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Abstract. This manuscript presents Hyers–Ulam stability and Hyers–

Ulam–Rassias stability results of non–linear Volterra integro–delay dy-

namic system on time scales with fractional integrable impulses. Picard

fixed point theorem is used for obtaining existence and uniqueness of so-

lutions. By means of abstract Grönwall lemma, Grönwall’s inequality on

time scales, we establish Hyers–Ulam stability and Hyers–Ulam–Rassias

stability results. There are some primary lemmas, inequalities and rele-

vant assumptions that helps in our stability results.
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1. Introduction

In 1940, in a talk in front of the mathematics club at the university of

Wisconsin, Ulam [24, 25] presented a famed question related to the stability of
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homomorphisms: “With which requirements does an additive mapping near an

approximate additive mapping exists?”.

This question was answered by Hyers [11] for the case when G1 and G2 are

assumed to be Banach spaces by using direct method. Since then, this inter-

esting stability, initiated by Ulam and Hyers, is called Hyers–Ulam stability. In

1978, Rassias [21] extended Hyers–Ulam stability concept by introducing new

function variables, so this kind of stability is known as the Hyers–Ulam–Rassias

stability. In fact, the most interesting result was of Rassias [21] that weakens the

condition for the bound of the norm of Cauchy difference f(x+y)−f(x)−f(y).

For further details and discussions, we recommend the book by Jung [13].

At the end of 19th century, a large number of researchers contributed to the

stability idea of Ulam’s type for various types of differential equations. There

are many advantages of Ulam’s type stability in tackling problems related to

optimization techniques, numerical analysis, control theory and many more,

in such situations to get an exact solution is challenging. For more details on

Hyers–Ulam stability, see [12, 14, 18, 19, 23, 29, 31, 32, 34, 35, 37, 38].

There are several implications for simple differential equations. Anyhow,

the circumstances rather change when a real world process undergoes with un-

expected variations, like significant mechanical processes, blood flows, heart

beats, changes in population, radio physics, pharmacokinetics, mathematical

economy, chemical technology, electrical technology, chemistry, different engi-

neering fields, control theory and so on, see [4, 5, 17]. Such circumstances

generate a differential equation, which is known as impulsive differential equa-

tion. More precisely, there are three parts of differential equations with impulse

impact: an instantaneous impulsive differential equation, in which the impulse

action is defined at certain discrete points; non–instantaneous impulsive differ-

ential equation, it establishes the effect of impulse on an interval; and the third

one is an impulse rule, in which we define a distinct and well defined collection

of impulse events having an active impulse equation.

Fractional differential and integral equations play a key role not only in

mathematics but also in the modeling of various physical phenomena in physics,

control systems and dynamical systems. In fact, fractional order derivatives

and integrals are assumed to be more realistic and practical than derivatives

and integrals of integral order. These are excellent tools to model genetic

transformation and memory retention qualities of several systems and products.

It is to be noted that, the pioneers of the Ulam’s type stability for impulsive

ordinary differentiable equations are Wang et al. [26]. Following their own

work, in 2014, they proved the Hyers–Ulam–Rassias stability and generalized

Hyers–Ulam–Rassias stability of impulsive evolution equations on a compact

interval [27] which then they extended for infinite impulses in the same pa-

per. Wang and Zhang [28], initially studied nonlinear differential equations
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having fractional integrable impulses, which are more interesting. They pre-

sented four Bielecki–Ulam’s type stabilities for this class of differential equa-

tions. Also Lin et al. [15] discussed the existence and stability results for

impulsive integro-differential equations. The work of Wang et al. [28] was

extended by Zada et al. [32] in which they discussed Hyers–Ulam stability

of higher-order nonlinear differential equations with fractional integrable im-

pulses. They established Bielecki–Ulam–Hyers–Rassias stability, generalized

Bielecki–Ulam–Hyers–Rassias stability and Bielecki–Ulam–Hyers stability for

this class of differential equations on a compact interval. Recently, Zada et

al. [36] obtained very interesting results about the Hyers–Ulam stability of

nonlinear impulsive Volterra integro–delay dynamic system on time scales.

However, despite the situations where only impulsive factor is involved or

delay effects happened, we have a wide variety of evolutionary processes with

both delay and impulsive effects. To model such phenomena which are subject

to impulsive perturbations as the time delays, an impulsive delay differential

equation is used.

The theory of dynamic equations on time scales has been rising fast and has

acknowledged a lot of interest in recent years. This theory was introduced by

Hilger [10] in 1988, with the inspiration to provide a unification of continuous

and discrete calculus. For more details on time scales, see [1, 2, 3, 6, 7, 8, 9,

16, 20, 23, 30, 33, 35].

As far as we know, not too many results of stability of delay dynamic equa-

tions with impulses are analysed by researchers. Although, to the extent of

our knowledge, the stability observations of Ulam’s type of nonlinear Volterra

integro–delay dynamic system having integral impulsions of fractional order

are not yet investigated.

Motivated by the work done in [36], the utmost purpose of this manuscript is

to find different Hyers–Ulam and Hyers–Ulam–Rassias outcomes of stability for

the following nonlinear Volterra integro–delay dynamic system with integrable

impulses having fractional order

ω∆(t) = M(t)ω(t) +

∫ t

t0

K(t, s, ω(s), ω(h(s)))∆s,

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

ω(t) = Iαti,tgi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

ω(t) = α(t), t ∈ [s0 − λ, s0] ∩ TS ,
ω(t0) = α(t0) = ω0,

(1.1)

where λ > 0, TS is a time scale, M(t) is a piecewise continuous regressive square

matrix, ti, si ∈ TS are right–dense points with 0 = t0 = s0 < t1 ≤ s1 ≤ t2 <

. . . tm ≤ sm ≤ tm+1 = tf , K(t, s, ω(s), ω(h(s))) is piecewise continuous operator

on Γ = {(t, s, ω) : t0 ≤ s ≤ t ≤ tf , ω ∈ Rn}, gi : (ti, si] ∩ TS × Rn × Rn →
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Rn, i = 1, 2, . . . ,m are continuous functions, φ : [s0 − λ, s0] ∩ TS → Rn is

history function and Iαti,tgi are the so called Riemann–Liouville integrals having

fractional order α ∈ (0, 1), with the representation:

Iαti,tgi(t, ω(t), ω(h(t))) =
1

Γ(α)

∫ t

ti

(t− s)α−1gi(s, ω(s), ω(h(s)))∆s.

Moreover, (si, ti+1]∩ TS , (ti, si]∩ TS , [s0 − λ, s0]∩ TS are non-empty sets and

h : [s0 − λ, tf ] ∩ TS → (si, ti+1] ∩ TS is a delay function with the consumption

of continuity, additionally h(t) ≤ t.

2. Preliminaries

In this section, we recall the main definitions and some basic notations of

time scales calculus.

An arbitrary non–empty closed subset of real numbers TS is called a time

scale. The forward jump operator Θ : TS → TS , backward jump operator

ρ : TS → TS and graininess operator µ : TS → [0,∞), are defined by:

Θ(s) = inf{t ∈ TS : t > s}, ρ(s) = sup{t ∈ TS : t < s}, µ(s) = Θ(s)− s,

respectively. An arbitrary t ∈ TS is called left scattered (resp. left dense) when

t < ρ(t) (resp. t = ρ(t)). While, in case of t < Θ(t) (resp. Θ(t) = t), we call t

right scattered (resp. right dense). For a time scale TS , the set of all limiting

points TS
z is called the derived set and illustrated as follows:

TS
z =

{
TS\(ρ(supTS), supTS ], if supTS <∞,
TS , if supTS =∞.

The functionW : TS → R is called right–dense continuous if it is continuous at

every right dense point on TS and its left sided limit exists at every left dense

point on TS . The function W : TS → R is called regressive (resp. positively

regressive) if 1 + µ(t)W(t) 6= 0, ( resp. 1 + µ(t)W(t) > 0) ∀ t ∈ TSz. The set

of all right–dense continuous regressive functions (resp. right–dense continuous

positively regressive functions) will be denoted by RG(TS) (resp. RG(TS)+).

The delta derivative of the function W : TS → R on t ∈ T zS , is given by

W∆(t) = lim
s→t, s 6=Θ(t)

W (Θ(t))−W (s)

Θ(t)− s
.

For a rd–continuous function W : TS → R, the ∆−integral is defined to be∫ b

a

W (t)∆t = w(b)− w(a), for all a, b ∈ TS ,

where w is the anti–derivative of W , i.e., w∆ = W on TS
z.

For p ∈ RG(TS), the generalized exponential function is defined by

ep(a, b) = exp

(∫ b

a

αµ(s)p(s)∆s

)
for all a, b ∈ TS ,
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while,

αµ(t)p(t) =


Log(1 + µ(t)p(t))

µ(t)
, if µ(t) 6= 0,

p(t), if µ(t) = 0,

is the cylindrical transformation.

The fundamental matrix ΨM (t, t0) is the unique solution of the dynamic

equation ω∆(t) = M(t)ω(t), ω(t0) = ω0, t ∈ TS0.

3. Basic concepts and remarks

Let C(J,Rn) (resp. PC(J,Rn)) be the Banach space of all continuous func-

tions (resp. the Banach space of piecewise continuous functions) with the

norm ||ω||∞ = supt∈J ||ω(t)||, J = [s0 − λ, tf ] ∩ TS and R represents the

set of real numbers. Finally, we denote by PC1(J,Rn) = {ω ∈ PC(J,Rn) :

ω∆ ∈ PC(J,Rn)}, the Banach space with norm ‖ω‖1 = max{‖ω‖∞, ‖ω∆‖∞}.
Here, as usual we denote by ‖x‖ =

∑n
i=1 |xi| for x = (x1, . . . , xn) ∈ Rn. Con-

sider the following inequalities,
∣∣∣∣φ∆(t)−M(t)φ(t)−

∫ t

t0

K(t, s, φ(s), φ(h(s)))∆s
∣∣∣∣ ≤ ε,

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,∣∣∣∣φ(t)− Iαti,tgi(t, φ(t), φ(h(t)))
∣∣∣∣ ≤ ε, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

(3.1)


∣∣∣∣φ∆(t)−M(t)φ(t)−

∫ t

t0

K(t, s, φ(s), φ(h(s)))∆s
∣∣∣∣ ≤ ϕ(t),

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,∣∣∣∣φ(t)− Iαti,tgi(t, φ(t), φ(h(t)))
∣∣∣∣ ≤ κ, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

(3.2)

where ε > 0, κ ≥ 0 and ϕ ∈ PC(J,R+) is an increasing function.

Definition 3.1. Eq. (1.1) is said to be stable in the sense of Hyers–Ulam, if for

every ε > 0 there exists a positive numberK such that for every φ ∈ PC1(J,Rn)

satisfying (3.1), there exists a solution φ0 ∈ PC1(J,Rn) of (1.1) such that

‖φ0(t) − φ(t)‖ ≤ Kε for all t ∈ J . Here K is a positive number that depends

on ε and do not depend on fi.

Definition 3.2. Eq. (1.1) is said to be stable in the sense of Hyers–Ulam–

Rassias, provided for all (ϕ, κ) ∈ PC(J,R+)×R+ there exists M > 0 such that

for all φ ∈ PC1(J,Rn) satisfying (3.2), there exists a solution φ0 ∈ PC1(J,Rn)

of (1.1) such that the inequality ‖φ0(t) − φ(t)‖ ≤ Mϕ(t) is true for all t ∈ J .

Here M > 0 depends on (ϕ, κ).

Definition 3.3. In a metric space (X; d), a mapping Λ : X → X is said to

be Picard operator if it has precisely a unique fixed point x∗ ∈ X, so that for

every x ∈ X, the sequence {Λ(n)(x)}n∈N converges to x∗.
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Lemma 3.4. [16] Suppose τ ∈ T+
S , y, b ∈ RG(TS

+), p ∈ RG(TS
+)+ and

c, bk ∈ R+, k = 1, 2, . . . , so

y(t) ≤ c+

∫ t

τ

p(s)y(s)∆s+
∑

τ<tk<t

bky(tk),

implies

y(t) ≤ c
∏

τ<tk<t

(1 + bk)ep(t, τ), t ≥ τ.

Lemma 3.5. (Abstract Grönwall Lemma [22]): Let (X, d,≤) be an ordered

metric space and let x∗ be a fixed point for the increasing mapping Λ : X → X.

So, being arbitrary x ∈ X, x ≤ Λ(x) entails x ≤ x∗ and x ≥ Λ(x) entails

x ≥ x∗, where x∗ denotes the fixed point in Λ.

Remark 3.6. A function φ ∈ PC1(J,Rn) satisfies inequality (3.1) (resp. in-

equality (3.2)) if and only if there exist a function f ∈ PC1(J,Rn) and a finite

sequence {fk : k = 1, . . . ,m} ⊂ Rn (dependent on φ) such that ‖f(t)‖ ≤ ε for

all t ∈ J and ‖fi‖ ≤ ε (resp. ‖fi‖ ≤ κ) for every i = 1, 2, . . . ,m and
φ∆(t) = M(t)φ(t) +

∫ t

t0

K(t, s, φ(s), φ(h(s)))∆s+ f(t),

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

φ(t) = Iαti,tgi(t, φ(t), φ(h(t))) + fi, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.

Lemma 3.7. If φ ∈ PC1(J,Rn) satisfies inequality (3.1) (resp. inequality

(3.2)), then the following inequalities

∣∣∣∣∣∣∣∣φ(t)− φ0 −ΨM (t, t0)φ0 −
∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, φ(u), φ(h(u)))∆u∆s

− Iαti,tgi(t, φ(t), φ(h(t)))

∣∣∣∣∣∣∣∣ ≤ (Ctf − Csi +m)ε,

t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m,∣∣∣∣∣∣∣∣φ(t)− Iαti,tgi(t, φ(t), φ(h(t)))

∣∣∣∣∣∣∣∣ ≤ mε, (resp. mκ),

t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

are true. Here C is the bound of fundamental matrix ΨM (t,Θ(s)).

Proof. If φ ∈ PC1(J,Rn) satisfies (3.1), then by Remark 3.6, we have
φ∆(t) = M(t)φ(t) +

∫ t

t0

K(t, s, φ(s), φ(h(s)))∆s+ f(t),

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

φ(t) = Iαti,tgi(t, φ(t), φ(h(t))) + fi, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.

(3.3)
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Clearly the solution of (3.3) is given as

φ(t) =


φ0 + ΨM (t, t0)φ0 +

∫ t

si

ΨM (t,Θ(s))

(∫ s

s0

K(s, u, φ(u), φ(h(u)))∆u+ f(s)

)
∆s

+ Iαti,tgi(t, φ(t), φ(h(t))), t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m,

Iαti,tgi(t, φ(t), φ(h(t))) + fi, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.

For t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, we get∣∣∣∣∣∣∣∣φ(t)− φ0 −ΨM (t, t0)φ0 −
∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, φ(u), φ(h(u)))∆u∆s

−Iαti,tgi(t, φ(t), φ(h(t)))

∣∣∣∣∣∣∣∣
≤

∫ t

si

||ΨM (t,Θ(s))||‖f(s)‖ds+

m∑
i=1

‖fi‖

≤ (Ct− Csi +m)ε

≤ (Ctf − Csi +m)ε.

Proceeding as above we derive∣∣∣∣∣∣∣∣φ(t)− Iαti,tgi(t, φ(t), φ(h(t)))

∣∣∣∣∣∣∣∣ ≤ mε, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.

We have similar processions for (3.2). �

4. Main Results

Onward we will state our major results. The first solution to be establish is

Hyers–Ulam stablity. First we assume the following conditions:

(A1) The function K is piecewise continuous with the Lipschitz condition

||K(t, s, x1, x2)−K(t, s, y1, y2)|| ≤
∑2
k=1 L||xk−yk||, L > 0, for all t ∈ (si, ti+1]∩

TS , i = 0, 1, . . . ,m and xk, yk ∈ Rn, k ∈ {1, 2};

(A2) gi : (ti, si] ∩ TS × Rn × Rn → Rn satisfies the Lipschitz condition

||gi(t, u1, u2)− gi(t, v1, v2)|| ≤
∑2
k=1 Lgi ||uk − vk||, Lgi > 0, for all t ∈ (ti, si] ∩

TS , i = 1, 2, . . . ,m and u1, u2, v1, v2 ∈ Rn ;

(A3)

(
2Lgi

Γ(α)

∫ si
ti

(si − s)α−1∆s+ 2CL
∫ t
si

∫ s
s0

∆u∆s

)
< 1, i = 1, 2, . . . ,m;

(A4) ϕ ∈ PC(J,R+) is increasing so that for some ρ > 0,∫ t

t0

ϕ(r)∆r ≤ ρϕ(t).

Theorem 4.1. If conditions (A1)− (A3) hold, then Eq. (1.1) has precisely a

unique solution in PC1(J,Rn).
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Proof. i) Determine an operator Λ : PC(J,Rn)→ PC(J,Rn) as

(Λω)(t) =



α(t), t ∈ [s0 − λ, s0] ∩ TS ,
Iαti,sigi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m, α ∈ (0, 1),

α(t0) + ΨM (t, t0)ω0 + Iαti,sigi(si, ω(si), ω(h(si)))

+

∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, ω(u), ω(h(u)))∆u∆s,

t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, α ∈ (0, 1).

(4.1)

For any ω1, ω2 ∈ PC(J,Rn), t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, we have∣∣∣∣(Λω1)(t)− (Λω2)(t)
∣∣∣∣ ≤ ∣∣∣∣Iαti,sigi(si, ω1(si), ω1(h(si)))− Iαti,sigi(si, ω2(si), ω2(h(si)))

∣∣∣∣
+

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣∣∣∣∣K(s, u, ω1(u), ω1(h(u)))

−K(s, u, ω2(u), ω2(h(u)))

∣∣∣∣∣∣∣∣∆u∆s

≤ 1

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣gi(s, ω1(s), ω1(h(s)))

−gi(s, ω2(s), ω2(h(s)))
∣∣∣∣∆s

+L

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣ω1(u)− ω2(u)
∣∣∣∣∆u∆s

+L

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣ω1(h(u))− ω2(h(u))
∣∣∣∣∆u∆s

≤ Lgi
Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣ω1(s)− ω2(s)

∣∣∣∣∆s
+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣ω1(h(s))− ω2(h(s))

∣∣∣∣∆s
+2CL

∫ t

si

∫ s

s0

sup
si≤s≤ti+1

∣∣∣∣ω1(u)− ω2(u)
∣∣∣∣∆u∆s

≤ 2Lgi
Γ(α)

∫ si

ti

(si − s)α−1 sup
ti≤s≤si

∣∣∣∣ω1(s)− ω2(s)
∣∣∣∣∆s+

2CL

∫ t

si

∫ s

s0

sup
si≤s≤ti+1

∣∣∣∣ω1(s)− ω2(s)
∣∣∣∣∆u∆s

≤
(

2Lgi
Γ(α)

∫ si

ti

(si − s)α−1∆s+ 2CL

∫ t

si

∫ s

s0

∆u∆s

)
‖ω1 − ω2‖∞.

According to (c), we are dealing here with the strictly contractive operator

on (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, and hence a Picard operator on PC(J,Rn).

Regarding to (4.1), it shows that the unique solution of Eq. (1.1) in PC1(J,Rn)
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is in fact the unique fixed point of this operator.

�

Theorem 4.2. If conditions (A1)− (A3) hold, then Eq. (1.1) has Hyers–

Ulam stability on J .

Proof. Assume that (3.1) has a solution φ ∈ PC1(J,Rn). Then for dynamic

equation

ω∆(t) = M(t)ω(t) +

∫ t

t0

K(t, s, ω(s), ω(h(s)))∆s, t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

ω(t) = Iαti,tgi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

ω(t) = φ(t), t ∈ [s0 − λ, s0] ∩ TS ,
ω(t0) = φ(t0) = ω0,

we have the unique solution

ω(t) =



φ(t), t ∈ [s0 − λ, s0] ∩ TS ,
Iαti,sigi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m, α ∈ (0, 1),

φ(t0) + ΨM (t, t0)ω0 + Iαti,sigi(si, ω(si), ω(h(si)))

+

∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, ω(u), ω(h(u)))∆u∆s,

t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m.

We observe that for all t ∈ (si, ti+1]∩TS , i = 1, 2, . . . ,m, using Lemma 3.7, we

have∣∣∣∣φ(t)− ω(t)
∣∣∣∣ ≤ ∣∣∣∣φ(t)− φ0 −ΨM (t, t0)φ0 −

∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, φ(u), φ(h(u)))∆u∆s

−Iαti,tgi(t, φ(t), φ(h(t)))
∣∣∣∣+

∣∣∣∣Iαti,sigi(si, φ(si), φ(h(si)))

−Iαti,sigi(si, ω(si), ω(h(si)))
∣∣∣∣

+

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣K(s, u, φ(u), φ(h(u)))

−
∫ s

s0

K(s, u, ω(u), ω(h(u)))
∣∣∣∣∆u∆s

≤ (m+ Ctf − Csi)ε+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣φ(s)− ω(s)

∣∣∣∣∆s
+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣φ(h(s))− ω(h(s))

∣∣∣∣∆s
+CL

∫ t

si

∫ s

s0

∣∣∣∣φ(u)− ω(u)
∣∣∣∣∆u∆s

+CL

∫ t

si

∫ s

s0

∣∣∣∣φ(h(u))− ω(h(u))
∣∣∣∣∆u∆s.
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Next, we show that the operator T : PC(J,R+) → PC(J,R+) given below is

an increasing Picard operator:

(Tg)(t) = (m+ Ctf − Csi)ε+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g(s)∆s

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g(h(s))∆s+ CL

∫ t

si

∫ s

s0

g(u)∆u∆s

+CL

∫ t

si

∫ s

s0

g(h(u))∆u∆s.

For any g1, g2 ∈ PC(J,R+), t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, we have

∣∣∣∣(Tg1)(t)− (Tg2)(t)
∣∣∣∣ ≤ Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣g1(s)− g2(s)

∣∣∣∣∆s
+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣g1(h(s))− g2(h(s))

∣∣∣∣∆s
+CL

∫ t

si

∫ s

s0

∣∣∣∣g1(u)− g2(u)
∣∣∣∣∆u∆s

+CL

∫ t

si

∫ s

s0

∣∣∣∣g1(h(u))− g2(h(u))
∣∣∣∣∆u∆s

≤ 2Lgi
Γ(α)

∫ si

ti

(si − s)α−1 sup
ti≤s≤si

∣∣∣∣g1(s)− g2(s)
∣∣∣∣∆s

+2CL

∫ t

si

∫ s

s0

sup
si≤s≤ti+1

∣∣∣∣g1(s)− g2(s)
∣∣∣∣∆u∆s

≤
(

2Lgi
Γ(α)

∫ si

ti

(si − s)α−1∆s+ 2CL

∫ t

si

∫ s

s0

∆u∆s

)
‖g1 − g2‖∞

≤
(

2Lgi
Γ(α)

∫ si

ti

(si − s)α−1∆s+ 2CL

∫ t

si

∫ s

s0

∆u∆s

)
‖g1 − g2‖∞.

Again according to (c), we are dealing here with the strictly contractive opera-

tor on (si, ti+1]∩TS , i = 1, 2, . . . ,m and hence a Picard operator on PC(J,R+).

Banach fixed point theorem imply, T is Picard operator having unique fixed

point g∗ ∈ PC(J,R+) i.e.,

g∗(t) = (m+ Ctf − Csi)ε+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g∗(s)∆s

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g∗(h(s))∆s+ CL

∫ t

si

∫ s

s0

g∗(u)∆u∆s

+CL

∫ t

si

∫ s

s0

g∗(h(u))∆u∆s.
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As, g∗ is increasing, therefore g∗(h(t)) ≤ g∗(t), (m+ Ctf − Csi) ≤ δ for some

δ > 0 and for i = 1, 2, . . . ,m, we can write

g∗(t) ≤ δε+
2Lgi
mΓ(α)

∫ si

ti

(si − s)α−1g∗(s)∆s+ 2CL

∫ t

s0

∫ s

s0

g∗(u)∆u∆s.

Using Lemma 3.4, we have

g∗(t) ≤ δε
∏

si<s<t

(
1 +

2Lgi
mΓ(α)

∫ si

ti

(si − s)α−1∆s

)
eq(t, si).

where q = 2CL
∫ s
s0

∆u. If we determine g =
∣∣∣∣φ − ω∣∣∣∣, then g(t) ≤ (Tg)(t),

which follows by utilizing abstract Grönwall lemma that g(t) ≤ g∗, hence∣∣∣∣φ(t)− ω(t)
∣∣∣∣ ≤ δε ∏

si<s<t

(
1 +

2Lgi
mΓ(α)

∫ si

ti

(si − s)α−1∆s

)
eq(t, si).

�

Similarly we can establish the Hyers–Ulam–Rassias stability of (1.1) on J .

Its proof will be omitted.

Theorem 4.3. If conditions (A1)− (A4) hold, then Eq. (1.1) has Hyers–

Ulam–Rassias stability on J .

5. Conclusion

This manuscript is about the establishment of Hyers–Ulam stability and

Hyers–Ulam–Rassias stability of equation (1.1) with the utilization of fixed

point approach. Also, the unique solution to (1.1) in PC1(J,Rn) is obtained.

Furthermore, abstract Grönwall lemma and Lemma 3.4 presented a fruitful

outcome to our end. Our work assures the existence of an exact solution of

(1.1) near to approximate solution. In fact, our results are significant when

finding exact solution is quite difficult and hence are important to approxima-

tion theory etc.
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