دوره 16، شماره 1 - ( 1-1400 )                   جلد 16 شماره 1 صفحات 105-121 | برگشت به فهرست نسخه ها

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghian A, Shahzadeh Fazeli S A, Karbassi S M. Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members. IJMSI. 2021; 16 (1) :105-121
URL: http://ijmsi.ir/article-1-1274-fa.html
Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members. مجله علوم ریاضی و انفورماتیک. 1400; 16 (1) :105-121

URL: http://ijmsi.ir/article-1-1274-fa.html


چکیده:  
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members in each cluster. In this paper, we use hierarchical SVD to cluster graphs with it's adjacency matrix. In this algorithm, users can select a range for the number of members in each cluster. The results show in hierarchical SVD algorithm, clustering measurement parameters are more desirable and clusters are as dense as possible. The complexity of this algorithm is less than the complexity of SVD clustering method.
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه علوم ریاضی و انفورماتیک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb