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ABSTRACT. Frames play significant role in various areas of science and en-
gineering. Motivated by the work of Chander Shekhar, S. K. Kaushik and
Abas Askarizadeh, Mohammad Ali Dehghan, we introduce the concepts
of K-frames for B(#, K) and we establish some result. Also, we consider

the relationships between K-Frames and K-Operator Frames for B(H).
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1. INTRODUCTION AND PRELIMINARIES

The concept of frames in Hilbert spaces has been introduced by Duffin and
Schaeffer [7] in 1952 to study some deep problems in nonharmonic Fourier
series, after the fundamental paper [5] by Daubechies, Grossman and Meyer,
frame theory began to be widely used, particularly in the more specialized
context of wavelet frames and Gabor frames [8].
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Traditionally, frames have been used in signal processing, image processing,
data compression and sampling theory. A discreet frame is a countable family of
elements in a separable Hilbert space which allows for a stable, not necessarily
unique, decomposition of an arbitrary element into an expansion of the frame
elements.

In this paper, we introduce a new notion of K-frames for B(H,K) and we
consider the relationships between K-frames and K-operator Frames for B(H),
the set of all bounded operators on a Hilbert space H.

Let I be a finite or countable index subset of N. In this section we briefly
recall the definitions and basic properties of C*-algebra, Hilbert A-modules,
Frames, K-perator Frames for B(#) and K-g-frames. For information about
frames in Hilbert spaces we refer to [3]. Our reference for C*-algebras is [6, 4].
For a C*-algebra A if a € A is positive we write a > 0 and A" denotes the set
of positive elements of A.

Definition 1.1. [4]. If A is a Banach algebra, an involution is a map a — a*
of A into itself such that for all ¢ and b in A and all scalars « the following
conditions hold:

(1) (a*)* =a.

(2) (ab)* =b*a™.

(3) (aa+b)* = aa™ +b*.

Definition 1.2. [4]. A C*-algebra A is a Banach algebra with involution such
that :

la*al| = [la]l?
for every a in A.

EXAMPLE 1.3. B = B(H) the algebra of bounded operators on a Hilbert space,
is a C*-algebra, where for each operator A, A* is the adjoint of A.

Definition 1.4. [9]. Let A be a unital C*-algebra and H be a left .A-module,
such that the linear structures of A and H are compatible. H is a pre-Hilbert
A-module if H is equipped with an A-valued inner product (.,.) : H x H — A,
such that is sesquilinear, positive definite and respects the module action. In
the other words,

(1) (z,z) >0 for all z € H and (z,z) = 0 if and only if z = 0.
(2) (ax+y,z) =alzx,y) + (y,z) for all a € A and z,y,z € H.
(3) (x,y) = (y,x)* for all z,y € H.

For z € H, we define ||z|| = ||(z, 2)||2. If H is complete with ||.||, it is called
a Hilbert A-module or a Hilbert C*-module over A. For every a in C*-algebra
A, we have |a| = (a*a)? and the A-valued norm on A is defined by |z| = (x,z)2
for z € H.
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ExaMPLE 1.5. Let H be a Hilbert space, then B(#) is a Hilbert C*-module
with the inner product (T, S) = T'S*,VT,S € B(H).

Let H and K be two Hilbert A-modules, A map T : H — K is said to be
adjointable if there exists a map 7% : K — H such that (Tz,y) 4 = (x, T*y) 4
for all x € H and y € K.

We also reserve the notation End’(H,KC) for the set of all adjointable op-
erators from #H to KC and End’ (#H,H) is abbreviated to End’ (H).

Let H and K be separable Hilbert spaces and let B(H, K) be the set of all
bounded linear operators from # into K. Then B(#,K) is a Hilbert B(K)-
module with the inner product (T, S) = T'S*,VT,S € B(H,K).

Definition 1.6. [2] A sequence {T; € B(H,K) : i € I} is said to be a frame
for B(H,K) if there exist 0 < A, B < oo sach that

A(T,T) <Y (T, Ti)(T;, T) < B(T, T),VT € B(H,K), (1.1)
i€l

where the series converges in the strong operator topology.

Definition 1.7. [1] Let K € B(H). A sequence {A; € B(H,K,) : i € I}
is called a K-g-frame for H with respect to {K;}icr, if there exist constants
A, B > 0 such that
AK* 2] <Y [[A]® < Blla|)?, Vo € H. (1.2)
icl
The constants A and B are called lower and upper bounds for the K-g-frame,
respectively. A K-g-frame {A;};cs is said to be tight if there exists a constant
A > 0 such that
A|K 2] =) [[A]®, Vo € H. (1.3)
iel

It is called Parseval K-g-frame if A =1 in 1.3.

Definition 1.8. [11] Let K € B(H). A family of bounded linear operators
{T;}icr on a Hilbert space H is said to be a K-operator frame for B(H), if
there exist positive constants A, B > 0 such that

Al < 3 Tl < Bllall?, v € M. (1.4)
i€l
where A and B are called lower and upper bounds for the K-operator frame,

respectively. A K-operator frame {T;};cr is said to be tight if there exists a
constantA > 0 such that

A|K*z))? = | T, Vo € H. (1.5)
i€l

It is called Parseval K-operator frame if A =1 in 1.5.
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2. K-FRAME FOR B(H,K)
Now we are ready to define the K-frame for B(#, K).

Definition 2.1. Let K € B(H). A sequence {T; € B(H,K) :i € I} is said to
be a K-frame for B(H, K) if there exist 0 < A, B < oo sach that
A(TK,TK) <Y (T, Ti)(T;,T) < B(T,T),¥T € B(H,K), (2.1)
i€l
where the series converges in the strong operator topology.

Similar to Remark 1 in [10] we have

Remark 2.2. (1) Every frame for B(H, K) is a K-frame, for any K € B(H):
K #0.
(2) If K € B(H) is a surjective operator, then every K-frame for B(H, K)
is a frame for B(H, K).

The frame operator S : B(H,K) — B(H,K) for the K-frame is given by
ST = (T, T)T; =Y TT;T,.
i€l iel
Remark 2.3. The frame operator is positive and adjointable, but not invertible
in general.

Theorem 2.4. Let K € B(H) and {T; € B(H,K) : i € I} be a frame for
B(H,K). Then {T; K*}icr is a K-frame for B(H,K).

Proof. Let {T;};cr be a frame for B(H, K).
Then there exists two positive constants A and B, such that
A(T,T) <Y (T, Ti)(T;,T) < B(T, T),VT € B(H,K). (2.2)
i€l
Replacing T by TK in (2.2) we obtain
A(TK,TK) < Z(TK,TZ)(ThTK) < B(TK,TK),¥T € B(H,K).
i€l
But
Y (TK,T)(Ti, TK) =Y TKT;T,(TK)"
i€l iel
=Y TKT;T,K*T*
icl
= ZT(TiK*)*TiK*T*
icl
= (T, T;K*)(T;K*,T).
i€l
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So
A(TK,TK) <Y (T T,K*)(T;K*,T) < B(TK,TK),VT € B(H,K).
i€l

On the other hand, for all z € K, we have

BUTK,TK)x,z) = B(TK(TK)*z,z)
= B(TKK*"T"z,x)
= B(K*T*z, K*T*x)
= B||K*T*z|?
< B||K|?||T*|*
= B|K|*(T*z, T*z)
= B||K||*{(TT*x,x)
= B|K|*((T, T)x, ).

Hence
B(TK,TK) < B|K|*(T,T).

(Where || K|| is the operator norm)
From the above we have

ATK,TK) <> (T, T,K*)(TK*,T) < B|K|[*(T,T),vT € B(H,K).
el

Then {T;K*};cr is a K-frame for B(H, K). O

Theorem 2.5. Let K1, Ky € B(H) and {T; € B(H,K) :i € I} be a K1-frame
for B(H,K). Then {T;K3}icr is a KoKq-frame for B(H,K).

Proof. Let {T;}ier be a Ki-frame for B(H, K).
Then there exists two positive constants A and B, such that

A(TKy, TKy) <Y (T, Ti)(T;, T) < B(T,T),VT € B(H,K). (2.3)
el

Replacing T by T K3 in (2.3) we obtain

ATK Ky TKoKy) <3 (TK, TN (T, TKy) < B(TKy, TK»), VT € B(H, K).
i€l
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But
> (TEy, T)(Ti, TKy) =Y TR T T;(TK>)*
i€l i€l
=Y TKT;T;K3T*
el
= T(T3) KT
iel
=Y (T TG (K3, T).
iel
So
A(TKyK,, TKyKq) < Z(T,ﬂK;)(TiK;,T> < B(TK»3,TK»),VT € B(H,K).
iel
On the other hand, for all z € K, we have
B{{TK,, TKs)x,z) = B(TKy(TKs) z, x)
B(TK;K;T z, )
B(K;T"x, K;T™x)
— BK3T ol
< Bl || T
— Bl K| (T2, T"a)
— BT T 2, o)
= B||Fa|*((T, T)x, ).

Hence
B(TK,, TK,) < B||Ks|*(T,T).

(Where ||K2|| is the operator norm)
From the above we have

ATK, Ky TKKy) <Y (T, LK) (K3, T) < B|[Ky|*(T,T), YT € B(H.K).
i€l

Then {T; K3 }icr is a Ko Kj-frame for B(H, K). ]

Corollary 2.6. Let K € B(H) and {T; € B(H,K) : i € I} be a K-frame for
B(H,K). Then {T;(K*)™}ier is a KN*1-frame for B(H,K).

Proof. 1t follows from the previous theorem. O

For a sequence of Hilbert spaces {K;};cr, define the space I?({K;}icr) by

12({Ki}z‘el) = {{fﬂi}ief rx € Kyyi € LZ ||$i||2 < OO},

icl
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with the inner product
<{-73i}i617 {yi}iel> = Z<$iayi>7
iel
it is a Hilbert space.

Proposition 2.7. Let K € B(H) and K = I>({K;}ic1). The sequence {A; €
B(H,K,) :i € I} is a K-g-frame for H with respect to {K;}icr if and only if
the sequence {A; € B(H,K) :i € I} is a K-g-frame for H with respect to K,
with Az = (...,0,0, Az, 0,0,...), Vo € H.

The follwing theorem show that the definition 1.7 is equivalent with our
definition 2.1.

Theorem 2.8. A sequence {T; € B(H,K) : i € I} is a K-frame for B(H,K)
if and only if it is a K-g-frame for H whit respect to K.

Proof. Let {T;}ier be a K-g-frame for H whit respect to K.
Then there exists two positive constants A and B, such that

Al 2|2 < 3 | Tall? < Bllall?, Va € A,

el
i.e
AK*x, K*x) < Z(T:Tlaz,@ < B(z,z),Vz € H.
el
So
AKK* <> T;T; < Bly.
el
Hence
ATKE*T* <Y TT;T,T* < BTT* ¥T € B(H,K).
iel
Thus

ATK, TK) <> (T, T)(T;,T) < B(T, T),¥T € B(H,K),
il
i.e {T;}icr is a K-frame for B(H, K).
Conversely, assume that {T;};c;r be a K-frame for B(H, K).
Then there exists two positive constants A and B, such that

ATK,TK) <Y (T, T)(T;,T) < B(T,T),¥T € B(H,K),

el
i.e
ATKE*T* <Y TT;T,T* < BTT* VT € B(H,K).
el
So
ATKK*T*x,2) <Y (TT;TiTz,2) < B(TT"x,2),9T € B(M,K),Vx € K.

icl
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Let y € H and T € B(H,K) such that T*z = y, then
A(K*y, K*y) <Y (T Ty, y) < Bly,y),Vy € A,

il
i.e
AIIE"y|* <> ITwl® < Bllyl*, vy € H,
icl
thus {7} }ier is a K-g-frame for H whit respect to K. O

Corollary 2.9. A sequence {T; € B(H) : i € I} is a tight K -frame for B(H,K)
if and only if it is a tight K-g-frame for H with respect to K.

3. THE RELATIONSHIPS BETWEEN K-FRAMES AND K-OPERATOR FRAMES
FOR B(H)
Now we suppose that H = K, and we will define the K-frame for B(H).

Definition 3.1. Let K € B(H). A sequence {T; € B(H) : i € I} is said to be
a K-frame for B(H) if there exist 0 < A, B < co sach that

ATK, TK) <> (T, Ti)(T;,T) < B(T, T),¥T € B(H), (3.1)
i€l
where the series converges in the strong operator topology.

In the following we will show the equivalence between K-frames and K-
operator Frames for B(H).

Theorem 3.2. A sequence {T; € B(H) :i € I} is a K-frame for B(H) if and
only if it is a K-operator frame for B(H).
Proof. Let {T;};c1 be a K-operator frame for B(H).

Then there exists two positive constants A and B, such that

A|K*2|? <Y | Tia|® < Blz|*, Vo € A,

i€l
i.e
A(K*z, K*x) < Z<T:Tz%$> < B{z,x),Vz € H.
i€l
So
AKK* <> T;T; < Bly.
el
Hence
ATKK*T* <Y TT;T;T* < BIT*,VT € B(H).
i€l
Thus

A(TK,TK) <Y (T, T;)(T;,T) < B(T,T),VT € B(H),
el
i.e {T;}icr is a K-frame for B(H).
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Conversely, assume that {T;};c; be a K-frame for B(H).
Then there exists two positive constants A and B, such that

A(TK,TK) < (T, Ti)(T;,T) < B(T,T),VT € B(H),

el
i.e
ATKK*T* <Y TT;T,T* < BIT* VT € B(H).
el
So
ATKK*T*x,2) <Y (TT; TiT*x,2) < B{I'T*z,x),¥T € B(H),Vz € H.

iel
Let y € H and T € B(H) such that T*z = y, then

A(K*y, K*y) <> (T Toy,y) < By, y),Vy € H,

iel
i.e
AIK*y* <> I Twl? < Bllyll* Vy € H,
iel
thus {T;}ier is a K-operator frame for B(H). O

Corollary 3.3. A sequence {T; € B(H) :i € I} is a tight K-frame for B(H)
if and only if it is a tight K-operator frame for B(H).
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