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Abstract. We introduce the notion of quasi-cyclic-noncyclic pair and its

relevant new notion of coincidence quasi-best proximity points in a con-

vex metric space. In this way we generalize the notion of coincidence-best

proximity point already introduced by M. Gabeleh et al [14]. It turns out

that under some circumstances this new class of mappings contains the

class of cyclic-noncyclic mappings as a subclass. The existence and con-

vergence of coincidence-best and coincidence quasi-best proximity points

in the setting of convex metric spaces are investigated.
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1. Introduction

Let (X, d) be a metric space, and let A,B be subsets of X. A mapping

T : A∪B → A∪B is said to be cyclic provided that T (A) ⊆ B and T (B) ⊆ A;

similarly, a mapping S : A ∪ B → A ∪ B is said to be noncyclic if S(A) ⊆ A

and S(B) ⊆ B. The following theorem is an extension of Banach contraction

principle.
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28 A. Abkar, M. Norouzian

Theorem 1.1. ([18]) Let A and B be nonempty closed subsets of a complete

metric space (X, d). Suppose that T is a cyclic mapping such that

d(Tx, Ty) ≤ αd(x, y),

for some α ∈ (0, 1) and for all x ∈ A, y ∈ B. Then T has a unique fixed point

in A ∩B.

Let A and B be nonempty subsets of a metric space X. A mapping T :

A ∪B → A ∪B is said to be a cyclic contraction if T is cyclic and

d(Tx, Ty) ≤ αd(x, y) + (1− α)dist(A,B)

for some α ∈ (0, 1) and for all x ∈ A, y ∈ B, where

dist(A,B) := inf{d(x, y) : (x, y) ∈ A×B}.

For a cyclic mapping T : A ∪B → A ∪B, a point x ∈ A ∪B is said to be a

best proximity point provided that

d(x, Tx) = dist(A,B).

The following existence, uniqueness and convergence result of a best prox-

imity point for cyclic contractions is the main result of [8].

Theorem 1.2. ([8]) Let A and B be nonempty closed convex subsets of a

uniformly convex Banach space X and let T : A ∪ B → A ∪ B be a cyclic

contraction map. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Then there

exists a unique x ∈ A such that x2n → x and

‖x− Tx‖ = dist(A,B).

In the theory of best proximity points, one usually considers a cyclic mapping

T defined on the union of two (closed) subsets of a given metric space. Here

the objective is to minimize the expression d(x, Tx) where x runs through the

domain of T ; that is A ∪B. In other words, we want to find

min{d(x, Tx) : x ∈ A ∪B}.

If A and B intersect, the solution is clearly a fixed point of T ; otherwise we

have

d(x, Tx) ≥ dist(A,B), ∀x ∈ A ∪B,

so that the point at which the equality occurs is called a best proximity point

of T . This point of view dominates the literature.

Very recently, M. Gabeleh, O. Olela Otafudu, and N. Shahzad [14] considered

two mappings T and S simultaneously and established interesting results. For

technical reasons, the first map should be cyclic and the second one should

be noncyclic. According to [14], for a nonempty pair of subsets (A,B), and a

cyclic-noncyclic pair (T ;S) on A∪B (that is, T : A∪B → A∪B is cyclic and
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Coincidence Quasi-Best Proximity Points for QCN Mappings in Convex Metric Spaces 29

S : A ∪ B → A ∪ B is noncyclic); they called a point p ∈ A ∪ B a coincidence

best proximity point for (T ;S) provided that

d(Sp, Tp) = dist(A,B).

Note that if S = I, the identity map on A ∪ B, then p ∈ A ∪ B is a best

proximity point for T . Also, if dist(A,B) = 0, then p is called a coincidence

point for (T ;S) (see [12] and [15] for more information). With the definition

just given, and depending on the situation as to whether S equals the identity

map, or if the distance between the underlying sets is zero, one obtains a

best proximity point for T , or a coincidence point for the pair (T ;S). This

was in fact the philosophy behind the phrase coincidence-best proximity point

coined by Gabeleh et al. They then defined the notion of a cyclic-noncyclic

contraction.

Definition 1.3. ([14]) Let (A,B) be a nonempty pair of subsets of a metric

space (X, d) and T, S : A ∪ B → A ∪ B be two mappings. The pair (T ;S) is

called a cyclic-noncyclic contraction pair if it satisfies the following conditions:

(1) (T ;S) is a cyclic-noncyclic pair on A ∪B.

(2) For some r ∈ (0, 1) we have

d(Tx, Ty) ≤ rd(Sx, Sy) + (1− r)dist(A,B), ∀(x, y) ∈ A×B.

To state the main result of [14], we need to recall the notion of convexity

in the framework of metric spaces. In [26], Takahashi introduced the notion of

convexity in metric spaces as follows (see also [24]).

Definition 1.4. Let (X, d) be a metric space and I := [0, 1]. A mapping

W : X ×X × I → X is said to be a convex structure on X provided that for

each (x, y;λ) ∈ X ×X × I and u ∈ X,

d(u,W(x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex

metric space, and is denoted by (X, d,W). A Banach space and each of its

convex subsets are convex metric spaces.

A subset K of a convex metric space (X, d,W) is said to be a convex set

provided that W(x, y;λ) ∈ K for all x, y ∈ K and λ ∈ I.

Similarly, a convex metric space (X, d,W) is said to be uniformly convex if

for any ε > 0, there exists α = α(ε) such that for all r > 0 and x, y, z ∈ X with

d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε,

d(z,W(x, y;
1

2
)) ≤ r(1− α) < r.

For example every uniformly convex Banach space is a uniformly convex

metric space.
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Definition 1.5. ([14]) Let (A,B) be a nonempty pair of subsets of a metric

space (X, d). A mapping S : A ∪ B → A ∪ B is said to be a relatively anti-

Lipschitzian mapping if there exists c > 0 such that

d(x, y) ≤ cd(Sx, Sy), ∀(x, y) ∈ A×B.

The main result of M. Gabeleh et al reads as follows:

Theorem 1.6. ([14]) Let (A,B) be a nonempty, closed pair of subsets of a

complete uniformly convex metric space (X, d,W) such that A is convex. Let

(T ;S) be a cyclic-noncyclic contraction pair defined on A∪B such that T (A) ⊆
S(B) and T (B) ⊆ S(A) and that S is continuous on A and relatively anti-

Lipschitzian on A ∪ B. Then (T ;S) has a coincidence best proximity point

in A. Further, if x0 ∈ A and Sxn+1 := Txn, then (x2n) converges to the

coincidence-best proximity point of (T ;S).

Existence of best proximity pairs was first studied in [9] by using a geometric

property on a nonempty pair of subsets of a Banach space, called proximal

normal structure, for noncyclic relatively nonexpansive mappings (Theorem

2.2 of [9]). Some existence results of best proximity pairs can be found in

[1, 2, 5, 6, 7, 10, 11, 13, 17, 23, 25].

In the current paper, we study sufficient conditions which ensure the exis-

tence and convergence of coincidence-best and quasi-best proximity point for

a pair of quasi-cyclic-noncyclic contraction mappings in the setting of convex

metric spaces.

2. Coincidence quasi-best proximity point

In this section, we introduce the class of quasi-cyclic-noncyclic mappings that

contains the class of cyclic-noncyclic mappings as a subclass. Next, we intro-

duce the new notion of quasi-best proximity points for this mappings. Finally,

we study the existence and convergence of coincidence quasi-best proximity

points for quasi-cyclic-noncyclic contraction mappings in the setting of convex

metric spaces.

Definition 2.1. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) and T, S : X → X be two mappings. The pair (T ;S) is called a quasi-

cyclic-noncyclic (QCN) contraction pair if it satisfies the following conditions:

(1) (T ;S) is a quasi-cyclic-noncyclic pair on X; that is,

T (A) ⊆ S(B), T (B) ⊆ S(A).

(2) For some α ∈ (0, 1) and for each (x, y) ∈ A×B we have

d(Tx, Ty) ≤ αd(Sx, Sy) + (1− α)dist(S(A), S(B)).

Note that if S(A) = A and S(B) = B, then the above definition reduces to

Definition 1.3; that is, the pair (T ;S) is a cyclic-noncyclic pair.
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Example 2.2. Let X := R with the usual metric. For A = (−∞,−1] and

B = [1,+∞) define T, S : X → X by

Tx :=

{
−x, if x ∈ A ∪B
0, ow.

and Sx :=


2x+ 1, if x ∈ A
2x− 1, if x ∈ B
0, ow.

Then (T ;S) is a QCN contraction pair with α = 1
2 . Indeed, for all (x, y) ∈ A×B

we have

|Tx− Ty| = (y − x) ≤ 1

2
(2y − 2x− 2) +

1

2
(2)

= α|Sx− Sy|+ (1− α)dist(S(A), S(B)).

Also, T (A) = B ⊆ S(B) and T (B) = A ⊆ S(A).

The next example shows that there is a QCN mapping that is not a cyclic-

noncyclic mapping.

Example 2.3. Let X := R with the usual metric. For A = (−∞,−1] and

B = [1,+∞) define T, S : X → X by

Tx :=

{
−x, if x ∈ A ∪B
0, ow.

and Sx :=


x+ 1, if x ∈ A
x− 1, if x ∈ B
0, ow.

Then (T ;S) is a quasi-cyclic-noncyclic pair that is not a cyclic-noncyclic pair.

Remark 2.4. Notice that (2) implies that

d(Tx, Ty) ≤ d(Sx, Sy), ∀(x, y) ∈ A×B.

Moreover, if S is a noncyclic relatively nonexpansive mapping; meaning that

d(Sx, Sy) ≤ d(x, y), ∀(x, y) ∈ A×B,

then T is a cyclic contraction. In addition, if in the above definition S is

assumed to be continuous, then T would be continuous too.

Definition 2.5. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) and T, S : X → X be a quasi-cyclic-noncyclic pair on X. A point

p ∈ A ∪ B is said to be a coincidence quasi-best proximity point for (T ;S)

provided that

d(Sp, Tp) = dist(S(A), S(B)).

Note that if S = I, then p reduces to a coincidence-best proximity point for

(T ;S).

To prove the main result of this section, we need some preparations.
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Lemma 2.6. Let (A,B) be a nonempty pair of subsets of a metric space (X, d)

and let (T ;S) be a quasi-cyclic-noncyclic pair defined on X. Then there exists

a sequence {xn} in X such that for all n ≥ 0 we have Txn = Sxn+1 where

{x2n}, {x2n+1} are subsequences in A and B respectively.

Proof. Let x0 ∈ A. Since Tx0 ∈ S(B), there exists x1 ∈ B such that Tx0 =

Sx1. Again, since Tx1 ∈ S(A), there exists x2 ∈ A such that Tx1 = Sx2.

Continuing this process, we obtain a sequence {xn}, such that {x2n}, {x2n+1}
are in A and B respectively and Txn = Sxn+1 for all n ∈ N ∪ {0}. �

Lemma 2.7. Let (A,B) be a nonempty pair of subsets of a metric space (X, d)

and let (T ;S) be a QCN contraction pair defined on X. For x0 ∈ A, define

Txn = Sxn+1 for each n ≥ 0. Then we have

d(Sx2n, Sx2n+1)→ dist(S(A), S(B)).

Proof.

d(Sx2n+1, Sx2n+2) = d(Tx2n, Tx2n+1)

≤ αd(Sx2n, Sx2n+1) + (1− α)dist(S(A), S(B))

= αd(Tx2n−1, Tx2n) + (1− α)dist(S(A), S(B))

≤ α[αd(Sx2n−1, Sx2n) + (1− α)dist(S(A), S(B))]

+ (1− α)dist(S(A), S(B))

= α2d(Sx2n−1, Sx2n) + (1− α2)dist(S(A), S(B))

= α2d(Tx2n−2, Tx2n−1) + (1− α2)dist(S(A), S(B))

≤ · · ·

≤ α2nd(Tx0, Tx1) + (1− α2)dist(S(A), S(B)).

Now, if n→∞ in above relation, we conclude that

d(Sx2n, Sx2n+1)→ dist(S(A), S(B)).

�

Theorem 2.8. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) and let (T ;S) be a QCN contraction pair defined on X. Assume that

S is continuous on A. For x0 ∈ A, define Txn = Sxn+1 for each n ≥ 0. If

{x2n} has a convergent subsequence in A, then the pair (T ;S) has a coincidence

quasi-best proximity point in A.

Proof. Let {x2nk
} be a subsequence of {x2n} such that x2nk

→ p ∈ A. We

have

dist(S(A), S(B)) ≤ d(Tx2nk−1, Tp) ≤ d(Sx2nk−1, Sp)

≤ d(Sp, Sx2nk
) + d(Sx2nk

, Sx2nk−1).
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By Lemma 2.7, if k →∞, we obtain that

d(Tx2nk−1, Tp)→ dist(S(A), S(B)).

Moreover, we have

dist(S(A), S(B)) ≤ d(Sp, Tp)

≤ d(Sp, Tx2nk−1) + d(Tx2nk−1, Tp)

= d(Sp, Sx2nk
) + d(Tx2nk−1, Tp)

→ dist(S(A), S(B)),

that is,

d(Sp, Tp) = dist(S(A), S(B)).

�

Lemma 2.9. Let (A,B) be a nonempty pair of subsets of a metric space (X, d)

and let (T ;S) be a QCN contraction pair defined on X. For x0 ∈ A, define

Txn = Sxn+1 for each n ≥ 0. Then {Sx2n}, and {Sx2n+1} are bounded

sequences in S(A) and S(B) respectively.

Proof. Since

d(Sx2n, Sx2n+1)→ dist(S(A), S(B)),

it suffices to show that {Sx2n} is bounded in S(A). Assume to the contrary

that there exists N0 ∈ N such that

d(Sx2, Sx2N0+1) > M, d(Sx2, Sx2N0−1) ≤M,

where,

M > max

{
α2

1− α2
d(Sx0, Sx2) + dist(S(A), S(B)), d(Sx1, Sx0)

}
.

By the above assumption, we have

M − dist(S(A), S(B))

α2
+ dist(S(A), S(B))

<
d(Sx2, Sx2N0+1)− dist(S(A), S(B))

α2

+ dist(S(A), S(B))

≤ d(Sx2, Sx2N0+1) + (α2 − 1)d(Sx2, Sx2N0+1)

α2

= d(Sx2, Sx2N0+1) = d(Tx1, Tx2N0)

≤ d(Sx1, Sx2N0
) = d(Tx0, Tx2N0−1)

= d(Sx0, Sx2N0−1)

≤ d(Sx0, Sx2) + d(Sx2, Sx2N0−1)

≤ d(Sx0, Sx2) +M.
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34 A. Abkar, M. Norouzian

This implies that

M − dist(S(A), S(B))

α2
+ dist(S(A), S(B)) < d(Sx0, Sx2) +M,

hence,

M − (1− α2)dist(S(A), S(B)) < α2[d(Sx0, Sx2) +M ],

and,

(1− α2)M < α2d(Sx0, Sx2) + (1− α2)dist(S(A), S(B)).

Now, it follows that

M <
α2

1− α2
d(Sx0, Sx2) + dist(S(A), S(B)),

which contradicts the choice of M . �

Before we state the following theorem, we recall that a subset A ⊆ X is

said to be boundedly compact if the closure of every bounded subset of A is

compact and is contained in A.

Theorem 2.10. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) such that S(A) is boundedly compact and let (T ;S) be a QCN contraction

pair defined on X. If S is relatively anti-Lipschitzian and continuous on A,

then there exists p ∈ A such that

d(Sp, Tp) = dist(S(A), S(B)).

Proof. For x0 ∈ A, define Txn = Sxn+1 for each n ≥ 0. By Lemma 2.9, {Sx2n}
is bounded in S(A). On the other hand, S(A) is boundedly compact, so that

there exists a subsequence {Sx2nk
} of {Sx2n} such that

Sx2nk
→ Sp,

for some p ∈ A. We know that S is relatively anti-Lipschitzian, therefore

d(x2nk
, p) ≤ c d(Sx2nk

, Sp)→ 0, k →∞.

This implies that {x2nk
} is a convergent subsequence of {x2n}. Now, the result

follows from Theorem 2.8. �

Example 2.11. Let X := R with the usual metric. For A = (−∞, 0] and

B = [0,+∞) define T, S : X → X by

Tx :=

{
−x, if x ∈ A ∪B
0, ow.

and Sx :=

{
2x, if x ∈ A ∪B
0, ow.

Then (T ;S) is a QCN contraction pair with α = 1
2 . Indeed, for all (x, y) ∈ A×B

we have

|Tx− Ty| = (y − x) ≤ 1

2
(2y − 2x) +

1

2
(0)

= α|Sx− Sy|+ (1− α)dist(S(A), S(B)).
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Also, T (A) = B ⊆ S(B) and T (B) = A ⊆ S(A). Moreover, S is continuous

on A and S(A) is boundedly compact in X. Besides, S is relatively anti-

Lipschitzian on A ∪B with c = 1. In fact, for all (x, y) ∈ A×B we have

|Sx− Sy| = 2y − 2x ≥ |x− y|.

Finally, the existence of coincidence quasi-best proximity point of the pair

(T ;S) follows from Theorem 2.10; that is, there exists p ∈ A such that

|Tp− Sp| = dist(S(A), S(B)) = 0 or − p− 2p = 0,

which implies that p = 0. In this case, p is a fixed point of S.

In the following we supply an example which shows that there exists a co-

incidence quasi-best proximity point that is not a fixed point of S.

Example 2.12. Let X := R with the usual metric. For A = (−∞, 0] and

B = [0,+∞) define T, S : X → X by

Tx :=

{
−(x+ 1), if x ∈ A ∪B
0, ow.

and Sx :=

{
2x, if x ∈ A ∪B
0, ow.

Then (T ;S) is a QCN contraction pair with α = 1
2 . Indeed, for all (x, y) ∈ A×B

we have

|Tx− Ty| = (y − x) ≤ 1

2
(2y − 2x) +

1

2
(0)

= α|Sx− Sy|+ (1− α)dist(S(A), S(B)).

Also, T (A) = [1,+∞) ⊆ S(B) and T (B) = (−∞,−1] ⊆ S(A). Moreover, S is

continuous on A and S(A) is boundedly compact in X. Besides, S is relatively

anti-Lipschitzian on A ∪B with c = 1. In fact, for all (x, y) ∈ A×B we have

|Sx− Sy| = 2y − 2x ≥ |x− y|.

Finally, the existence of coincidence quasi-best proximity point of the pair

(T ;S) follows from Theorem 2.10; that is, there exists p ∈ A such that

|Tp− Sp| = dist(S(A), S(B)) = 0 or − (p+ 1)− 2p = 0,

which implies that p = − 1
3 .

Lemma 2.13. Let (A,B) be a nonempty pair of subsets of a uniformly convex

metric space (X, d,W) such that S(A) is convex. Let (T ;S) be a QCN con-

traction pair defined on X. For x0 ∈ A, define Txn = Sxn+1 for each n ≥ 0.

Then

d(Sx2n+2, Sx2n)→ 0, d(Sx2n+3, Sx2n+1)→ 0.

Proof. We prove that d(Sx2n+2, Sx2n)→ 0. To the contrary, assume that there

exists ε0 > 0 such that for each k ≥ 1, there exists nk ≥ k such that

d(Sx2nk+2, Sx2nk
) ≥ ε0.
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Choose 0 < γ < 1 such that ε0
γ > dist(S(A), S(B)) and choose ε > 0 such that

0 < ε < min

{
ε0
γ
− dist(S(A), S(B)),

dist(S(A), S(B))α(γ)

1− α(γ)

}
.

By Lemma 2.7, since d(Sx2nk
, Sx2nk+1)→ dist(S(A), S(B)), there exists N ∈

N such that

d(Sx2nk
, Sx2nk+1) ≤ dist(S(A), S(B)) + ε,

d(Sx2nk+2, Sx2nk+1) ≤ dist(S(A), S(B)) + ε

and

d(Sx2nk
, Sx2nk+2) ≥ ε0 > γ(dist(S(A), S(B)) + ε).

It now follows from the uniform convexity of X and the convexity of S(A) that

dist(S(A), S(B)) ≤ d(Sx2nk+1,W(Sx2nk
, Sx2nk+2,

1

2
))

≤ (dist(S(A), S(B)) + ε)(1− α(γ))

< dist(S(A), S(B)) +
dist(S(A), S(B))α(γ)

1− α(γ)
(1− α(γ))

= dist(S(A), S(B)),

which is a contradiction. Similarly, we see that d(Sx2n+3, Sx2n+1)→ 0. �

The following Theorem guarantees the existence and convergence of coinci-

dence quasi-best proximity points for QCN contraction mappings in the setting

of uniformly convex metric spaces.

Theorem 2.14. Let (A,B) be a nonempty, closed pair of subsets of a complete

uniformly convex metric space (X, d;W) such that S(A) is convex. Let (T ;S)

be a QCN contraction pair defined on X such that S is continuous on A and

relatively anti-Lipschitzian on A ∪B. Then there exists p ∈ A such that

d(Sp, Tp) = dist(S(A), S(B)).

Further, if x0 ∈ A and Txn = Sxn+1, then {x2n} converges to the coincidence

quasi-best proximity point of (T ;S).

Proof. For x0 ∈ A define Txn = Sxn+1 for each n ≥ 0. We prove that {Sx2n}
and {Sx2n+1} are Cauchy sequences. First, we verify that for each ε > 0 there

exists N0 ∈ N such that

d(Sx2l, Sx2n+1) < dist(S(A), S(B)) + ε, ∀l > n ≥ N0. (∗)

Assume to the contrary that there exists ε0 > 0 such that for each k ≥ 1 there

exists lk > nk ≥ k satisfying

d(Sx2lk , Sx2nk+1) ≥ dist(S(A), S(B)) + ε0

and

d(Sx2lk−2, Sx2nk+1) < dist(S(A), S(B)) + ε0.
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We have

dist(S(A), S(B)) + ε0 ≤ d(Sx2lk , Sx2nk+1)

≤ d(Sx2lk , Sx2lk−2) + d(Sx2lk−2, Sx2nk+1)

≤ d(Sx2lk , Sx2lk−2) + dist(S(A), S(B)) + ε0.

Letting k →∞, we obtain

d(Sx2lk , Sx2nk+1)→ dist(S(A), S(B)) + ε0.

Moreover, we have

dist(S(A), S(B)) + ε0 ≤ d(Sx2lk , Sx2nk+1) = d(Tx2lk−1, Tx2nk
)

≤ αd(Sx2lk−1, Sx2nk
) + (1− α)dist(S(A), S(B))

= αd(Tx2lk−2, Tx2nk−1) + (1− α)dist(S(A), S(B))

≤ αd(Sx2lk−2, Sx2nk−1) + (1− α)dist(S(A), S(B)).

Therefore, by letting k →∞ we obtain

dist(S(A), S(B)) + ε0 ≤ α(dist(S(A), S(B)) + ε0) + (1− α)dist(S(A), S(B))

≤ dist(S(A), S(B)) + ε0.

This implies that α = 1, which is a contradiction. That is, (∗) holds. Now,

assume {Sx2n} is not a Cauchy sequence. Then there exists ε0 > 0 such that

for each k ≥ 1 there exists lk > nk ≥ k such that

d(Sx2lk , Sxnk
) ≥ ε0.

Choose 0 < γ < 1 such that ε0
γ > dist(S(A), S(B)) and choose ε > 0 such that

0 < ε < min

{
ε0
γ
− dist(S(A), S(B)),

dist(S(A), S(B))α(γ)

1− α(γ)

}
.

Let N ∈ N be such that

d(Sx2nk
, Sx2nk+1) ≤ dist(S(A), S(B)) + ε, ∀nk ≥ N

and

d(Sx2lk , Sx2nk+1) ≤ dist(S(A), S(B)) + ε, ∀lk > nk ≥ N.

Uniform convexity of X implies that

dist(S(A), S(B)) ≤ d(Sx2nk+1,W(Sx2nk
, Sx2lk ,

1

2
))

≤ (dist(S(A), S(B)) + ε)(1− α(γ)) < dist(S(A), S(B)),

which is a contradiction. Therefore, {Sx2n} is a Cauchy sequence in S(A). By

the fact that S is relatively anti-Lipschitzian on A ∪B, we have

d(x2l, x2n) ≤ cd(Sx2l, Sx2n)→ 0, l, n→∞,
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that is, {x2n} is a Cauchy sequence. Since A is complete, there exists p ∈ A
such that x2n → p. Now, the result follows from a similar argument as in

Theorem 2.8. �

3. quasi-cyclic-noncyclic relatively contraction mappings

In this section, we introduce the class of quasi-cyclic-noncyclic relatively

contraction mappings that contains the class of cyclic-noncyclic contraction

mappings as a subclass. Next, we study the existence and convergence of

coincidence best proximity points in the setting of convex metric spaces for

quasi-cyclic-noncyclic relatively contraction mappings.

Definition 3.1. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) and T, S : X → X be two mappings. The pair (T ;S) is called a quasi-

cyclic-noncyclic relatively contraction pair if it satisfies the following conditions:

(1) (T ;S) is a quasi-cyclic-noncyclic pair on X; that is,

T (A) ⊆ S(B), T (B) ⊆ S(A).

(2) For some α ∈ (0, 1) and for each (x, y) ∈ A×B we have

d(Tx, Ty) ≤ αd(Sx, Sy) + (1− α)dist(A,B).

Note that in the above definition we do not have the inequality

dist(A,B) ≤ d(Sx, Sy),

that is,

d(Tx, Ty) ≤ d(Sx, Sy)

is not always true.

We emphasize that if S = I or if S(A) = A and S(B) = B, then the above

definition reduces to Definition 1.3.

Example 3.2. Let X := R with the usual metric. For A = (−∞,−3] and

B = [3,+∞) define T, S : X → X by

Tx :=

{
−(x+ 1), if x ∈ A ∪B
0, ow.

and Sx :=


3x+ 5, if x ∈ A
3x− 7, if x ∈ B
0, ow.

Then (T ;S) is a QCN relatively contraction pair with α = 1
3 . Indeed, for all

(x, y) ∈ A×B we have

|Tx− Ty| = (y − x) ≤ 1

3
(3y − 3x− 12) +

2

3
(6)

= α|Sx− Sy|+ (1− α)dist(A,B).

Also, T (A) ⊆ S(B) and T (B) ⊆ S(A).
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Lemma 3.3. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) and let (T ;S) be a QCN relatively contraction pair defined on X and

dist(A,B) ≤ dist(S(A), S(B)). For x0 ∈ A, define Txn = Sxn+1 for each

n ≥ 0. Then we have

d(Sx2n, Sx2n+1)→ dist(A,B).

Proof. We note that

dist(A,B) ≤ dist(S(A), S(B)) ≤ d(Sx2n+1, Sx2n+2) = d(Tx2n, Tx2n+1)

≤ αd(Sx2n, Sx2n+1) + (1− α)dist(A,B)

= αd(Tx2n−1, Tx2n) + (1− α)dist(A,B)

≤ α[αd(Sx2n−1, Sx2n) + (1− α)dist(A,B)]

+ (1− α)dist(A,B)

= α2d(Sx2n−1, Sx2n) + (1− α2)dist(A,B)

= α2d(Tx2n−2, Tx2n−1) + (1− α2)dist(A,B)

≤ · · ·

≤ α2nd(Tx0, Tx1) + (1− α2)dist(A,B).

Now, if n→∞, we conclude that

d(Sx2n, Sx2n+1)→ dist(A,B).

�

Remark 3.4. If the pair (T ;S) is a QCN relatively contraction pair such that

S(A) ⊆ A and S(B) ⊆ B,

then we have

dist(A,B) ≤ dist(S(A), S(B)).

Thus, by this assumption, the Lemma holds true.

Theorem 3.5. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) and let (T ;S) be a QCN relatively contraction pair defined on X and

dist(A,B) ≤ dist(S(A), S(B)). Assume S is continuous on A. For x0 ∈ A,

define Txn = Sxn+1 for each n ≥ 0. If {x2n} has a convergent subsequence in

A, then the pair (T ;S) has a coincidence best proximity point in A.

Proof. Let {x2nk
} be a subsequence of {x2n} such that x2nk

→ p ∈ A. we have

dist(A,B) ≤ dist(S(A), S(B)) ≤ d(Tx2nk−1, Tp) ≤ d(Sx2nk−1, Sp)

≤ d(Sp, Sx2nk
) + d(Sx2nk

, Sx2nk−1).

By Lemma 3.3, if k →∞, we obtain that

d(Tx2nk−1, Tp)→ dist(A,B).
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Moreover,

dist(A,B) ≤ dist(S(A), S(B)) ≤ d(Sp, Tp)

≤ d(Sp, Tx2nk−1) + d(Tx2nk−1, Tp)

= d(Sp, Sx2nk
) + d(Tx2nk−1, Tp)

→ dist(A,B),

that is,

d(Sp, Tp) = dist(A,B).

�

Lemma 3.6. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d). Suppose (T ;S) is a QCN relatively contraction pair defined on X and

dist(A,B) ≤ dist(S(A), S(B)). For x0 ∈ A, define Txn = Sxn+1 for each

n ≥ 0. Then {Sx2n}, and {Sx2n+1} are bounded sequences in S(A) and S(B)

respectively.

Proof. Since

d(Sx2n, Sx2n+1)→ dist(A,B),

it suffices to verify that {Sx2n} is bounded in S(A). Assume to the contrary

that there exists N0 ∈ N such that

d(Sx2, Sx2N0+1) > M, d(Sx2, Sx2N0−1) ≤M,

where,

M > max

{
α2

1− α2
d(Sx0, Sx2) + dist(A,B), d(Sx1, Sx0)

}
.

By the above assumption, we have

M − dist(A,B)

α2
+ dist(A,B) <

d(Sx2, Sx2N0+1)− dist(A,B)

α2
+ dist(A,B)

≤ d(Sx2, Sx2N0+1) + (α2 − 1)d(Sx2, Sx2N0+1)

α2

= d(Sx2, Sx2N0+1) = d(Tx1, Tx2N0)

≤ d(Sx1, Sx2N0
) = d(Tx0, Tx2N0−1)

= d(Sx0, Sx2N0−1)

≤ d(Sx0, Sx2) + d(Sx2, Sx2N0−1)

≤ d(Sx0, Sx2) +M.

This implies that

M − dist(A,B)

α2
+ dist(A,B) < d(Sx0, Sx2) +M,

or,

M − (1− α2)dist(A,B) < α2[d(Sx0, Sx2) +M ].

 [
 D

O
I:

 1
0.

52
54

7/
ijm

si
.1

7.
1.

27
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

26
-0

2-
04

 ]
 

                            14 / 20

http://dx.doi.org/10.52547/ijmsi.17.1.27
https://ijmsi.com/article-1-1333-en.html


Coincidence Quasi-Best Proximity Points for QCN Mappings in Convex Metric Spaces 41

and finally,

(1− α2)M < α2d(Sx0, Sx2) + (1− α2)dist(A,B).

Now, we conclude that

M <
α2

1− α2
d(Sx0, Sx2) + dist(A,B),

which is a contradiction by the choice of M . �

Theorem 3.7. Let (A,B) be a nonempty pair of subsets of a metric space

(X, d) such that S(A) is boundedly compact. Suppose (T ;S) is a QCN rela-

tively contraction pair defined on X and dist(A,B) ≤ dist(S(A), S(B)). If S is

relatively anti-Lipschitzian and continuous on A, then there exists p ∈ A such

that

d(Sp, Tp) = dist(A,B).

Proof. For x0 ∈ A, define Txn = Sxn+1 for each n ≥ 0. According to Lemma

3.6, {Sx2n} is bounded in S(A), on the other hand S(A) is boundedly compact,

so that there exists a subsequence {Sx2nk
} of {Sx2n} such that

Sx2nk
→ Sp,

for some p ∈ A. We know that S is relatively anti-Lipschitzian, therefore

d(x2nk
, p) ≤ cd(Sx2nk

, Sp)→ 0, k →∞.

This implies that {x2nk
} is a convergent subsequence of {x2n}, hence the result

follows from Theorem 3.5. �

In the following we give examples to show that there exists a coincidence

best proximity point that is not a fixed point for S.

Example 3.8. Let X := R with the usual metric. For A = (−∞,−3] and

B = [3,+∞) define T, S : X → X by

Tx :=

{
3− x, if x ∈ A ∪B
0, ow.

and Sx :=


2x+ 6, if x ∈ A
2x, if x ∈ B
0, ow.

Then (T ;S) is a QCN relatively contraction pair with α = 1
2 . Indeed, for all

(x, y) ∈ A×B we have

|Tx− Ty| = (y − x) ≤ 1

2
(2y − 2x− 6) +

1

2
(6)

= α|Sx− Sy|+ (1− α)dist(A,B).

Also, T (A) ⊆ S(B) and T (B) ⊆ S(A). Finally, the existence of coincidence

best proximity point of the pair (T ;S) follows from Theorem 3.7; that is, there

exists p ∈ A such that

|Tp− Sp| = dist(A,B) = 0 or 3− p− 2p− 6 = 6,
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which implies that p = −3.

Example 3.9. Let X := R with the usual metric. For A = (−∞,−4] and

B = [4,+∞) define T, S : X → X by

Tx :=

{
4− x, if x ∈ A ∪B
0, ow.

and Sx :=


4x+ 16, if x ∈ A
4x− 8, if x ∈ B
0, ow.

Then (T ;S) is a QCN relatively contraction pair with α = 1
4 . Indeed, for all

(x, y) ∈ A×B we have

|Tx− Ty| = (y − x) ≤ 1

4
(4y − 4x− 24) +

3

4
(8)

= α|Sx− Sy|+ (1− α)dist(A,B).

Also, T (A) ⊆ S(B) and T (B) ⊆ S(A). Finally, the existence of coincidence

best proximity point of the pair (T ;S) follows from Theorem 3.7; that is, there

exists p ∈ A such that

|Tp− Sp| = dist(A,B) = 8 or 4− p− 4p− 16 = 8,

which implies that p = −4.

Lemma 3.10. Let (A,B) be a nonempty pair of subsets of a uniformly convex

metric space (X, d,W) such that S(A) is convex. Suppose (T ;S) is a QCN

relatively contraction pair defined on X and dist(A,B) ≤ dist(S(A), S(B)).

For x0 ∈ A, define Txn = Sxn+1 for each n ≥ 0. Then

d(Sx2n+2, Sx2n)→ 0, d(Sx2n+3, Sx2n+1)→ 0.

Proof. We prove that d(Sx2n+2, Sx2n)→ 0. Assume to the contrary that there

exists ε0 > 0 such that for each k ≥ 1, there exists nk ≥ k such that

d(Sx2nk+2, Sx2nk
) ≥ ε0.

Choose 0 < γ < 1 such that ε0
γ > dist(A,B) and choose ε > 0 such that

0 < ε < min

{
ε0
γ
− dist(A,B),

dist(A,B)α(γ)

1− α(γ)

}
.

By Lemma 3.3, we know that d(Sx2nk
, Sx2nk+1)→ dist(A,B), so there exists

N ∈ N such that

d(Sx2nk
, Sx2nk+1) ≤ dist(A,B) + ε,

d(Sx2nk+2, Sx2nk+1) ≤ dist(A,B) + ε

and

d(Sx2nk
, Sx2nk+2) ≥ ε0 > γ(dist(A,B) + ε).
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It now follows from the uniformly convexity of X and the convexity of S(A)

that

dist(A,B) ≤ dist(S(A), S(B)) ≤ d(Sx2nk+1,W(Sx2nk
, Sx2nk+2,

1

2
))

≤ (dist(A,B) + ε)(1− α(γ))

< dist(A,B) +
dist(A,B)α(γ)

1− α(γ)
(1− α(γ))

= dist(A,B),

which is a contradiction. Similarly, we see that d(Sx2n+3, Sx2n+1)→ 0. �

The following Theorem guarantees the existence and convergence of coin-

cidence best proximity points for QCN relatively contraction mappings in the

setting of uniformly convex metric spaces.

Theorem 3.11. Let (A,B) be a nonempty, closed pair of subsets of a com-

plete uniformly convex metric space (X, d;W) such that S(A) is convex. Sup-

pose (T ;S) is a QCN relatively contraction pair defined on X such that S

is continuous on A and relatively anti-Lipschitzian on A ∪ B. Assume that

dist(A,B) ≤ dist(S(A), S(B)). Then there exists p ∈ A such that

d(Sp, Tp) = dist(A,B).

Further, if x0 ∈ A and Txn = Sxn+1, then {x2n} converges to the coincidence

best proximity point of (T ;S).

Proof. For x0 ∈ A define Txn = Sxn+1 for each n ≥ 0. We prove that {Sx2n}
and {Sx2n+1} are Cauchy sequences. First, we verify that for each ε > 0 there

exists N0 ∈ N such that

d(Sx2l, Sx2n+1) < dist(A,B) + ε, ∀l > n ≥ N0. (∗)

Assume the contrary. Then there exists ε0 > 0 such that for each k ≥ 1 there

exists lk > nk ≥ k satisfying

d(Sx2lk , Sx2nk+1) ≥ dist(A,B) + ε0, d(Sx2lk−2, Sx2nk+1) < dist(A,B) + ε0.

Note that

dist(A,B) + ε0 ≤ d(Sx2lk , Sx2nk+1)

≤ d(Sx2lk , Sx2lk−2) + d(Sx2lk−2, Sx2nk+1)

≤ d(Sx2lk , Sx2lk−2) + dist(A,B) + ε0.

Letting k →∞, we obtain

d(Sx2lk , Sx2nk+1)→ dist(A,B) + ε0.
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Moreover, we have

dist(A,B) + ε0 ≤ d(Sx2lk , Sx2nk+1) = d(Tx2lk−1, Tx2nk
)

≤ αd(Sx2lk−1, Sx2nk
) + (1− α)dist(A,B)

= αd(Tx2lk−2, Tx2nk−1) + (1− α)dist(A,B)

≤ αd(Sx2lk−2, Sx2nk−1) + (1− α)dist(A,B).

Therefore, by letting k →∞ we obtain

dist(A,B) + ε0 ≤ α(dist(A,B) + ε0) + (1− α)dist(A,B) ≤ dist(A,B) + ε0.

This implies that α = 1, which is a contradiction. That is, (∗) holds. Now,

assume that {Sx2n} is not a Cauchy sequence. Then there exists ε0 > 0 such

that for each k ≥ 1 there exists lk > nk ≥ k such that

d(Sx2lk , Sxnk
) ≥ ε0.

Choose 0 < γ < 1 such that ε0
γ > dist(A,B) and choose ε > 0 such that

0 < ε < min

{
ε0
γ
− dist(A,B),

dist(A,B)α(γ)

1− α(γ)

}
.

Let N ∈ N be such that

d(Sx2nk
, Sx2nk+1) ≤ dist(A,B) + ε, ∀nk ≥ N

and

d(Sx2lk , Sx2nk+1) ≤ dist(A,B) + ε, ∀lk > nk ≥ N.

Uniformly convexity of X implies that

dist(A,B) ≤ dist(S(A), S(B)) ≤ d(Sx2nk+1,W(Sx2nk
, Sx2lk ,

1

2
))

≤ (dist(A,B) + ε)(1− α(γ)) < dist(A,B),

which is a contradiction. Therefore, {Sx2n} is a Cauchy sequence in S(A). By

the fact that S is relatively anti-Lipschitzian on A ∪B, we have

d(x2l, x2n) ≤ cd(Sx2l, Sx2n)→ 0, l, n→∞,

that is, {x2n} is Cauchy. Since A is complete, there exists p ∈ A such that

x2n → p. Now, the result follows from a similar argument as in the proof of

Theorem 3.5. �
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