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1. Introduction

Since ancient times mathematicians tried to solve equations over the inte-

gers. Some of these equations are called diophantine equations. Diophantine

equations have been studied by many authors to date. In 1909, A. Thue proved

the following important theorem:

Let f = anz
n + an−1z

n−1 + · · · + a1z + a0 be an irreducible

polynomial of degree ≥ 3 with integer coefficients. Consider

the corresponding homogeneous polynomial

F (x, y) = anx
n + an−1x

n−1y + · · ·+ a1xy
n−1 + a0y

n.

If m is a nonzero integer, then the equation F (x, y) = m has

either no solution or only a finite number of solutions in inte-

gers.

This result is in contrast to the situation when the degree of F is n = 2. In

this case, if F (x, y) = x2 −Dy2, where D is a nonsquare positive integer, then

for all nonzero integers m, the general Pell’s equation x2−Dy2 = m has either

no solution or it has infinitely many integral solutions [2].

Let p be a nonzero integer. The generalized Fibonacci and Lucas numbers

are defined by

Un+1 = pUn + Un−1 and Vn+1 = pVn + Vn−1,

where U0 = 0, U1 = 1 and V0 = 2, V1 = p, respectively. When p = 1, Un = Fn

(the nth Fibonacci number) and Vn = Ln (the nth Lucas number). The Binet

formulæ are

Un =
αn − βn

α− β
and Vn = αn + βn,

where (α, β) :=
((
p+

√
p2 + 4

)
/2,
(
p−

√
p2 + 4

)
/2
)
.

Also we note that U−n = (−1)n+1Un and V−n = (−1)nVn for n ≥ 0. Kılıç

and Stanica [8] showed that for any integers t and n,

Utn = VtUt(n−1) + (−1)t+1Ut(n−2), (1.1)

Vtn = VtVt(n−1) + (−1)t+1Vt(n−2).

It is also known that

Ut(n+1)Ut(n−1) − U2
tn = (−1)

t(n+1)+1
U2
t . (1.2)

According to Dickson ([4], p. 405), Lucas proved that if x and y are consec-

utive Fibonacci numbers, then (x, y) is a lattice point on one of the hyperbolas

y2 − xy − x2 = ±1, and Wasteels proved the converse in 1902. Interest in con-

ics whose equations are satisfied by pairs of successive terms of linear recursive

sequences has been rekindled.
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In [9], Kimberling defined a Fibonacci hyperbola and solved some of them.

For example, he considered the following type hyperbolas

pn(x, y) = x2 + (−1)n+1Lnxy + (−1)ny2 + F 2
n = 0, for n = 1, 2, 3, . . . .

In [11], McDaniel proved that, if P > 0 and x, y are positive integers, then

the pair (x, y) is a solution of y2 − Pxy − x2 = ±1 if and only if there exists a

positive integer n such that x = Un and y = Un+1.

In [12], Melham generalized McDaniel’s results and obtained new ones. For

example, if m is a fixed even integer, then the points with integer coordinates on

the conics y2−Vmxy+x2 = ±U2
m are precisely the pairs (x, y) = ±(Un, Un+m).

Marlewski and Zarzycki [10] showed that for k ∈ Z+, the equation x2 −
kxy + y2 + x = 0 has an infinite number of positive integer solutions x and y

if and only if k = 3.

In [7], Kılıç and Ömür considered all given results on special conics men-

tioned in [11, 12] and then gave more general results.

Bahramian and Daghigh [3] proved that for k ∈ Z, the equations x2±kxy−
y2 ± x = 0 have an infinite number of positive integer solutions x and y, and,

they gave their solutions in terms of a generalized Fibonacci sequence. Also

some authors have studied and solved certain similar equations, for more details

see [1, 5, 6, 14].

In this paper, we find all solutions of the following four kinds of Diophantine

equations:

(1) For odd t,

i) x2 ± Vtxy − y2 ± x = 0 and ii) x2 ± Vtxy − y2 ± y = 0.

(2) For even t,

iii) x2 ± Vtxy + y2 − x = 0 and iv) x2 ± Vtxy + y2 − y = 0.

The case t = 1 of (1.i) and, that is V1 = p, was studied by Bahramian and

Daghigh in [3]. The Diophantine equations (1.ii)–(2.iv) will be examined and

solved for the first time in this study according to our best knowledge.

We shall solve these equations by the equation of Thue and continued frac-

tion representation.

2. The Diophantine Equations

In this section, we show that the Diophantine equations given by (1.i)–

(2.iv) mentioned in the introduction section are solvable in integers for certain

integers t. Before proving this we give some preliminary results.

Let D be a positive integer not a perfect square. Suppose that
√
D is

written as an infinite simple continued fraction
√
D = [a0, a1, a2, · · · ]. For each

nonnegative n, the rational number [a0, a1, a2, · · · , an] = hn/kn is called the
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nth convergent to the infinite simple continued fraction [a0, a1, a2, · · · ]. Then

we get for n ≥ 1,

hn = anhn−1 + hn−2, h−1 = 1, h0 = a0, (2.1)

kn = ankn−1 + kn−2, k−1 = 0, k0 = 1.

If V 2
t + 4 is not a square for any integer t, we have the infinite simple

continued fraction representation of
√
V 2
t + 4 as

√
V 2
t + 4 =


[
Vt, (Vt − 1)/2, 1, 1, (Vt − 1)/2, 2Vt

]
if Vt is odd,

[
Vt, Vt/2, 2Vt

]
if Vt is even.

(2.2)

The next two theorems give us the convergents of infinite simple continued

fraction representation of
√
V 2
t + 4 via terms of the sequence {Utn}. Similar

results are proved in [3].

Theorem 2.1. Let Vt be a positive odd integer and hn/kn be the nth convergent

to the infinite simple continued fraction of
√
V 2
t + 4. For n ≥ 0

a) h10n = ((−1)t+1U6nt + U(6n+2)t)/Ut,

b) k10n = U(6n+1)t/Ut,

c) h10n+4 = 1/2((−1)t+1U(6n+2)t + U(6n+4)t)/Ut,

d) k10n+4 = 1/2(U(6n+3)t/Ut),

e) h10n+8 = ((−1)t+1U(6n+4)t + U(6n+6)t)/Ut,

f) k10n+8 = U(6n+5)t/Ut.

Proof. We give only some sketches for the proof of (a) and (b). Since Vt is a

positive odd integer and by (2.2), we have that for n ≥ 1

a0 = Vt, a5n−4 = (Vt − 1)/2, a5n−3 = 1,

a5n−2 = 1, a5n−1 = (Vt − 1)/2, a5n = 2Vt.

The second order recursive sequences {hn} and {kn} given in (2.1) could be

written in matrix equality form by using their recursions, for n ≥ 1[
hn kn
hn−1 kn−1

]
=

[
an 1

1 0

] [
hn−1 kn−1

hn−2 kn−2

]
.

Let An =

[
an 1

1 0

]
and Pn =

[
hn kn
hn−1 kn−1

]
. Then, for n ≥ 1, we have

Pn = AnPn−1. Here we need h10n and k10n. For this, first we compute P5n

and then take 2n instead of n. Thus we have the conclusions. �

We have the following result without proof.

Theorem 2.2. Let Vt be a positive even integer and hn/kn be the nth conver-

gent to the infinite simple continued fraction of
√
V 2
t + 4. For n ≥ 0,

a) h2n = ((−1)t+1U2nt + U(2n+2)t)/Ut,
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b) k2n = U(2n+1)t/Ut.

First we will show that all solutions of the equation

x2 − Vtxy − y2 + x = 0 (2.3)

are (
U2

2nt/U
2
t , U(2n−1)tU2nt/U

2
t

)
,(

U2
2nt/U

2
t ,−U2ntU(2n+1)t/U

2
t

)
,(

−U2
(2n+1)t/U

2
t , U(2n+1)tU(2n+2)t/U

2
t

)
,(

−U2
(2n+1)t/U

2
t ,−U2ntU(2n+1)t/U

2
t

)
.

(2.4)

To prove this claim, first we need the following lemma whose proof is straight-

forward.

Lemma 2.3. If (x, y) is a solution of the equation (2.3), then (x,−Vtx− y)

and (Vty − x− 1, y) are also solutions of (2.3).

Clearly (0, 0) is a solution of (2.3), from Lemma 2.3, a sequence of solutions

of (2.3) is

(0, 0) , (−1, 0) , (−1, Vt) ,
(
V 2
t , Vt

)
,
(
V 2
t ,−Vt

(
V 2
t + 1

))
, . . .

and these solutions can be rewritten as

(0, 0) =

(
U2

0

U2
t

,−U0Ut

U2
t

)
, (−1, 0) =

(
−U

2
t

U2
t

,−U0Ut

U2
t

)
,

(−1, Vt) =

(
−U

2
t

U2
t

,
UtU2t

U2
t

)
,
(
V 2
t , Vt

)
=

(
U2

2t

U2
t

,
UtU2t

U2
t

)
, · · · .

Theorem 2.4. For any integer n and odd t, the pairs in (2.4) satisfy x2 −
Vtxy − y2 + x = 0.

Proof. (By induction on n.) For n = 0, it is seen that (0, 0) =
(
U2

0 /U
2
t ,−U0Ut/U

2
t

)
is a solution of (2.3). Suppose that the pair

(
U2

2tn/U
2
t ,−U2tnUt(2n+1)/U

2
t

)
sat-

isfies (2.3). By Lemma 2.3 and (1.2), we have that

(x, y) =
(
Vt
(
−U2tnUt(2n+1)/U

2
t

)
− U2

2tn/U
2
t − 1,−U2tnUt(2n+1)/U

2
t

)
=

(
−U2

t(2n+1)/U
2
t ,−U2tnUt(2n+1)/U

2
t

)
is a solution of (2.3). By Lemma 2.3 and since(

−U2
t(2n+1)/U

2
t ,−U2tnUt(2n+1)/U

2
t

)
is a solution of (2.3), we have that

(x, y) =
(
−U2

t(2n+1)/U
2
t ,−Vt

(
−U2

t(2n+1)/U
2
t

)
−
(
−U2tnUt(2n+1)/U

2
t

))
=

(
−U2

t(2n+1)/U
2
t , Ut(2n+1)Ut(2n+2)/U

2
t

)
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16 E. Kılıç, I. Akkus, N. Ömür

is also a solution of (2.3). Similarly, if (−U2
t(2n+1)/U

2
t , Ut(2n+1)U2t(n+1)/U

2
t ) sat-

isfies (2.3), then (U2
2t(n+1)/U

2
t , Ut(2n+1)U2t(n+1)/U

2
t ) satisfies (2.3). If

(U2
2t(n+1)/U

2
t , Ut(2n+1)U2t(n+1)/U

2
t ) satisfies (2.3) and

(U2
2t(n+1)/U

2
t , Ut(2n+1)U2t(n+1)/U

2
t ) is a solution of (2.3), then

(U2
2t(n+1)/U

2
t ,−U2t(n+1)Ut(2n+3)/U

2
t ) satisfies (2.3).

For n < 0, the proof could be similarly obtained by using the relations

U−n = (−1)n+1Un and V−n = (−1)nVn. �

Now we prove that the solutions stated in (2.4) are all the solutions of (2.3).

First we consider the positive solutions. By the method used in (Theorem 1 of

[10], Lemma 3 of [5] and Theorem 3.3 of [3]), proves the following theorem.

Theorem 2.5. If positive integers x and y satisfy the equation

x2 − Vtxy − y2 + x = 0, (2.5)

then there exist positive integers c, e such that x = c2, y = ce and gcd (c, e) = 1.

Now we need some properties of the Pell equation x2 −Dy2 = N, where D

is a given square-free positive integer and N is a given integer.

We recall the following three results from [13]:

Theorem 2.6. Let x2
0 − Dy2

0 = N be fulfilled for some integers x0, y0 and

a2
0−Db20 = 1 for some integers a0, b0. If w = x0 + y0

√
D, j = a0 + b0

√
D, then

for any integer n, the pair (xn, yn) satisfying the equation xn + yn
√
D = wjn

satisfies the equation x2 −Dy2 = N.

Theorem 2.7. Let N be an integer satisfied |N | <
√
D. Then any positive

integer solution (s, t) of x2 − Dy2 = N with gcd(s, t) = 1 satisfies s = hn,

t = kn for some positive integer n, where hn

kn
is the nth convergent to the

infinite simple continued fraction of
√
D = [a0, a1, a2, ...].

Theorem 2.8. Let [a0, a1, a2, · · · ] be the infinite simple continued fraction of√
D and suppose that mn and qn are two sequences given by

mn+1 = anqn −mn, m0 = 0,

qn+1 = (D −m2
n+1)/qn, q0 = 1.

Then

a) mn and qn are integers for any positive integer n,

b) h2
n −Dk2

n = (−1)n+1qn+1 for any integer n ≥ −1.

Now we are ready to prove the fact that all positive solutions of the equation

(2.5) are in the form (x, y) =
(
U2

2tn/U
2
t , Ut(2n−1)U2tn/U

2
t

)
. Using Theorem 2.5,

we note that there exist positive integers c and e such that x = c2, y = ce and

gcd (c, e) = 1. Substituting them in equation (2.5), we get

c2 − Vtce− e2 + 1 = 0. (2.6)
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We can consider this equation as a quadratic equation with respect to the inde-

terminate c. This equation has integer solutions if and only if ∆ =
(
V 2
t + 4

)
e2−

4 is a square. Then there exists an integer f such that

f2 −
(
V 2
t + 4

)
e2 = −4. (2.7)

From (2.6), we get

c = (Vte± f) /2. (2.8)

Now we solve the equation (2.7). First we assume that Vt is odd. From the

equation (2.2), we have√
V 2
t + 4 =

[
Vt, (Vt − 1)/2, 1, 1, (Vt − 1)/2, 2Vt

]
.

For n ≥ 1, define

a0 = Vt, a5n−4 = (Vt − 1)/2, a5n−3 = 1,

a5n−2 = 1, a5n−1 = (Vt − 1)/2, a5n = 2Vt.

Then by Theorem 2.8, we get two eventually periodic sequences

{mn}∞n=0 =
{

0, Vt, Vt − 2, 2, Vt − 2, Vt
}

and

{(−1)n+1qn+1}∞n=−1 =
{

1,−4, Vt,−Vt, 4,−1, 4,−Vt, Vt,−4, 1
}
. (2.9)

Now we assume that (f, e) is a positive solution of the equation (2.7). From

(2.7), we deduce that gcd(f, e) = 1 or 2. For the sequence in (2.9), Theorem

2.8 implies that for all n ≥ 0

h2
10n − (V 2

t + 4)k2
10n = −4, (2.10)

h2
10n+4 − (V 2

t + 4)k2
10n+4 = −1,

h2
10n+8 − (V 2

t + 4)k2
10n+8 = −4.

Now from the equation (2.10) we conclude that

(2h10n+4)2 − (V 2
t + 4)(2k10n+4)2 = −4.

Moreover the solutions of the equation (2.7) are

(f, e) = (h10n, k10n), (2h10n+4, 2k10n+4), (h10n+8, k10n+8), n ≥ 0.

From the equation (2.8), the solutions (c, e) are of the forms

((Vtk10n + h10n)/2, k10n), (2.11)

(Vtk10n+4 + h10n+4, 2k10n+4),

((Vtk10n+8 + h10n+8)/2, k10n+8)

for all n ≥ 0. Now using Theorem 2.1 and rearranging the equation (2.11), we

have

(c, e) = ((VtU(6n+1)t + (−1)t+1U6nt + U(6n+2)t)/2Ut, U(6n+1)t/Ut)
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= (U(6n+2)t/Ut, U(6n+1)t/Ut),

(c, e) = (Vt(
1

2
U(6n+3)t) +

1

2
((−1)t+1U(6n+2)t + U(6n+4)t))/Ut, 2(

1

2
U(6n+3)t/Ut))

= (U(6n+4)t/Ut, U(6n+3)t/Ut),

(c, e) = ((VtU(6n+5)t + (−1)t+1U(6n+4)t + U(6n+6)t)/2Ut, U(6n+5)t/Ut)

= (U(6n+6)t/Ut, U(6n+5)t/Ut),

and finally from Theorem 2.5, we get (x, y) = (c2, ce). For each solutions (c, e),

we have the following three pairs

(x, y) = (U2
(6n+2)t/U

2
t , U(6n+1)tU(6n+2)t/U

2
t ),

(U2
(6n+4)t/U

2
t , U(6n+3)tU(6n+4)t/U

2
t ),

(U2
(6n+6)t/U

2
t , U(6n+5)tU(6n+6)t/U

2
t )

and therefore (x, y) =
(
U2

2tn/U
2
t , Ut(2n−1)U2tn/U

2
t

)
for all positive integer n.

By the above results, we obtain the following result.

Theorem 2.9. If Vt is a positive odd integer, then every positive solution of

x2 − Vtxy − y2 + x = 0 is given by (x, y) =
(
U2

2nt/U
2
t , U(2n−1)tU2nt/U

2
t

)
.

Now we consider the case when Vt is even. In this case from the equation

(2.2), we have √
V 2
t + 4 =

[
Vt, Vt/2, 2Vt

]
.

Let

a0 = Vt, a2n+1 = Vt/2, a2n+2 = 2Vt, n ≥ 0.

We get two eventually periodic sequences

{mn}∞n=0 = {0, Vt}

and {
(−1)n+1qn+1

}∞
n=−1

= {1,−4}.
From this and Theorem 2.8, we have

h2
2n − (V 2

t + 4)k2
2n = −4, n ≥ 0.

Moreover in this case, all solutions of the equation (2.7) are (f, e) = (h2n, k2n),

and using the equation (2.8), we get (c, e) = ((Vtk2n + h2n)/2, k2n). But from

Theorem 2.2, we know that h2n = ((−1)t+1U2nt + U(2n+2)t)/Ut and k2n =

U(2n+1)t/Ut. Substituting them into the equation (2.8), we get

(c, e) = ((VtU(2n+1)t + (−1)t+1U2nt + U(2n+2)t)/2Ut, U(2n+1)t/Ut).

Therefore (x, y) = (c2, ce) =
(
U2

(2n+2)t/U
2
t , U(2n+1)tU(2n+2)t/U

2
t

)
. Thus have

the following theorem.

Theorem 2.10. If Vt is a positive even integer, then every positive solution of

x2 − Vtxy − y2 + x = 0 is given by (x, y) =
(
U2

2nt/U
2
t , U(2n−1)tU2nt/U

2
t

)
.
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Now we find all (not necessarily positive) solutions of the equation x2 −
Vtxy−y2 +x = 0. First assume that x > 0 and y < 0. By substituting y → −y
in the last equation, that is we consider the equation x2 + Vtxy − y2 + x = 0

and so we already its all positive solutions

(x, y) =
(
U2

2nt/U
2
t , U2ntU(2n+1)t/U

2
t

)
.

Similarly if x < 0 and y > 0, then by substituting x→ −x and considering the

equation x2 + Vtxy − y2 − x = 0, we have

(x, y) =
(
U2

(2n+1)t/U
2
t , U(2n+1)tU(2n+2)t/U

2
t

)
.

Finally if x < 0 and y < 0, then similarly by substituting x→ −x and y → −y,

that is we consider the equation x2 − Vtxy − y2 − x = 0 and so we have

(x, y) =
(
U2

(2n+1)t/U
2
t , U2ntU(2n+1)t/U

2
t

)
.

Using the above discussions we have the result:

Theorem 2.11. For odd t, all solutions of the equation x2−Vtxy−y2 +x = 0

are given by

(
U2

2nt/U
2
t , U(2n−1)tU2nt/U

2
t

)
,(

U2
2nt/U

2
t ,−U2ntU(2n+1)t/U

2
t

)
,(

−U2
(2n+1)t/U

2
t , U(2n+1)tU(2n+2)t/U

2
t

)
,(

−U2
(2n+1)t/U

2
t ,−U2ntU(2n+1)t/U

2
t

)
.

Any solution of the equations x2 ± Vtxy − y2 ± x = 0 corresponds to the

solution of the equation x2 − Vtxy − y2 + x = 0. We summarize our earlier

results and related other unexpressed results related with them as follows:
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Equation Solutions

x2 − Vtxy − y2 + x = 0

(
U2

2tn/U
2
t , Ut(2n−1)U2tn/U

2
t

)
(
U2

2tn/U
2
t ,−U2tnUt(2n+1)/U

2
t

)
(
−U2

t(2n+1)/U
2
t , Ut(2n+1)Ut(2n+2)/U

2
t

)
(
−U2

t(2n+1)/U
2
t ,−U2tnUt(2n+1)/U

2
t

)

x2 + Vtxy − y2 + x = 0

(
U2

2tn/U
2
t , U2tnUt(2n+1)/U

2
t

)
(
U2

2tn/U
2
t ,−Ut(2n−1)U2tn/U

2
t

)
(
−U2

t(2n+1)/U
2
t , U2tnUt(2n+1)/U

2
t

)
(
−U2

t(2n+1)/U
2
t ,−Ut(2n+1)Ut(2n+2)/U

2
t

)

x2 − Vtxy − y2 − x = 0

(
U2
t(2n+1)/U

2
t , U2tnUt(2n+1)/U

2
t

)
(
U2
t(2n+1)/U

2
t ,−Ut(2n+1)Ut(2n+2)/U

2
t

)
(
−U2

2tn/U
2
t , U2tnUt(2n+1)/U

2
t

)
(
−U2

2tn/U
2
t ,−Ut(2n−1)U2tn/U

2
t

)

x2 + Vtxy − y2 − x = 0

(
U2
t(2n+1)/U

2
t , Ut(2n+1)Ut(2n+2)/U

2
t

)
(
U2
t(2n+1)/U

2
t ,−U2tnUt(2n+1)/U

2
t

)
(
−U2

2tn/U
2
t , Ut(2n−1)U2tn/U

2
t

)
(
−U2

2tn/U
2
t ,−U2tnUt(2n+1)/U

2
t

)
TABLE 1. The solutions of the equationsx2 ± Vtxy − y2 ± x = 0.

Now we will prove that all solutions of the equation

x2 − Vtxy − y2 + y = 0 (2.12)

are of the forms
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(
Ut(2n+1)Ut(2n+2)/U

2
t , U

2
t(2n+1)/U

2
t

)
,(

−U2tnUt(2n+1)/U
2
t , U

2
t(2n+1)/U

2
t

)
,(

Ut(2n−1)U2tn/U
2
t ,−U2

2tn/U
2
t

)
,(

−Ut(2n+1)U2tn/U
2
t ,−U2

2tn/U
2
t

)
.

(2.13)

For later use, we need the following lemma.

Lemma 2.12. If (x, y) is a solution of the equation x2−Vtxy−y2 +y = 0, then

the solutions of the same equation are the pairs (Vty − x, y) and (x,−Vtx− y + 1).

Theorem 2.13. For any integer n and odd t, the pairs in (2.13) satisfy the

equation x2 − Vtxy − y2 + y = 0.

Proof. The proof is similar to the proof of Theorem 2.4. �

Now we shall give the following theorem whose proof is similar to the proof

of Theorem 2.5.

Theorem 2.14. If positive integers x and y satisfy the equation x2 − Vtxy −
y2 + y = 0, then there exist positive integers c, e such that x = ce, y = c2 and

gcd (c, e) = 1.

We recall the following auxiliary lemma from [7].

Lemma 2.15. If V 2
t + 4 is square-free, then for odd t, the integer solutions of(

V 2
t + 4

)
x2 + 4U2

t = y2U2
t are precisely the pairs (±U2tn,±V2tn) .

Theorem 2.16. For any integer n and odd t, all solutions of the equation

x2 − Vtxy − y2 + y = 0 are(
Ut(2n+1)Ut(2n+2)/U

2
t , U

2
t(2n+1)/U

2
t

)
,(

−U2tnUt(2n+1)/U
2
t , U

2
t(2n+1)/U

2
t

)
,(

Ut(2n−1)U2tn/U
2
t ,−U2

2tn/U
2
t

)
,(

−Ut(2n+1)U2tn/U
2
t ,−U2

2tn/U
2
t

)
.
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Proof. Using Theorem 2.14, x = ce, y = c2 such that gcd (c, e) = 1 satisfy the

equation x2 − Vtxy − y2 + y = 0. Then, we have

c2e2 − Vtc3e− c4 + c2 = 0,

c2 + Vtce− e2 − 1 = 0. (2.14)

The last equation has integer solutions if and only if ∆ =
(
V 2
t + 4

)
e2 − 4 is a

square. Then there exists an integer f such that

(
V 2
t + 4

)
e2 + 4 = f2. (2.15)

From Lemma 2.15, note that all positive solutions of (2.15) are

(e, f) = (U2tn/Ut, V2tn) .

From (2.14), we write

c = (−Vte± f) /2

and (c, e) =
(
Ut(2n−1)/Ut, U2tn/Ut

)
. From Theorem 2.14, we get

(x, y) =
(
Ut(2n−1)U2tn/U

2
t , U

2
t(2n−1)/U

2
t

)
.

Therefore (x, y) =
(
Ut(2n+1)Ut(2n+2)/U

2
t , U

2
t(2n+1)/U

2
t

)
is a solution of the

equation x2−Vtxy−y2+y = 0. From Lemma 2.12 and Theorem 2.13, the other

claims are obtained. There is no other solution than those shown in Theorem

2.11. �

Any solution of the equations x2 ± Vtxy − y2 ± y = 0 corresponds to the

solution of the equation x2 − Vtxy − y2 + y = 0. We can summarize and state

our earlier and unexpressed results as:
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Equation Solutions

x2 − Vtxy − y2 + y = 0

(
Ut(2n+1)Ut(2n+2)/U

2
t , U

2
t(2n+1)/U

2
t

)
(
−U2tnUt(2n+1)/U

2
t , U

2
t(2n+1)/U

2
t

)
(
Ut(2n−1)U2tn/U

2
t ,−U2

2tn/U
2
t

)
(
−Ut(2n+1)U2tn/U

2
t ,−U2

2tn/U
2
t

)

x2 + Vtxy − y2 + y = 0

(
U2tnUt(2n+1)/U

2
t , U

2
t(2n+1)/U

2
t

)
(
−Ut(2n+1)Ut(2n+2)/U

2
t , U

2
t(2n+1)/U

2
t

)
(
U2tnUt(2n+1)/U

2
t ,−U2

2tn/U
2
t

)
(
−Ut(2n−1)U2tn/U

2
t ,−U2

2tn/U
2
t

)

x2 − Vtxy − y2 − y = 0

(
U2tnUt(2n+1)/U

2
t , U

2
2tn/U

2
t

)
(
−Ut(2n−1)U2tn/U

2
t , U

2
2tn/U

2
t

)
(
U2tnUt(2n+1)/U

2
t ,−U2

t(2n+1)/U
2
t

)
(
−Ut(2n+1)Ut(2n+2)/U

2
t ,−U2

t(2n+1)/U
2
t

)

x2 + Vtxy − y2 − y = 0

(
U2tnUt(2n−1)/U

2
t , U

2
2tn/U

2
t

)
(
−U2tnUt(2n+1)/U

2
t , U

2
2tn/U

2
t

)
(
Ut(2n+1)Ut(2n+2)/U

2
t ,−U2

t(2n+1)/U
2
t

)
(
−U2tnUt(2n+1)/U

2
t ,−U2

t(2n+1)/U
2
t

)
TABLE 2. The solutions of the equations x2 ± Vtxy − y2 ± y = 0.

For even t, we will find all the solutions of the equations x2±Vtxy+y2−x = 0

and x2 ± Vtxy + y2 − y = 0.

Lemma 2.17. If (x, y) is a solution of the equation

x2 − Vtxy + y2 − x = 0, (2.16)

then the solutions of the same equation are the pairs (x, Vtx− y) and (Vty − x+ 1, y).
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For example, if (0, 0) is a solution of (2.16), then by Lemma 2.17, a sequence

of solutions of (2.16) is

(0, 0) , (1, 0) , (1, Vt) ,
(
V 2
t , Vt

)
,
(
V 2
t , Vt

(
V 2
t − 1

))
, . . . .

and these solutions can be rewritten as

(0, 0) =

(
U2

0

U2
t

,
U0Ut

U2
t

)
, (1, 0) =

(
U2
t

U2
t

,
U0Ut

U2
t

)
, (1, Vt) =

(
U2
t

U2
t

,
UtU2t

U2
t

)
(
V 2
t , Vt

)
=

(
U2

2t

U2
t

,
UtU2t

U2
t

)
, . . . .

Theorem 2.18. For any integer n and even t, the pairs(
U2
t(n+1)/U

2
t , Ut(n+1)Utn/U

2
t

)
and

(
U2
tn/U

2
t , UtnUt(n+1)/U

2
t

)
satisfy the equation x2 − Vtxy + y2 − x = 0.

Proof. The proof is similar to the proof of Theorem 2.4. �

Theorem 2.19. If positive integers x and y satisfy the equation x2 − Vtxy +

y2 − x = 0, then there exist positive integers c, e such that x = c2, y = ce and

gcd (c, e) = 1.

Proof. The proof can be done similar to the proof of Theorem 2.5. �

Again, we recall the another following auxiliary lemma from [7].

Lemma 2.20. If V 2
t − 4 is square-free, then for even t, the integer solutions

of
(
V 2
t − 4

)
x2 + 4U2

t = y2U2
t are precisely the pairs (±Utn,±Vtn) .

Theorem 2.21. For any integer n and even t, all solutions of the equation x2−
Vtxy+y2−x = 0 are

(
U2
t(n+1)/U

2
t , Ut(n+1)Utn/U

2
t

)
and

(
U2
tn/U

2
t , UtnUt(n+1)/U

2
t

)
.

Proof. Using Theorem 2.19, x = c2, y = ce such that gcd (c, e) = 1 satisfy the

equation x2 − Vtxy + y2 − x = 0. Then we have

c4 − Vtc3e+ c2e2 − c2 = 0,

c2 − Vtce+ e2 − 1 = 0. (2.17)

The last equation has integer solutions if and only if ∆ =
(
V 2
t − 4

)
e2 + 4 is a

square. Then there exists an integer f such that

f2 −
(
V 2
t − 4

)
e2 = 4. (2.18)

From Lemma 2.20, the positive solutions of (2.18) are (e, f) = (Utn/Ut, Vtn) .

From (2.17), we write

c = (Vte± f) /2,

and (c, e) =
(
Ut(n+1)/Ut, Utn/Ut

)
. From Theorem 2.19, we get

(x, y) =
(
U2
t(n+1)/U

2
t , Ut(n+1)Utn/U

2
t

)
.
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Therefore (x, y) =
(
U2
t(n+1)/U

2
t , Ut(n+1)Utn/U

2
t

)
is a solution of the equation

(2.16). Similarly, from Lemma 2.17 and Theorem 2.18, the other claim is

obtained. There is no other solution than those shown in Theorem 2.11. �

One can similarly see that equation x2−Vtxy+ y2− y = 0 has the solutions(
Ut(n+1)Utn/U

2
t , U

2
t(n+1)/U

2
t

)
and

(
Ut(n+1)Utn/U

2
t , U

2
tn/U

2
t

)
.

We can summarize the results as:

Equation Solutions

x2 − Vtxy + y2 − x = 0

(
U2
t(n+1)/U

2
t , Ut(n+1)Utn/U

2
t

)
(
U2
tn/U

2
t , Ut(n+1)Utn/U

2
t

)
x2 + Vtxy + y2 − x = 0

(
U2
t(n−1)/U

2
t ,−Ut(n−1)Utn/U

2
t

)
(
U2
t(n+1)/U

2
t ,−Ut(n+1)Utn/U

2
t

)
x2 − Vtxy + y2 − y = 0

(
Ut(n+1)Utn/U

2
t , U

2
t(n+1)/U

2
t

)
(
Ut(n+1)Utn/U

2
t , U

2
tn/U

2
t

)
x2 + Vtxy + y2 − y = 0

(
−Ut(n−1)Utn/U

2
t , U

2
t(n−1)/U

2
t

)
(
−Ut(n+1)Utn/U

2
t , U

2
t(n+1)/U

2
t

)
Table 3. The solutions of x2±Vtxy+ y2−x = 0 and x2±Vtxy+ y2− y = 0.
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