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wise convergence. We study a functional characterization of the covering

property of Hurewicz.

Keywords: Uy;, (O, ), Hurewicz property, Selection principles, C), theory,
Upin(O,T).

2010 Mathematics subject classification: 54C35, 54C05, 54C65, 54A20.

1. INTRODUCTION

Many topological properties are defined or characterized in terms of the
following classical selection principles. Let A and B be sets consisting of families
of subsets of an infinite set X. Then:

S1(A, B) is the selection hypothesis: for each sequence (A, : n € N) of
elements of A there is a sequence {b, }nen such that for each n, b, € A,, and
{bn, : n € N} is an element of B.

Stin(A, B) is the selection hypothesis: for each sequence (A4, : n € N) of
elements of A there is a sequence { By, },en of finite sets such that for each n,
B, C A,, and U,y Bn € B.

Ufin(A, B) is the selection hypothesis: whenever U, Us,... € A and none
contains a finite subcover, there are finite sets F,, C U,, n € N, such that
{UFn:neN}eB.
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Many equivalences hold among these properties, and the surviving ones ap-
pear in the following Scheepers Diagram (Fig. 1) (where an arrow denotes
implication) [11].

U,,.n(0= N—m Uﬁn(o, Q) ——>» Sﬁ (0, 0)

/

Sﬁn (F, Q)

S,(nn)——> § (0> S (T, 0)
A A

S,, (2.9

Sl (97 rH—m Sl (Qs Q)—> Sl (O, 0)

Fig. 1. The Scheepers Diagram for Lindeldf space.

The papers [11, 15, 32, 35, 36, 37, 38] have initiated the simultaneous con-
sideration of these properties in the case where A and B are important families
of open covers of a topological space X.

In papers [1-8, 12-32] (and many others) were investigated the applications
of selection principles in the study of the properties of function spaces. In
particular, the properties of the space C,(X) were investigated.

In [9] (see also [10]), Hurewicz introduced a covering property of a space X,
nowadays called the Hurewicz property in this way: for each sequence (U, :
n € N) of open covers of X there is a sequence (V, : n € N) such that for each
n € N, V,, is a finite subset of U,, and each x € X belongs to UV,, for all but
finitely many n (i.e., X satisfies Uy, (O,T)).

In this paper we continue to study different selectors for sequences of dense
sets of C},(X) and we study a functional characterization of the covering prop-
erty of Hurewicz.

2. MAIN DEFINITIONS AND NOTATION

Throughout this paper, all spaces are assumed to be Tychonoff. The set of
positive integers is denoted by N. Let R be the real line and Q be the rational
numbers. For a space X, we denote by C,(X) the space of all real-valued
continuous functions on X with the topology of pointwise convergence.
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Basic open sets of C,(X) are of the form

1, ., 2, Ury s Ugl = {f € C(X) : f(z;) € Uy, i = 1,...,k}, where each
x; € X and each U; is a non-empty open subset of R. Sometimes we will write
the basic neighborhood of the point f as (f, A, €) where (f, A,e) := {g € C(X) :
|f(z) — g(z)] < e Vz € A}, A is a finite subset of X and € > 0.

The symbol 0 denote the constantly zero function in Cp(X). Because Cp,(X)
is homogeneous we can work with 0 to study local properties of C,(X).

If X is a space and A C X, then the sequential closure of A, denoted by
[A]seq, s the set of all limits of sequences from A. A set D C X is said to be
sequentially dense if X = [D]seq. A space X is called sequentially separable if
it has a countable sequentially dense set.

We recall that a subset of X that is the complete preimage of zero for a
certain function from C(X) is called a zero-set. A subset O C X is called a
cozero-set of X if X \ O is a zero-set.

In this paper, by a cover we mean a nontrivial one, that is, U/ is a cover of
Xt X=Uand X ¢ U.

An open cover U of a space X is:

e an w-cover if every finite subset of X is contained in a member of Y.

e a ~y-cover if it is infinite and each = € X belongs to all but finitely many
elements of U. Note that every y-cover contains a countably ~y-cover.

e a yp-shrinkable cover U if it is a y-cover U of X by co-zero sets and there
exists a y-cover {F(U) : U € U} of X by zero-sets with F(U) C U for some
Uecl.

For a topological space X we denote:

e O — the family of all open covers of X

o [' — the family of all countable open ~-covers of X;

e () — the family of all open w-covers of X;

e ' — the family of all yg-shrinkable covers of X.

For a topological space Cp,(X) we denote:

e D — the family of all dense subsets of C},(X);

e § — the family of all sequentially dense subsets of Cp(X).

In the case of Uy;y, note that for any class of covers B of Lindelof space X,
Urin (O, B) is equivalent to Uy;, (T, B) because given an open cover {U,, : n € N}
we may replace it by {U,_, U; : n € N}, which is a y-cover (unless it contains
a finite subcover) of X.

<n

Recall that the i-weight jw(X) of a space X is the smallest infinite cardinal
number 7 such that X can be mapped by a one-to-one continuous mapping
onto a Tychonoff space of the weight not greater than 7.

Theorem 2.1. (Noble [18]) A space Cp(X) is separable iff iw(X) = Ry.
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Let X be a topological space, and x € X. A subset A of X converges to x,
x =lim A, if A is infinite, x ¢ A, and for each neighborhood U of =, A\ U is
finite. Consider the following collection:

e, ={ACX:2e€ A\ A}

o', ={AC X :z=1limA}.

Note that if A € T, then there exists {a,} C A converging to x. So, simply
I';, may be the set of non-trivial convergent sequences to x.

We write TI(A,, B,) without specifying z, we mean (Va)II(A,, B.).

So we have three types of topological properties described through the se-
lection principles:

e local properties of the form S, (®,, ¥,);

e global properties of the form S,(®, ¥);

e semi-local properties of the form S,(®,¥,).

3. Usin(0,9Q)

For a function space C,(X), we represent the following selection principle

Ftin(S,D): whenever S, Sa,... € S there are finite sets F,, C S,,, n € N,
such that for each f € C,(X) and a base neighborhood (f, K,¢€) of f where
e>0and K = {1, ..., 2%} is a finite subset of X, there is n’ € N such that for
each j € {1,...,k} there is g € F,s such that g(z;) € (f(z;) — €, f(x;) +€).

It is clear that the condition of the selection principle F;,(S,D) can be
written more briefly: whenever S1, Ss,... € S there are finite sets F,, C Sy,
n € N, such that for each f € C,(X), € > 0 and K € [X]|<%, there is n’ € N
such that hrgifn/ﬂf(x) — h(z)|} < e for each x € K.

Similarly, F;n (Lo, Qo): whenever Sy, Sa, ... € I'g there are finite sets F,, C
Sn, n € N, such that for € > 0 and K € [X]<“, there is n’ € N such that
hm]i__n {|h(x)|} < € for each z € K.

cF

Theorem 3.1. For a space X, the following statements are equivalent:
(1) Cp(X) satisfies Frin(To,Q0);
(2) X satisfies Ugin(I'r, Q).

Proof. (1) = (2). Let {U;}ien C T'r and let U; = {U™} for each : € N. We
consider K; = {f™ € C(X) : fm | F(U™) = 0 and f™ | (X \ U™) = 1 for
m € N}.

Since F; = {F(U]™) : m € N} is a y-cover of X, we have that K; converges
to 0 for each ¢ € N. Since Cp(X) satisfies Fy;n(T'0,€0), there are finite sets
Fy={f™, .., f"""} C K; such that for a base neighborhood O(f) = (f, K, €)
of f = 0 where € > 0 and K = {x1,...,x%} is a finite subset of X, there is
n’ € N such that for each j € {1,...,k} there is g € F,,/ such that g(z;) €
(f(x;) — € f(x;) + €). Note that {J{U/™,....,U; "} :i e N} € Q.
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(2) = (1). Let X satisfies Uy;,(T'r, Q) and A; € T'g for each ¢ € N. Consider
Uy ={U;y = f1(=%,1): f € A;} for each i € N. Without loss of generality
we can assume that a set U; y # X for any ¢ € N and f € A;. Otherwise
there is sequence {f;, }xen such that {f;, }xen uniform converges to 0 and
{fik ke N} € Q.

Note that F; = {F;m}men = {f;, - z+1’ L+1] :m € N} is a y-cover of X
and F; , C U; p, for each ¢,m € N. It follows that U; € I'r for each i € N.

Since X satisfies Uyin (I'r, ©2), there is a sequence {U; (1), Ui m(2)s -+ Uim (i) -
i € N} such that for each ¢ and k € {m(1),...,m(i)}, U ) € Us, and

{U{Ui,m(l)a ey Ui,m(i)} NS N} e .

Let (0, K, €) be a base neighborhood of 0 where € > 0 and K = {z1,...,x} is
a finite subset of X, then there is ¢; € N such that - 1 < e and Um(“( 1 Ui, x D
K. Tt follows that for each j € {1, ..., s} thereis g € {f“ ;m(1)s -+ fir,m(ir) } such
that g(z;) € (—e,e€). O

Lemma 3.2. (Lemma 6.5 in [20]) Let U = {U,, : n € N} be a yp-shrinkable
co-zero cover of a space X. Then the set S = {f € C(X): f | (X\U,) =
for some n € N} is sequentially dense in Cp(X).

Theorem 3.3. For a space X with iw(X) = Ng, the following statements are
equivalent:

(1) Cp(X) satisfies Frin(S,D);

(2) X satisfies Ugin(Tr,Q);

(3) Cp(X) satisfies Frin(To,Q0);

(4) Cp(X) satisfies Frin(S, Qo).

Proof. (1) = (2). Let Uy = {U} : j € N} € T'p for each i € N. Then, by
Lemma 3.2, each S; = {f € C(X) : f | (X \U/) = 1 for some m € N} is
sequentially dense in Cp,(X). Since Cp(X) satisfies F'y;,, (S, D), there are finite
sets Fy = {f™, .., f; "™} C &; such that for each f € C,(X) and a base
neighborhood (f, K, €) of f where e > 0 and K = {1, ..., 2%} is a finite subset
of X, there is n’ € N such that for each j € {1,...,k} there is g € F,» such that
g(z;) € (f(zj) — € f(x;) + €). Note that {J{U™,....U; """} :i e N} € Q.

(2) = (3). By Theorem 3.1.

(3) = (4) is immediate.

(4) = (1). Suppose that C,(X) satisfies F, (S, Qo).

Let D = {d,, : n € N} be a dense subspace of Cp,(X) and S; € S for each
i € N. Given a sequence of sequentially dense subspace of C},(X), enumerate
it as {Sy,m : n,m € N}. For each n € N, pick

Fam = {dnm1s s dpmi(n,m)} C Snm s0 that for a base neighborhood
(dn, K,€) of d, where € > 0 and K = {x1,...,21} is a finite subset of X,
there is m’ € N such that for each j € {1,...,k} there is g € F,, ;s such that
g(x;) € (dn(z;) —€,dn(z;) +€). It follows that Cp(X) satisfies Fy;,, (S, D). O
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Theorem 3.4. For a space X the following statements are equivalent:
(1) X is Lindelof and X satisfies Upin(T'p,2);
(2) X satisfies Upin(O, Q).

Proof. Tt is proved similarly to the proof of Theorem 4.1. |

Theorem 3.5. For a separable metrizable space X, the following statements
are equivalent:
(1) Cp(X) satisfies Frin(S,D);
(2) X satisfies Upin(O,Q);
(3) Cp(X) satisfies Fyin(To,Q0);
(4) Cp(X) satisfies Frin(S,Q0).

4. Uy (O,T) - HUREWICZ PROPERTY

Theorem 4.1. For a space X the following statements are equivalent:
(1) X satisfies Ugin(T'p,T') and is Lindelof;
(2) X has the Hurewicz property.

Proof. (1) = (2). Let (U, : n € N) be a sequence of open covers of X. For
every n, U € U, and x € X we find co-zero sets Wy ,, v, and W, v o, and,
a zero-set W1 , v, such that £ € Wy 0 C Wipn vz C Wanue CU. Since
X is Lindeldf, there is a sequence (z}! : k € N) such that X is covered be
{Wonuvay + k € N}, Look at the cover W, of X consisting of sets W' =
Ui<k Wan,uan, k € N. Note that W, € I'r because |J; <, Wi n,var is a zero-
set contained in W}, and {{J, -, Winuan + k € N} is a y-cover of X because
even {{J; <, Wo.n,uar : k € N} is a y-cover of X.

Now use the property Ui (T'p,T) to the sequence (W, : n € N) together
with the fact that W,, is a finer cover that U, for all n. O

For a function space Cj,(X), we represent the following selection principle
Frin(S,S): whenever S, Sa,... € S there are finite sets F,, C S,, n € N,
such that for each f € C,(X) there is {F,, : k € N} such that for a base
neighborhood (f, K, €) of f where ¢ > 0 and K = {1, ...,z } is a finite subset
of X, there is ¥’ € N such that for each k > k¥’ and V j € {1,...,m} there is
g € Fn, such that g(z;) € (f(z;) — € f(z;) +€).

It is clear that the condition of the selection principle Fp;,(S,S) can be
written more briefly: whenever S1, Ss,... € S there are finite sets F,, C S,
n € N, such that for each f € Cp(X), € > 0 and K € [X]|<“, there isn’ € N
such that for every n > n’ ’{Ielgl {|f(z) = h(z)|} < € for each z € K.

Similarly, Fyi,(To,To): whenever Sq, S, ... € 'y, there are finite sets F,, C
S, n € N, such that for € > 0 and K € [X]|<%, there is n’ € N such that for
every n > n’ hml}r_l{\h(x)|} < e foreach z € K.

€F,

Theorem 4.2. For a space X, the following statements are equivalent:
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(1) Cp(X) satisfies Frin(To,To);
(2) X satisfies Ugin(T'r,T).

Proof. (1) = (2). Let {Ui}ien C T'p, Uy = {U"}men for each i € N. We
consider a subset S; of C,(X) where
Si={freC(X): fMIFUM™ =0and f™ | (X\U™) =1 for m € N}.
Since F; = {F(U™) : m € N} is a y-cover of X, we have that S; converges
to 0, i.e. §; € Ty for each 7 € N.

Since C(X) satisfies F;,, (o, o), there is a sequence {F; }ien = {f]"*, ..., f;n’“(” .

i € N} such that for each ¢, F; C S;, and for a base neighborhood (0, K, €) of
0 where € > 0 and K = {1, ..., 21} is a finite subset of X, there is n’ € N such
that for each n > n’ and j € {1, ..., k} there is g € F,, such that g(z;) € (—¢,€).

Consider the sequence {W; }ien = {U™, ..., U i € N}.

(a). W; C U; for each i € N.

(b). {UW; :i € N} is a y-cover of X.

Let K = {x1,...,xs} be a finite subset of X and (0, K, %) be a base neigh-
borhood of 0, then there exists ¢y € N such that for each ¢ > iy and

j € {1,..., s} there is g € F; such that g(z;) € (—3, 3).

k(i
It follows that K C L(J) U™ for i > ip. We thus get that X satisfies
j=1
Upin(Tp,T).

(2) = (1). Fix {S; :i € N} C 'y where S; = {f} : k € N} for each i € N.

For each i,k € N, we put Ujp = {z € X : |fi(z)] < 1}, Zjp = {z € X :
[fi(@)] < 7}

Each U, (resp., Z; 1) is a cozero-set (resp., zero-set) in X with Z; , C U, k.
Let U; = {U;r : k € N} and let Z; = {Z; : k € N}. So without loss of
generality, we may assume U;, # X for each ¢,k € N. We can easily check
that the condition fi — 0 (k — o0o) implies that Z; is a y-cover of X.

Since X satisfies Uy, (I'r, ') there is a sequence {F; }ien = (Ui kyy - Uik,
i € N) such that for each i, F; C U;, and {{JF; : 7« € N} is an element of T'.

Let K = {z1,...,x5} be a finite subset of X, ¢ > 0, and (0, K,¢) be a
base neighborhood of 0, then there exists i’ € N such that for every i > 4’
K c |JF:. Tt follow that for every ¢ >4’ and j € {1, ..., s} there is g € S; such
that g(x;) € (—¢,¢€). So Cp(X) satisfies Fyin(T'o,T0). O

Theorem 4.3. For a Lindelof space X, the following statements are equivalent:
(1) Cp(X) satisfies Frin(To,To);
(2) X has the Hurewicz property.

A space X has Velichko property (X | V), if there exists a condensation
(one-to-one continuous mapping) f : X — Y from the space X on a separable
metric space Y, such that f(U) is an F,-set of Y for any cozero-set U of X.
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Theorem 4.4. (Velichko [40]). Let X be a space. A space Cp(X) is sequen-
tially separable iff X = V.

Theorem 4.5. For a space X with X = V, the following statements are
equivalent:

(1) Cp(X) satisfies Frin(S,S);

(2) X satisfies Ugin(T'p,T');

(3) Cp(X) satisfies Fyin(To,To);

(4) Cp(X) satisfies Frin(S,To).

Proof. (1) = (2). Let U; = {U : j € N} € T'p for each i € N. Then, by
Lemma 3.2, each S; = {f € C(X) : f | (X \U/) = 1 for some m € N} is
sequentially dense in Cp,(X).

Since C(X) satisfies Uy, (S, S), there is a sequence {F;} = {f™, ..., f{" :
i € N} such that for f = O there is {F;, : k € N} such that for a base
neighborhood (f, K, €) of f where e > 0 and K = {1, ..., 2} is a finite subset
of X, there is ¥’ € N such that for each £ > k¥’ and j € {1,...,m} there is
g € Fj;, such that g(z;) € (—¢,¢).

Let e = 2 and N’ = N\ {k’}. Consider asequence {Qr}ren = {U"
k € N'} for corresponding to {Fj, } = {fi"*, ..., fi"* : k € N'}.

(a). Qr CU;, for k e N.
(b). {UQk : k: € N’} is a y-cover of X. We thus get X satisfies Ui (I'g, T).
(2) = (3). By Theorem 4.2.
(3) =

) =

ms
U

ik 7..7

3 (4) is immediate.

(4 (1). For each n € N, let S,, be a sequentially dense subset of Cp,(X)
and let {h,, : n € N} be sequentially dense in Cp,(X). Take a sequence {f}" :
m € N} C S, such that f — h, (m +— o0). Then f™ — h, — 0 (m —
00). Hence, there exist F,, = {f™, .., fn "™} C S, such that {J{f™ —
By ooy fir " —hy} i m € N} € T, ie. for a base neighborhood (f, K, €) of f =0
where € > 0 and K = {1, ...,2,, } is a finite subset of X, there is n’ € N such
that for each n > n/ and V j € {1,...,m} thereis g € {f7 —hp, oo frr " —hy}
such that g(z;) € (—¢,€).

Let h € Cp(X) and take a sequence {hy,; : j € N} C {h, : n € N} converging
to h. Let K = {x1,...,z,} be a finite subset of X and € > 0. Consider a base
neighborhood (h, K,€) of h. Then there is j* € N such that h,, € (h, K, §)
and V s € {1 m} there is g € {fi"" — hyy, .. ,fnjk(n) hn,} such that
g(zs) € (—5,5) for j > j'. It follows that for each s € {1,...,m} there is
1(j) € 1,k(ny) such that ((fn,"? —hn;) 4 (hn; — h))(xs) € (—¢,¢€) for j > 5.
Hence C,(X) satisfies Ffm(S,S). O

Theorem 4.6. For a separable metrizable space X, the following statements
are equivalent:
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1) Cp(X) satisfies Fyin(S,S);

2) X satisfies Uy (O,T') [Hurewicz property);
3) ) satisfies Frin(To,To);

)

(
(
( (X

(4 (X) satisfies Fyin(S,To).

Cp
Cp

Recall that a space X is said to be Rothberger [27] (or, [17]) if for every
sequence (U, : n € N) of open covers of X, there is a sequence (V,, : n € N)
such that for each n, V,, € U,,, and {V,, : n € N} is an open cover of X.

A space X is said to be Menger [9] (or, [30]) if for every sequence (U, :
n € N) of open covers of X, there are finite subfamilies V,, C U,, such that
U{V» : n € N} is a cover of X.

Every o-compact space is Menger, and a Menger space is Lindeldf.

In [21], we gave the functional characterizations of Rothberger and Menger
properties.

Recall that if Cp,(X) and C,,(Y") are homeomorphic (linearly homeomorphic,
uniformly homeomorphic), we say that the spaces X and Y are ¢-equivalent (I-

equivalent, u-equivalent). The properties preserved by t-equivalence (l-equivalence,

u-equivalence) we call t-invariant (I-invariant, u-invariant) [2].

Question 1. Is the Hurewicz (Rothberger, Menger) property t-invariant?
l-invariant? wu-invariant?
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