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Abstract. Frames play significant role in various areas of science and en-

gineering. Motivated by the work of Chander Shekhar, S. K. Kaushik and

Abas Askarizadeh, Mohammad Ali Dehghan, we introduce the concepts

of K-frames for B(H,K) and we establish some result. Also, we consider

the relationships between K-Frames and K-Operator Frames for B(H).
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1. Introduction and preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and

Schaeffer [7] in 1952 to study some deep problems in nonharmonic Fourier

series, after the fundamental paper [5] by Daubechies, Grossman and Meyer,

frame theory began to be widely used, particularly in the more specialized

context of wavelet frames and Gabor frames [8].
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Traditionally, frames have been used in signal processing, image processing,

data compression and sampling theory. A discreet frame is a countable family of

elements in a separable Hilbert space which allows for a stable, not necessarily

unique, decomposition of an arbitrary element into an expansion of the frame

elements.

In this paper, we introduce a new notion of K-frames for B(H,K) and we

consider the relationships between K-frames and K-operator Frames for B(H),

the set of all bounded operators on a Hilbert space H.

Let I be a finite or countable index subset of N. In this section we briefly

recall the definitions and basic properties of C∗-algebra, Hilbert A-modules,

Frames, K-perator Frames for B(H) and K-g-frames. For information about

frames in Hilbert spaces we refer to [3]. Our reference for C∗-algebras is [6, 4].

For a C∗-algebra A if a ∈ A is positive we write a ≥ 0 and A+ denotes the set

of positive elements of A.

Definition 1.1. [4]. If A is a Banach algebra, an involution is a map a→ a∗

of A into itself such that for all a and b in A and all scalars α the following

conditions hold:

(1) (a∗)∗ = a.

(2) (ab)∗ = b∗a∗.

(3) (αa+ b)∗ = ᾱa∗ + b∗.

Definition 1.2. [4]. A C∗-algebra A is a Banach algebra with involution such

that :

‖a∗a‖ = ‖a‖2

for every a in A.

Example 1.3. B = B(H) the algebra of bounded operators on a Hilbert space,

is a C∗-algebra, where for each operator A, A∗ is the adjoint of A.

Definition 1.4. [9]. Let A be a unital C∗-algebra and H be a left A-module,

such that the linear structures of A and H are compatible. H is a pre-Hilbert

A-module if H is equipped with an A-valued inner product 〈., .〉 : H×H → A,

such that is sesquilinear, positive definite and respects the module action. In

the other words,

(1) 〈x, x〉 ≥ 0 for all x ∈ H and 〈x, x〉 = 0 if and only if x = 0.

(2) 〈ax+ y, z〉 = a〈x, y〉+ 〈y, z〉 for all a ∈ A and x, y, z ∈ H.

(3) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H.

For x ∈ H, we define ||x|| = ||〈x, x〉|| 12 . If H is complete with ||.||, it is called

a Hilbert A-module or a Hilbert C∗-module over A. For every a in C∗-algebra

A, we have |a| = (a∗a)
1
2 and the A-valued norm onH is defined by |x| = 〈x, x〉 12

for x ∈ H.
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Generalized Frames for B(H,K) 3

Example 1.5. Let H be a Hilbert space, then B(H) is a Hilbert C∗-module

with the inner product 〈T, S〉 = TS∗,∀T, S ∈ B(H).

Let H and K be two Hilbert A-modules, A map T : H → K is said to be

adjointable if there exists a map T ∗ : K → H such that 〈Tx, y〉A = 〈x, T ∗y〉A
for all x ∈ H and y ∈ K.

We also reserve the notation End∗A(H,K) for the set of all adjointable op-

erators from H to K and End∗A(H,H) is abbreviated to End∗A(H).

Let H and K be separable Hilbert spaces and let B(H,K) be the set of all

bounded linear operators from H into K. Then B(H,K) is a Hilbert B(K)-

module with the inner product 〈T, S〉 = TS∗,∀T, S ∈ B(H,K).

Definition 1.6. [2] A sequence {Ti ∈ B(H,K) : i ∈ I} is said to be a frame

for B(H,K) if there exist 0 < A,B <∞ sach that

A〈T, T 〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H,K), (1.1)

where the series converges in the strong operator topology.

Definition 1.7. [1] Let K ∈ B(H). A sequence {Λi ∈ B(H,Ki) : i ∈ I}
is called a K-g-frame for H with respect to {Ki}i∈I , if there exist constants

A,B > 0 such that

A‖K∗x‖2 ≤
∑
i∈I
‖Λix‖2 ≤ B‖x‖2,∀x ∈ H. (1.2)

The constants A and B are called lower and upper bounds for the K-g-frame,

respectively. A K-g-frame {Λi}i∈I is said to be tight if there exists a constant

A > 0 such that

A‖K∗x‖2 =
∑
i∈I
‖Λix‖2,∀x ∈ H. (1.3)

It is called Parseval K-g-frame if A = 1 in 1.3.

Definition 1.8. [11] Let K ∈ B(H). A family of bounded linear operators

{Ti}i∈I on a Hilbert space H is said to be a K-operator frame for B(H), if

there exist positive constants A,B > 0 such that

A‖K∗x‖2 ≤
∑
i∈I
‖Tix‖2 ≤ B‖x‖2,∀x ∈ H. (1.4)

where A and B are called lower and upper bounds for the K-operator frame,

respectively. A K-operator frame {Ti}i∈I is said to be tight if there exists a

constantA > 0 such that

A‖K∗x‖2 =
∑
i∈I
‖Tix‖2,∀x ∈ H. (1.5)

It is called Parseval K-operator frame if A = 1 in 1.5.
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2. K-frame for B(H,K)

Now we are ready to define the K-frame for B(H,K).

Definition 2.1. Let K ∈ B(H). A sequence {Ti ∈ B(H,K) : i ∈ I} is said to

be a K-frame for B(H,K) if there exist 0 < A,B <∞ sach that

A〈TK, TK〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H,K), (2.1)

where the series converges in the strong operator topology.

Similar to Remark 1 in [10] we have

Remark 2.2. (1) Every frame for B(H,K) is aK-frame, for anyK ∈ B(H):

K 6= 0.

(2) If K ∈ B(H) is a surjective operator, then every K-frame for B(H,K)

is a frame for B(H,K).

The frame operator S : B(H,K)→ B(H,K) for the K-frame is given by

ST =
∑
i∈I
〈T, Ti〉Ti =

∑
i∈I

TT ∗i Ti.

Remark 2.3. The frame operator is positive and adjointable, but not invertible

in general.

Theorem 2.4. Let K ∈ B(H) and {Ti ∈ B(H,K) : i ∈ I} be a frame for

B(H,K). Then {TiK∗}i∈I is a K-frame for B(H,K).

Proof. Let {Ti}i∈I be a frame for B(H,K).

Then there exists two positive constants A and B, such that

A〈T, T 〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H,K). (2.2)

Replacing T by TK in (2.2) we obtain

A〈TK, TK〉 ≤
∑
i∈I
〈TK, Ti〉〈Ti, TK〉 ≤ B〈TK, TK〉,∀T ∈ B(H,K).

But ∑
i∈I
〈TK, Ti〉〈Ti, TK〉 =

∑
i∈I

TKT ∗i Ti(TK)∗

=
∑
i∈I

TKT ∗i TiK
∗T ∗

=
∑
i∈I

T (TiK
∗)∗TiK

∗T ∗

=
∑
i∈I
〈T, TiK∗〉〈TiK∗, T 〉.
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So

A〈TK, TK〉 ≤
∑
i∈I
〈T, TiK∗〉〈TiK∗, T 〉 ≤ B〈TK, TK〉,∀T ∈ B(H,K).

On the other hand, for all x ∈ K, we have

B〈〈TK, TK〉x, x〉 = B〈TK(TK)∗x, x〉
= B〈TKK∗T ∗x, x〉
= B〈K∗T ∗x,K∗T ∗x〉

= B‖K∗T ∗x‖2

≤ B‖K‖2‖T ∗x‖2

= B‖K‖2〈T ∗x, T ∗x〉

= B‖K‖2〈TT ∗x, x〉

= B‖K‖2〈〈T, T 〉x, x〉.

Hence

B〈TK, TK〉 ≤ B‖K‖2〈T, T 〉.

(Where ‖K‖ is the operator norm)

From the above we have

A〈TK, TK〉 ≤
∑
i∈I
〈T, TiK∗〉〈TiK∗, T 〉 ≤ B‖K‖2〈T, T 〉,∀T ∈ B(H,K).

Then {TiK∗}i∈I is a K-frame for B(H,K). �

Theorem 2.5. Let K1,K2 ∈ B(H) and {Ti ∈ B(H,K) : i ∈ I} be a K1-frame

for B(H,K). Then {TiK∗2}i∈I is a K2K1-frame for B(H,K).

Proof. Let {Ti}i∈I be a K1-frame for B(H,K).

Then there exists two positive constants A and B, such that

A〈TK1, TK1〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H,K). (2.3)

Replacing T by TK2 in (2.3) we obtain

A〈TK2K1, TK2K1〉 ≤
∑
i∈I
〈TK2, Ti〉〈Ti, TK2〉 ≤ B〈TK2, TK2〉,∀T ∈ B(H,K).
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But ∑
i∈I
〈TK2, Ti〉〈Ti, TK2〉 =

∑
i∈I

TK2T
∗
i Ti(TK2)∗

=
∑
i∈I

TK2T
∗
i TiK

∗
2T
∗

=
∑
i∈I

T (TiK
∗
2 )∗TiK

∗
2T
∗

=
∑
i∈I
〈T, TiK∗2 〉〈TiK∗2 , T 〉.

So

A〈TK2K1, TK2K1〉 ≤
∑
i∈I
〈T, TiK∗2 〉〈TiK∗2 , T 〉 ≤ B〈TK2, TK2〉,∀T ∈ B(H,K).

On the other hand, for all x ∈ K, we have

B〈〈TK2, TK2〉x, x〉 = B〈TK2(TK2)∗x, x〉
= B〈TK2K

∗
2T
∗x, x〉

= B〈K∗2T ∗x,K∗2T ∗x〉

= B‖K∗2T ∗x‖2

≤ B‖K2‖2‖T ∗x‖2

= B‖K2‖2〈T ∗x, T ∗x〉

= B‖K2‖2〈TT ∗x, x〉

= B‖K2‖2〈〈T, T 〉x, x〉.

Hence

B〈TK2, TK2〉 ≤ B‖K2‖2〈T, T 〉.

(Where ‖K2‖ is the operator norm)

From the above we have

A〈TK2K1, TK2K1〉 ≤
∑
i∈I
〈T, TiK∗2 〉〈TiK∗2 , T 〉 ≤ B‖K2‖2〈T, T 〉,∀T ∈ B(H,K).

Then {TiK∗2}i∈I is a K2K1-frame for B(H,K). �

Corollary 2.6. Let K ∈ B(H) and {Ti ∈ B(H,K) : i ∈ I} be a K-frame for

B(H,K). Then {Ti(K∗)N}i∈I is a KN+1-frame for B(H,K).

Proof. It follows from the previous theorem. �

For a sequence of Hilbert spaces {Ki}i∈I , define the space l2({Ki}i∈I) by

l2({Ki}i∈I) =

{
{xi}i∈I : xi ∈ Ki, i ∈ I,

∑
i∈I
‖xi‖2 <∞

}
,
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Generalized Frames for B(H,K) 7

with the inner product〈
{xi}i∈I , {yi}i∈I

〉
=
∑
i∈I
〈xi, yi〉,

it is a Hilbert space.

Proposition 2.7. Let K ∈ B(H) and K = l2({Ki}i∈I). The sequence {Λi ∈
B(H,Ki) : i ∈ I} is a K-g-frame for H with respect to {Ki}i∈I if and only if

the sequence {Λ̃i ∈ B(H,K) : i ∈ I} is a K-g-frame for H with respect to K,
with Λ̃ix = (..., 0, 0,Λix, 0, 0, ...),∀x ∈ H.

The follwing theorem show that the definition 1.7 is equivalent with our

definition 2.1.

Theorem 2.8. A sequence {Ti ∈ B(H,K) : i ∈ I} is a K-frame for B(H,K)

if and only if it is a K-g-frame for H whit respect to K.

Proof. Let {Ti}i∈I be a K-g-frame for H whit respect to K.

Then there exists two positive constants A and B, such that

A‖K∗x‖2 ≤
∑
i∈I
‖Tix‖2 ≤ B‖x‖2,∀x ∈ H,

i.e

A〈K∗x,K∗x〉 ≤
∑
i∈I
〈T ∗i Tix, x〉 ≤ B〈x, x〉,∀x ∈ H.

So

AKK∗ ≤
∑
i∈I

T ∗i Ti ≤ BIH.

Hence

ATKK∗T ∗ ≤
∑
i∈I

TT ∗i TiT
∗ ≤ BTT ∗,∀T ∈ B(H,K).

Thus

A〈TK, TK〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H,K),

i.e {Ti}i∈I is a K-frame for B(H,K).

Conversely, assume that {Ti}i∈I be a K-frame for B(H,K).

Then there exists two positive constants A and B, such that

A〈TK, TK〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H,K),

i.e

ATKK∗T ∗ ≤
∑
i∈I

TT ∗i TiT
∗ ≤ BTT ∗,∀T ∈ B(H,K).

So

A〈TKK∗T ∗x, x〉 ≤
∑
i∈I
〈TT ∗i TiT ∗x, x〉 ≤ B〈TT ∗x, x〉,∀T ∈ B(H,K),∀x ∈ K.
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Let y ∈ H and T ∈ B(H,K) such that T ∗x = y, then

A〈K∗y,K∗y〉 ≤
∑
i∈I
〈T ∗i Tiy, y〉 ≤ B〈y, y〉,∀y ∈ H,

i.e

A‖K∗y‖2 ≤
∑
i∈I
‖Tiy‖2 ≤ B‖y‖2,∀y ∈ H,

thus {Ti}i∈I is a K-g-frame for H whit respect to K. �

Corollary 2.9. A sequence {Ti ∈ B(H) : i ∈ I} is a tight K-frame for B(H,K)

if and only if it is a tight K-g-frame for H with respect to K.

3. The relationships between K-frames and K-operator Frames

for B(H)

Now we suppose that H = K, and we will define the K-frame for B(H).

Definition 3.1. Let K ∈ B(H). A sequence {Ti ∈ B(H) : i ∈ I} is said to be

a K-frame for B(H) if there exist 0 < A,B <∞ sach that

A〈TK, TK〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H), (3.1)

where the series converges in the strong operator topology.

In the following we will show the equivalence between K-frames and K-

operator Frames for B(H).

Theorem 3.2. A sequence {Ti ∈ B(H) : i ∈ I} is a K-frame for B(H) if and

only if it is a K-operator frame for B(H).

Proof. Let {Ti}i∈I be a K-operator frame for B(H).

Then there exists two positive constants A and B, such that

A‖K∗x‖2 ≤
∑
i∈I
‖Tix‖2 ≤ B‖x‖2,∀x ∈ H,

i.e

A〈K∗x,K∗x〉 ≤
∑
i∈I
〈T ∗i Tix, x〉 ≤ B〈x, x〉,∀x ∈ H.

So

AKK∗ ≤
∑
i∈I

T ∗i Ti ≤ BIH.

Hence

ATKK∗T ∗ ≤
∑
i∈I

TT ∗i TiT
∗ ≤ BTT ∗,∀T ∈ B(H).

Thus

A〈TK, TK〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H),

i.e {Ti}i∈I is a K-frame for B(H).
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Conversely, assume that {Ti}i∈I be a K-frame for B(H).

Then there exists two positive constants A and B, such that

A〈TK, TK〉 ≤
∑
i∈I
〈T, Ti〉〈Ti, T 〉 ≤ B〈T, T 〉,∀T ∈ B(H),

i.e

ATKK∗T ∗ ≤
∑
i∈I

TT ∗i TiT
∗ ≤ BTT ∗,∀T ∈ B(H).

So

A〈TKK∗T ∗x, x〉 ≤
∑
i∈I
〈TT ∗i TiT ∗x, x〉 ≤ B〈TT ∗x, x〉,∀T ∈ B(H),∀x ∈ H.

Let y ∈ H and T ∈ B(H) such that T ∗x = y, then

A〈K∗y,K∗y〉 ≤
∑
i∈I
〈T ∗i Tiy, y〉 ≤ B〈y, y〉,∀y ∈ H,

i.e

A‖K∗y‖2 ≤
∑
i∈I
‖Tiy‖2 ≤ B‖y‖2,∀y ∈ H,

thus {Ti}i∈I is a K-operator frame for B(H). �

Corollary 3.3. A sequence {Ti ∈ B(H) : i ∈ I} is a tight K-frame for B(H)

if and only if it is a tight K-operator frame for B(H).
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