γ0,Ω0), there are finite sets

Fi = {fm1
i , ..., f

ms(i)

i } ⊆ Ki such that for a base neighborhood O(f) = 〈f,K, ε〉
of f = 0 where ε > 0 and K = {x1, ..., xk} is a finite subset of X, there is

n′ ∈ N such that for each j ∈ {1, ..., k} there is g ∈ Fn′ such that g(xj) ∈
(f(xj)− ε, f(xj) + ε). Note that {

⋃
{Um1

i , ..., U
ms(i)

i } : i ∈ N} ∈ Ω.
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A Functional Characterization of the Hurewicz Property 103

(2)⇒ (1). Let X satisfies Ufin(ΓF ,Ω) and Ai ∈ Γ0 for each i ∈ N. Consider

Ui = {Ui,f = f−1(− 1
i ,

1
i ) : f ∈ Ai} for each i ∈ N. Without loss of generality

we can assume that a set Ui,f 6= X for any i ∈ N and f ∈ Ai. Otherwise

there is sequence {fik}k∈N such that {fik}k∈N uniform converges to 0 and

{fik : k ∈ N} ∈ Ω0.

Note that Fi = {Fi,m}m∈N = {f−1i,m[− 1
i+1 ,

1
i+1 ] : m ∈ N} is a γ-cover of X

and Fi,m ⊂ Ui,m for each i,m ∈ N. It follows that Ui ∈ ΓF for each i ∈ N.

SinceX satisfies Ufin(ΓF ,Ω), there is a sequence {Ui,m(1), Ui,m(2), ..., Ui,m(i) :

i ∈ N} such that for each i and k ∈ {m(1), ...,m(i)}, Ui,m(k) ∈ Ui, and

{
⋃
{Ui,m(1), ..., Ui,m(i)} : i ∈ N} ∈ Ω.

Let 〈0,K, ε〉 be a base neighborhood of 0 where ε > 0 and K = {x1, ..., xs} is

a finite subset of X, then there is i1 ∈ N such that 1
i1
< ε and

⋃m(i1)
k=m(1) Ui1,k ⊃

K. It follows that for each j ∈ {1, ..., s} there is g ∈ {fi1,m(1), ..., fi1,m(i1)} such

that g(xj) ∈ (−ε, ε). �

Lemma 3.2. (Lemma 6.5 in [20]) Let U = {Un : n ∈ N} be a γF -shrinkable

co-zero cover of a space X. Then the set S = {f ∈ C(X) : f � (X \ Un) ≡ 1

for some n ∈ N} is sequentially dense in Cp(X).

Theorem 3.3. For a space X with iw(X) = ℵ0, the following statements are

equivalent:

(1) Cp(X) satisfies Ffin(S,D);

(2) X satisfies Ufin(ΓF ,Ω);

(3) Cp(X) satisfies Ffin(Γ0,Ω0);

(4) Cp(X) satisfies Ffin(S,Ω0).

Proof. (1) ⇒ (2). Let Ui = {U ji : j ∈ N} ∈ ΓF for each i ∈ N. Then, by

Lemma 3.2, each Si = {f ∈ C(X) : f � (X \ U ji ) ≡ 1 for some m ∈ N} is

sequentially dense in Cp(X). Since Cp(X) satisfies Ffin(S,D), there are finite

sets Fi = {fm1
i , ..., f

ms(i)

i } ⊆ Si such that for each f ∈ Cp(X) and a base

neighborhood 〈f,K, ε〉 of f where ε > 0 and K = {x1, ..., xk} is a finite subset

of X, there is n′ ∈ N such that for each j ∈ {1, ..., k} there is g ∈ Fn′ such that

g(xj) ∈ (f(xj)− ε, f(xj) + ε). Note that {
⋃
{Um1

i , ..., U
ms(i)

i } : i ∈ N} ∈ Ω.

(2)⇒ (3). By Theorem 3.1.

(3)⇒ (4) is immediate.

(4)⇒ (1). Suppose that Cp(X) satisfies Ffin(S,Ω0).

Let D = {dn : n ∈ N} be a dense subspace of Cp(X) and Si ∈ S for each

i ∈ N. Given a sequence of sequentially dense subspace of Cp(X), enumerate

it as {Sn,m : n,m ∈ N}. For each n ∈ N, pick

Fn,m = {dn,m,1, ..., dn,m,k(n,m)} ⊂ Sn,m so that for a base neighborhood

〈dn,K, ε〉 of dn where ε > 0 and K = {x1, ..., xk} is a finite subset of X,

there is m′ ∈ N such that for each j ∈ {1, ..., k} there is g ∈ Fn,m′ such that

g(xj) ∈ (dn(xj)− ε, dn(xj) + ε). It follows that Cp(X) satisfies Ffin(S,D). �
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104 A. V. Osipov

Theorem 3.4. For a space X the following statements are equivalent:

(1) X is Lindelöf and X satisfies Ufin(ΓF ,Ω);

(2) X satisfies Ufin(O,Ω).

Proof. It is proved similarly to the proof of Theorem 4.1. �

Theorem 3.5. For a separable metrizable space X, the following statements

are equivalent:

(1) Cp(X) satisfies Ffin(S,D);

(2) X satisfies Ufin(O,Ω);

(3) Cp(X) satisfies Ffin(Γ0,Ω0);

(4) Cp(X) satisfies Ffin(S,Ω0).

4. Ufin(O,Γ) - Hurewicz property

Theorem 4.1. For a space X the following statements are equivalent:

(1) X satisfies Ufin(ΓF ,Γ) and is Lindelöf;

(2) X has the Hurewicz property.

Proof. (1) ⇒ (2). Let (Un : n ∈ N) be a sequence of open covers of X. For

every n, U ∈ Un and x ∈ X we find co-zero sets W0,n,U,x and W2,n,U,x, and,

a zero-set W1,n,U,x such that x ∈ W0,n,U,x ⊂ W1,n,U,x ⊂ W2,n,U,x ⊂ U . Since

X is Lindelöf, there is a sequence (xnk : k ∈ N) such that X is covered be

{W0,n,U,xn
k

: k ∈ N}. Look at the cover Wn of X consisting of sets Wn
k =⋃

i≤kW2,n,U,xn
i
, k ∈ N. Note that Wn ∈ ΓF because

⋃
i≤kW1,n,U,xn

i
is a zero-

set contained in Wn
k , and {

⋃
i≤kW1,n,U,xn

i
: k ∈ N} is a γ-cover of X because

even {
⋃
i≤kW0,n,U,xn

i
: k ∈ N} is a γ-cover of X.

Now use the property Ufin(ΓF ,Γ) to the sequence (Wn : n ∈ N) together

with the fact that Wn is a finer cover that Un for all n. �

For a function space Cp(X), we represent the following selection principle

Ffin(S,S): whenever S1, S2, ... ∈ S there are finite sets Fn ⊆ Sn, n ∈ N,

such that for each f ∈ Cp(X) there is {Fnk
: k ∈ N} such that for a base

neighborhood 〈f,K, ε〉 of f where ε > 0 and K = {x1, ..., xm} is a finite subset

of X, there is k′ ∈ N such that for each k > k′ and ∀ j ∈ {1, ...,m} there is

g ∈ Fnk
such that g(xj) ∈ (f(xj)− ε, f(xj) + ε).

It is clear that the condition of the selection principle Ffin(S,S) can be

written more briefly: whenever S1, S2, ... ∈ S there are finite sets Fn ⊆ Sn,

n ∈ N, such that for each f ∈ Cp(X), ε > 0 and K ∈ [X]<ω, there is n′ ∈ N
such that for every n > n′ min

h∈Fn

{|f(x)− h(x)|} < ε for each x ∈ K.

Similarly, Ffin(Γ0,Γ0): whenever S1, S2, ... ∈ Γ0, there are finite sets Fn ⊆
Sn, n ∈ N, such that for ε > 0 and K ∈ [X]<ω, there is n′ ∈ N such that for

every n > n′ min
h∈Fn

{|h(x)|} < ε for each x ∈ K.

Theorem 4.2. For a space X, the following statements are equivalent:
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A Functional Characterization of the Hurewicz Property 105

(1) Cp(X) satisfies Ffin(Γ0,Γ0);

(2) X satisfies Ufin(ΓF ,Γ).

Proof. (1) ⇒ (2). Let {Ui}i∈N ⊂ ΓF , Ui = {Umi }m∈N for each i ∈ N. We

consider a subset Si of Cp(X) where

Si = {fmi ∈ C(X) : fmi � F (Umi ) = 0 and fmi � (X \ Umi ) = 1 for m ∈ N}.
Since Fi = {F (Umi ) : m ∈ N} is a γ-cover of X, we have that Si converges

to 0, i.e. Si ∈ Γ0 for each i ∈ N.

Since C(X) satisfies Ffin(Γ0,Γ0), there is a sequence {Fi}i∈N = {fm1
i , ..., f

mk(i)

i :

i ∈ N} such that for each i, Fi ⊆ Si, and for a base neighborhood 〈0,K, ε〉 of

0 where ε > 0 and K = {x1, ..., xk} is a finite subset of X, there is n′ ∈ N such

that for each n > n′ and j ∈ {1, ..., k} there is g ∈ Fn such that g(xj) ∈ (−ε, ε).
Consider the sequence {Wi}i∈N = {Um1

i , ..., U
mk(i)

i : i ∈ N}.
(a). Wi ⊂ Ui for each i ∈ N.

(b). {
⋃
Wi : i ∈ N} is a γ-cover of X.

Let K = {x1, ..., xs} be a finite subset of X and 〈0,K, 12 〉 be a base neigh-

borhood of 0, then there exists i0 ∈ N such that for each i > i0 and

j ∈ {1, ..., s} there is g ∈ Fi such that g(xj) ∈ (− 1
2 ,

1
2 ).

It follows that K ⊂
k(i)⋃
j=1

U
mj

i for i > i0. We thus get that X satisfies

Ufin(ΓF ,Γ).

(2)⇒ (1). Fix {Si : i ∈ N} ⊂ Γ0 where Si = {f ik : k ∈ N} for each i ∈ N.

For each i, k ∈ N, we put Ui,k = {x ∈ X : |f ik(x)| < 1
i }, Zi,k = {x ∈ X :

|f ik(x)| ≤ 1
i+1}.

Each Ui,k (resp., Zi,k) is a cozero-set (resp., zero-set) in X with Zi,k ⊂ Ui,k.

Let Ui = {Ui,k : k ∈ N} and let Zi = {Zi,k : k ∈ N}. So without loss of

generality, we may assume Ui,k 6= X for each i, k ∈ N. We can easily check

that the condition f ik → 0 (k →∞) implies that Zi is a γ-cover of X.

Since X satisfies Ufin(ΓF ,Γ) there is a sequence {Fi}i∈N = (Ui,k1 , ..., Ui,ki :

i ∈ N) such that for each i, Fi ⊂ Ui, and {
⋃
Fi : i ∈ N} is an element of Γ.

Let K = {x1, ..., xs} be a finite subset of X, ε > 0, and 〈0,K, ε〉 be a

base neighborhood of 0, then there exists i′ ∈ N such that for every i > i′

K ⊂
⋃
Fi. It follow that for every i > i′ and j ∈ {1, ..., s} there is g ∈ Si such

that g(xj) ∈ (−ε, ε). So Cp(X) satisfies Ffin(Γ0,Γ0). �

Theorem 4.3. For a Lindelöf space X, the following statements are equivalent:

(1) Cp(X) satisfies Ffin(Γ0,Γ0);

(2) X has the Hurewicz property.

A space X has V elichko property (X |= V ), if there exists a condensation

(one-to-one continuous mapping) f : X 7→ Y from the space X on a separable

metric space Y , such that f(U) is an Fσ-set of Y for any cozero-set U of X.
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Theorem 4.4. (Velichko [40]). Let X be a space. A space Cp(X) is sequen-

tially separable iff X |= V .

Theorem 4.5. For a space X with X |= V , the following statements are

equivalent:

(1) Cp(X) satisfies Ffin(S,S);

(2) X satisfies Ufin(ΓF ,Γ);

(3) Cp(X) satisfies Ffin(Γ0,Γ0);

(4) Cp(X) satisfies Ffin(S,Γ0).

Proof. (1) ⇒ (2). Let Ui = {U ji : j ∈ N} ∈ ΓF for each i ∈ N. Then, by

Lemma 3.2, each Si = {f ∈ C(X) : f � (X \ U ji ) ≡ 1 for some m ∈ N} is

sequentially dense in Cp(X).

Since C(X) satisfies Ufin(S,S), there is a sequence {Fi} = {fm1
i , ..., fms

i :

i ∈ N} such that for f = 0 there is {Fik : k ∈ N} such that for a base

neighborhood 〈f,K, ε〉 of f where ε > 0 and K = {x1, ..., xm} is a finite subset

of X, there is k′ ∈ N such that for each k > k′ and j ∈ {1, ...,m} there is

g ∈ Fik such that g(xj) ∈ (−ε, ε).
Let ε = 1

2 and N′ = N\{k′}. Consider a sequence {Qk}k∈N′ = {Um1
ik
, ..., Ums

ik
:

k ∈ N′} for corresponding to {Fik} = {fm1
ik
, ..., fms

ik
: k ∈ N′}.

(a). Qk ⊂ Uik for k ∈ N′.
(b). {

⋃
Qk : k ∈ N′} is a γ-cover of X. We thus get X satisfies Ufin(ΓF ,Γ).

(2)⇒ (3). By Theorem 4.2.

(3)⇒ (4) is immediate.

(4) ⇒ (1). For each n ∈ N, let Sn be a sequentially dense subset of Cp(X)

and let {hn : n ∈ N} be sequentially dense in Cp(X). Take a sequence {fmn :

m ∈ N} ⊂ Sn such that fmn 7→ hn (m 7→ ∞). Then fmn − hn 7→ 0 (m 7→
∞). Hence, there exist Fn = {fm1

n , ..., f
mk(n)
n } ⊂ Sn such that {

⋃
{fm1
n −

hn, ..., f
mk(n)
n −hn} : n ∈ N} ∈ Γ0, i.e. for a base neighborhood 〈f,K, ε〉 of f = 0

where ε > 0 and K = {x1, ..., xm} is a finite subset of X, there is n′ ∈ N such

that for each n > n′ and ∀ j ∈ {1, ...,m} there is g ∈ {fm1
n −hn, ..., f

mk(n)
n −hn}

such that g(xj) ∈ (−ε, ε).
Let h ∈ Cp(X) and take a sequence {hnj

: j ∈ N} ⊂ {hn : n ∈ N} converging

to h. Let K = {x1, ..., xm} be a finite subset of X and ε > 0. Consider a base

neighborhood 〈h,K, ε〉 of h. Then there is j′ ∈ N such that hnj
∈ 〈h,K, ε2 〉

and ∀ s ∈ {1, ...,m} there is g ∈ {fm1
nj
− hnj

, ..., f
mk(nj)

nj − hnj
} such that

g(xs) ∈ (− ε
2 ,

ε
2 ) for j > j′. It follows that for each s ∈ {1, ...,m} there is

l(j) ∈ 1, k(nj) such that ((f
ml(j)
nj − hnj

) + (hnj
− h))(xs) ∈ (−ε, ε) for j > j′.

Hence Cp(X) satisfies Ffin(S,S). �

Theorem 4.6. For a separable metrizable space X, the following statements

are equivalent:
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(1) Cp(X) satisfies Ffin(S,S);

(2) X satisfies Ufin(O,Γ) [Hurewicz property];

(3) Cp(X) satisfies Ffin(Γ0,Γ0);

(4) Cp(X) satisfies Ffin(S,Γ0).

Recall that a space X is said to be Rothberger [27] (or, [17]) if for every

sequence (Un : n ∈ N) of open covers of X, there is a sequence (Vn : n ∈ N)

such that for each n, Vn ∈ Un, and {Vn : n ∈ N} is an open cover of X.

A space X is said to be Menger [9] (or, [30]) if for every sequence (Un :

n ∈ N) of open covers of X, there are finite subfamilies Vn ⊂ Un such that⋃
{Vn : n ∈ N} is a cover of X.

Every σ-compact space is Menger, and a Menger space is Lindelöf.

In [21], we gave the functional characterizations of Rothberger and Menger

properties.

Recall that if Cp(X) and Cp(Y ) are homeomorphic (linearly homeomorphic,

uniformly homeomorphic), we say that the spaces X and Y are t-equivalent (l-

equivalent, u-equivalent). The properties preserved by t-equivalence (l-equivalence,

u-equivalence) we call t-invariant (l-invariant, u-invariant) [2].

Question 1. Is the Hurewicz (Rothberger, Menger) property t-invariant?

l-invariant? u-invariant?
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4. L. Bukovský, J. Hales̆, QN -spaces, wQN -spaces and Covering Properties, Topology and

its Applications, 154, (2007), 848–858.
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14. Lj. D. R. Kočinac, Closure Properties of Function Spaces, Applied General Topology,

4(2), (2003), 255-261.
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38. B. Tsaban, The Hurewicz Covering Property and Slaloms in the Baire Space, Funda-

menta Mathematicae, 181, (2004), 273–280.

39. B. Tsaban, L. Zdomskyy, Hereditarily Hurewicz Spaces and Arhangel’skĭi Sheaf Amal-
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