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ABSTRACT. This paper is devoted to deformation theory of graded Lie
algebras over Z or Z; with finite dimensional graded pieces. Such defor-
mation problems naturally appear in number theory. In the first part of
the paper, we use Schlessinger criteria for functors on Artinian local rings
in order to obtain universal deformation rings for deformations of graded
Lie algebras and their graded representations. In the second part, we use
a version of Schlessinger criteria for functors on the Artinian category
of nilpotent Lie algebras which is formulated by Pridham, and explore

arithmetic deformations using this technique.
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1. INTRODUCTION

To a hyperbolic smooth curve defined over a number-field one naturally
associates an ”anabelian” representation of the absolute Galois group of the
base field landing in outer automorphism group of the algebraic fundamental
group [4]. It would be very fruitful to deform this object, rather than the
abelian version coming from the action of Galois group on the Tate module of
the Jacobian variety. On the other hand, there is no formalism available for
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deforming such a representation. This is why we translate it to the language of
graded Lie algebras which are still non-linear enough to carry more information
than the abelian version. For more details see [9] and [10].

In this paper, we introduce several deformation problems for Lie-algebra ver-
sions of the above representation. In particular, we deform the representation
of certain Galois-Lie algebras landing in the graded Lie algebra associated to
the weight filtration on outer automorphism group of the pro-I fundamental
group, and we construct a deformation ring parameterizing all deformations
fixing the mod-I Lie-algebra representation, which is the typical thing to do in
the world of Galois representations.

Organization of the paper is as follows: First, we review methods of associ-
ating Lie algebras to profinite groups. Then, we introduce some deformation
problems for representations landing in graded Lie algebras. Afterwards, we
use the classical Schlessinger criteria for representability of functors on Artin
local rings for deformation of the above representation. In some cases, uni-
versal deformations exist and in some others, we are only able to construct a
hull which parameterizes all possible deformations. finally, we use a graded
version of Pridham’s adaptation of Schlessinger criteria for functors on finite
dimensional nilpotent Lie algebras.

2. LIE ALGEBRAS ASSOCIATED TO PROFINITE GROUPS

Exponential map on the tangent space of an algebraic group defined over a
field k of characteristic zero, gives an equivalence of categories between nilpo-
tent Lie algebras of finite dimension over k£ and unipotent algebraic groups
over k. This way, one can associate a Lie algebra to the algebraic unipotent
completion I'*8(Q) of any profinite group I'.

On the other hand, Malcev defines an equivalence of categories between
nilpotent Lie algebras over QQ and uniquely divisible nilpotent groups. Inclusion
of such groups in nilpotent groups has a right adjoint I' — I'g. For a nipotent
group T, torsion elements form a subgroup T and T'g = U(T'/T)/". In fact we
have I'g = I'*12(Q).

Any nilpotent finite group is a product of its sylow subgroups. Therefore,
the profinite completion I'* factors to pro-/ completions I'/', each one a com-
pact open subgroup of the corresponding I'*9(Q;) and we have the following
isomorphisms of [-adic Lie groups

Lie(I')') = Lie(T'*#(Q;)) = Lie(I'#(Q)) ® Q.

In fact, the adelic Lie group associated to I' can be defined as Lie(I'*8(Q)) @ A/
which is the same as [] Lie(T'}").

Suppose we are given a nilpotent representation of I' on a finite dimensional
vector space V over k, which means that for a filtration F' on V respecting the
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action, the induced action of Grg (V) is trivial. The subgroup
{o € GL(V)|oF = F,Grp(o) =1}
is a uniquely divisible group and one obtains a morphism
Lie(T'g) = {o € GL(V)|oF = F,Grp(c) = 0}

which is an equivalence of categories between nilpotent representations of I’
and representations of I'*#(Q) and nilpotent representations of the Lie alge-
bra Lie(I'g) over the field k. The above equivalence of categories extends to
an equivalence between linear representations of I' and representations of its
algebraic envelope

The notion of weighted completion of a group developed by Hain and Mat-
sumoto generalizes the concept of algebraic unipotent completion. Suppose
that R is an algebraic k-group and w : G,, — R is a central cocharacter. Let
G be an extension of R by a unipotent group U in the category of algebraic
k-groups

0—U—G—R—0.

The first homology of U is an R-module, and therefore an G,,-module via w,
which naturally decomposes to to direct sum of irreducible representations each
isomorphic to a power of the standard character. We say that our extension is
negatively weighted if only negative powers of the standard character appear
in H1(U). The weighted completion of I" with respect to the representation
p with Zariski dense image p : I' — R(Q;) is the universal Q;-proalgebraic
group G which is a negative weighted extension of R by a prounipotent group
U and a continuous lift of p to G(Q;) [6]. The Lie algebra of G(Q;) is a more
sophisticated version of Lie(I'g) ® Q;.

3. COHOMOLOGY THEORIES FOR GRADED LIE ALGEBRAS

We shall first review cohomology of Lie algebras with the adjoint represen-
tation as coefficients. Let L be a graded Z;-algebra and let C9(L, L) denote
the space of all skew-symmetric g-linear forms on a Lie algebra L with values
in L. Define the differential

§:C4L,L) — CT™Y(L, L)

where the action of § on a skew-symmetric ¢g-linear form + is a skew-symmetric
(q + 1)-linear form which takes (I1,...,l4+1) € L9T! to

DG SRR T{ [0 4 19 SR PSRy Py Y I N V(AU PR Y |

where the first sum is over s and ¢ with 1 < s < t < ¢+ 1 and the second
sum is over u with 1 <u < ¢+ 1. Then §? = 0 and we can define HY(L, L) to
be the cohomology of the complex {CY(L, L),§}. If we put C™ = C™ (L, L)
and H™ = H™VY(L, L), then there exists a natural bracket operation which
makes C' = §C™ a differential graded algebra and H = ®H™ a graded Lie
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algebra. Look in [3]. If L is Z-graded, L = &L(m), we say ¢ € CI(L, L)(m) if
for [; € L(g;) we have ¢(l1,...,l3) € L(g1 + ... + g —m). Then, there exists a
grading induced on the Lie algebra cohomology H(L,L) = ®HY(L, L)(m).

The computational tool used by geometers to study deformations of Lie
algebras is a cohomology theory of K-algebras where K is a field, which is
developed by Harrison [5]. This cohomology theory is generalized by Barr to
algebras over general rings [1]. Here we use a more modern version of the
latter introduced independently by Andre and Quillen which works for general
algebras [8].

Let A be a commutative algebra with identity over Z; or any ring R and let
M be an A-module. By an n-long singular extension of A by M we mean an
exact sequence of A-modules

O—-M-—->M,1—..—>M  —-T—>R—0

where T is a commutative Z;-algebra and the final map a morphism of Z;-
algebras whose kernel has square zero. It is trivial how to define morphisms
and isomorphisms between n-long singular extensions. Barr defines a group
structure on these isomorphism classes [1], which defines H, (A, M) for n > 1
(A, M) = Der(A, M). Barr proves that for a multiplicative
subset S of R not containing zero

Hg (AvM) = Hgarr(A&M)

Barr

and we put Hp,

for all n and any Ag-module M. According to this isomorphism, the coho-
mology of the algebra A over Z; is the same after tensoring A with Q; if M
is A ® Q;-module. Thus one could assume that we are working with an alge-
bra over a field, and then direct definitions given by Harrison would serve our
computations better. Consider the complex

0 — Hom(A, M) — Hom(S*A, M) — Hom(A® A® A, M)
where 1) € Hom(A, M) goes to

d1t) : (a,b) = ayp(b) — ¢p(ab) + bip(a)
and ¢ € Hom(S?A, M) goes to

d2¢(aa b, C) = a¢(ba C) - ¢(aba C) + ¢(av bC) - C¢(aa b)

The cohomology of this complex defines Hy,,, (R, M) for i = 1,2. If A is a local
algebra with maximal ideal m and residue field k, the Harrison cohomology
H} (A k) = (m/m?)’, which is the space of homomorphisms A — k[t]/t
such that m is the kernel of the composition A — k[t]/t? — k.

Andre-Quillen cohomology is the same as Barr cohomology in low dimensions
and can be described directly in terms of derivations and extensions. For any
morphism of commutative rings A — B and B-module M we denote the B-
module of A-algebra derivations of B with values in M by Ders (B, M). Let
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Ext2f(B, M) denote the B-module of infinitesimal A-algebra extensions of B
by M. The functors Der and Ext™ have transitivity property. Namely, given
morphisms of commutative rings A — B — C and a C-module M, there is an
exact sequence

00— DGI‘B(C, M) — DerA(C’, M) — DerA(B,M)

— Exti5H(C, M) — Ext'}(C, M) — Ext}(B, M).

The two functors Der and Ext™ also satisfy flat base-change property. Namely,
given morphisms A — B and A — A’ if Tor{*(A’, B) = 0, then there are
isomorphisms Der (4’ ® 4 B, M) = Der (B, M) and Ext'}{ (4’ ® 4 B, M) =

Ext'}*(B, M). Andre-Quillen cohomology associates Der 4 (B, M) and Ext'}(B, M)

to any morphism of commutative rings A — B and B-module M as the first
two cohomologies and extends it to higher dimensional cohomologies such that
transitivity and flat base-change extend in the obvious way.

4. SEVERAL DEFORMATION PROBLEMS

Let X denote a hyperbolic smooth algebraic curve defined over a number
field K. Let S denote the set of bad reduction places of X together with
places above I. We shall construct Lie algebra versions of the pro-l outer
representation of the Galois group

Pl : Gal(Kg/K) — Out(m (X)®).

Let I; denote the decreasing filtration on Out(r;(X)®) induced by the central
series filtration of 71 (X)), By abuse of notation, we also denote the filtration
on Gal(Ks/K) by I;. We get an injection of the associated graded Z;-Lie
algebras on both sides

Gal(Ks/K) — Out(m (X)®).

One can also start with the [-adic unipotent completion of the fundamental
group and the outer representation of Galois group on this group.

P! Gal(Ks/K) — Out(m (X)42).
By [6] 8.2 the associated Galois Lie algebra would be the same as those as-
sociated to I;. Let Ug denote the prounipotent radical of the Zariski closure

of the image of p%"'. The image of Gal(Ks/K) in Out(m (X)75,) is a nega-
tively weighted extension of G,, by Ug with respect to the central cocharacter
w: 2+~ 172, By [6] 8.4 the weight filtration induces a graded Lie algebra Us
which is isomorphic to Gal(Kg/K) ® Q.

There are several deformation problem in this setting which are interesting.
For example, the action of Galois group on unipotent completion of the fun-

damental group induces an action of the Galois group on the corresponding
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nilpotent Q;-Lie algebra
Pt Gal(Ks/K) — Aut(Us).

which could be deformed. Another possibility is deforming the following rep-
resentation

Gal(Ks/K) — Aut(m (X)'3,) — Aut(H,(P))

where P denote the nilpotent Lie algebra associated to 1 (X)Yg . This time,
the Schlessinger criteria may not help us in finding a universal representation.
There exists also a derivation version, which is a Schlessinger friendly Z;-Lie
algebras representation

Gal(Ks/K) — Der(P)/Inn(P).
One could also deform the following morphism, fixing its mod-I/ reduction

Gal(Ks/K) — Out(m (X)1).

5. DEFORMATIONS OF LOCAL GRADED LIE ALGEBRAS

In this section, we are only concerned with deformations of Lie algebras
and leave deformation of their representations for the next section. We are
interested in deforming the coefficient ring of graded Lie algebras over Z; of
the form L = GT}OA/ut(wl1 (X)) and then deforming representations of Galois
graded Lie algebra

Gr¥, Gal(K /K) — Gr}Out(r! (X)).

One can reduce the coefficient ring Z; modulo | and get a graded Lie algebra
L over F; and a representation

Gr%, Gal(K/K) — L.

We look for liftings of this representation which is landing in L among rep-
resentations landing in graded Lie algebras over Artinian local rings A of the
form L = ®;L? where L’ is a finitely generated A-module for positive 3.

Let k be a finite field of characteristic p and let A be any complete Noetherian
local ring. For example A can be W (k), the ring of Witt vectors of k, or O,
the ring of integers of any local field with quotient field K, and residue field k.
Let C denote the category of Artinian local A-algebras with residue field k. A
covariant functor from C to Sets is called pro-representable if it has the form

F(A) = Hom (Runiv, A) AecC

where Ryn;v is a complete local A-algebra with maximal ideal myy;y such that
Runiv/mi, is in C for all n.

There are a number of deformation functors related to our problem. For
a local ring A € C with maximal ideal m, the set of deformations of L to A
is denoted by D.(L, A) and is defined to be the set of isomorphism classes of
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graded Lie algebras L/A of the above form which reduce to L modulo m. In
this notation ¢ stands for coefficients, since we are only deforming coefficients
not the Lie algebra structure. The functor D(L) as defined above is not a
pro-representable functor. As we will see, there exists a ”hull” for this functor
(Schlessinger’s terminology [11]) parameterizing all possible deformations. The
idea of deforming the Lie structure of Lie algebras has been extensively used by
geometers. For example, Fialowski studied this problem in double characteristic
zero case [2]. In this paper, we are interested in double characteristic (0,1)-
version.

Now we make an assumption for further constructions. Assume H?(L, L)(m)
is finite dimensional for all m and consider the algebra Dy = Z;®@,, H*(L, L)(m)’
where ' means the dual over Z;. Fix a graded homomorphism of degree zero

w: H*(L,L) — C*(L, L)

which takes any cohomology class to a cocycle representing this class. Now
define a Lie algebra structure on

D, ® L =L @ Hom®(H?*(L, L), L)
where Hom" means degree zero graded homomorphisms, by the following bracket

[Ty, #1), (2, p2)] == ([l1, 2], )

where (o) = p(a)(ly,lz) + [p1(@),l2] + [¢p2(@),l1]. The Jacobi identity is
implied by du(a) = 0. It is clear that this in an infinitesimal deformation
of L and it can be shown that, up to an isomorphism, this deformation does
not depend on the choice of . We shall denote this deformation by 7 after
Fialowski and Fuchs [3].

Proposition 5.1. Any infinitesimal deformation of L to a finite dimensional
local ring A is induced by pushing forward n;, by a unique morphism

¢:Z & @ H*(L,L)(m) — A.

Proof. This is the double characteristic version of proposition 1.8 in [3]. O

Note that, in our case H2(L, L) is not finite dimensional. This is why we re-
strict our deformations to the space of graded deformations. Since H?(L, L)(0)
is the tangent space of the space of graded deformations, and the grade zero
piece H2(L, L)(0) is finite dimensional, the following version is more appropri-
ate:

Proposition 5.2. Any infinitesimal graded deformation of L to a finite di-
mensional local Ting A is induced by pushing forward n% by a unique morphism

¢: 7 ® H*(L,L)(0) — A.
where 1% denotes the restriction of nr, to Zy ® H?(L,L)(0)".
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Let A be a small extension of F; and L be a graded deformation of L over
the base A. The deformation space D(L, A) can be identified with H?(L, L)(0)
which is finite dimensional. Therefore, by Schlessinger criteria, in the subcat-
egory C' of C consisting of local algebras with m? = 0 for the maximal ideal
m, the functor D(L, A) is pro-representable. This means that there exists a
unique map

Zy & H*(L, L)(0)" = Runiv

inducing the universal infinitesimal graded deformation.

5.1. Obstructions to deformations. Let A be an object in the category
C and L € Def(L, A). The pair (A, L) defines a morphism of functors 6 :
Mor(A, B) — Def(L, B). We say that (A, L) is universal if 6 is an isomorphism
for any choice of B. We say that (A, L) is miniversal if 6 is always surjective,
and gives an isomorphism for B = k[e]/e2. We intend to construct a miniversal
deformation of L.

Consider a graded deformation with base in a local algebra A with residue
field £ = FF;. One can define a map

O 4 : ExtiN(A, k) — H3(L, L).

Indeed, choose an extension 0 — k — B — A — 0 corresponding to an
element in Extgtf(A, k). Consider the B-linear skew-symmetric operation {.,.}
on L ®; B commuting with [.,.] on L ® A defined by {I,11} = [I,1;] for [ in the
kernel of L ®; B — L ®;, A which can be identified by L. Here [; is the image of
I under the projection map B — k tensored with L whose kernel is the inverse
image of the maximal ideal of A. The Jacobi expression induces a multilinear
skew-symmetric form on L which could be regarded as a closed element in

C3(L, L). The image in H?(L, L) is independent of the choices made.

Theorem 5.3. (Fialowski) One can deform the Lie algebra structure on L&y A
to L ®; B if and only if the image of the above extension vanishes under the
morphism Extizrif(A, k) — H3(L,L).

Proof. The proof presented in [2] and [3] works for algebras over fields of finite
characteristic. O

Using the above criteria for extending deformations, one can follow the meth-
ods of Fialowski and Fuchs to introduce a miniversal deformation for L.

Proposition 5.4. Given a local commutative algebra A over Z; there exists a
universal extension

0 — BExty(4,k) — C — A—0

among all extensions of A with modules M over A with mM = 0 where m is
the maximal ideal of A.
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This is proposition 2.6 in [3]. Consider the canonical split extension
0 — H*(L,L)(0) — Dy — k — 0.

We will initiate an inductive construction of D, such that

inf

0 — Bxty) (D, k)’ — Dyg1 — Dy — 0.

together with a deformation 7 of L to the base Dj. For 7, take 7y, and assume
D; and ny is constructed for ¢ < k. Given a local commutative algebra Dy, with
maximal ideal m, there exists a unique universal extension for all extensions of
D by Dg-modules M with mM = 0 of the following form

inf

0 — Exty, (Dy, k)’ — C — D, — 0.

associated to the cocycle fi : S%(Dy) — Extin;f(]D)k, k)" which is dual to the
homomorphism

e Ext%f(Dk, k) — S*(Dy)’
which takes a cohomology class to a cocycle from the same class. The obstruc-

tion to extend 7y lives in Extizr;f(ID)k, k) @ H3(L, L). Consider the composition
of the associated dual map

@), : H*(L,L) — Exty (Dy, k).

with ExtiZ“lf(ID)k, k) — C and define Dy to be the cokernel of this map. We
get the following exact sequence

0 — (ker®y) — Dy — D, — 0.

We can extend ny, to ni41. Now, taking a projective limit of Dy we get a base
and a formal deformation of L.

Theorem 5.5. Let D denote the projective limit imDy which is a Z;-module.
One can deform L wuniquely to a graded Lie algebra with base D which is
miniversal among all deformations of L to local algebras over Z;.

Proof. This is the double characteristic version of theorem 4.5 in [3]. The same
proof works here because theorems 11 and 18 in [5] which are used in the
arguments of Fialowski and Fuchs work for algebras over any perfect field. [

Proposition 5.6. (Fialowski-Fuchs) The base of the minversal deformation of
L is the zero locus of a formal map H*(L,L)(0) — H3(L, L)(0).

Proof. This is the graded version of proposition 7.2 in [3]. |
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5.2. Deformations of graded Lie algebra representations. In the previ-
ous section we discussed deformation theory of the mod ! reduction of the Lie
algebra GrjOut(m} (X)). We shall mention the following

Theorem 5.7. The cohomology groups H' (Gr3Out(r} (X)), GryOut(w} (X)))(0)
are finite dimensional for all non-negative integer i.

Proof. By a theorem of Labute Grin! (X) is quotient of a finitely generated free
Lie algebra with finitely generated module of relations [Lab]. Therefore, the
cohomology groups H*(Grim} (X)), Grﬂrl( ))(0) are finite dimensional. Finite
dimensionality of the cohomology of Gr IOut(Wl1 (X)) follows from proposition
1.3. (]

We are interested in deforming the following graded representation of the
Galois graded Lie algebra

p: Gri,Gal(K/K) — Gr}Out(r! (X))

among all graded representations which modulo ! reduce to the graded repre-
sentation
p: GrS(JGal(I_(/K) - L

where the Lie algebra L over F; is the mod-I reduction of Gr}(s\u/t(ﬂi (X)).
There are suggestions from the classical deformation theory of Galois represen-
tations on how to get a representable deformation functor. Let D(p, A) denote
the set of isomorphism classes of Galois graded Lie algebra representations to
graded Lie algebras L/A of the above form which reduce to p modulo m. The
first ingredient we need in order to prove representability of D(p) is finite di-
mensionality of the tangent space of the functor. The tangent space of the
deformation functor D(p) for an object A € C is canonically isomorphic to

H'(Grk ,Gal(K/K), Ad o D)
where the Lie algebra module is given by the composition of p with the adjoint

representation of Gr;(s\lrt(wll(X /K)). To get finite dimensionality, we restrict
ourselves to the graded deformations of the graded representation p.

Theorem 5.8. H'(Gr% ;Gal(K/K), Ad o p)(0) is finite dimensional.
Proof. The Galois-Lie representation Gr}Gal(K/K) — GriOut(xl (X)) is an

injection. Derivation inducing cohomology commutes with inclusion of Lie alge-
bras. Therefore H*(Gr ;Gal(K/K), Adop)(0) injects in H*(Gr7Out(r} (X)), Ado

£)(0) which is finite dimensional by previous theorem. O

For a surjective mapping A; — Ag of Artinian local rings in C' such that the
kernel I C A; satisfies I.m; = 0 and given any deformation py of p to L ® Ay
one can associate a canonical obstruction class in

H?(Gr Gal(K/K),I ® Ado p) = H?*(Grk Gal(K/K),Adop) ® I


http://dx.doi.org/10.52547/ijmsi.18.1.19
https://ijmsi.com/article-1-1237-en.html

[ Downloaded from ijmsi.com on 2025-11-03 ]

[ DOI: 10.52547/ijmsi.18.1.19 ]

Arithmetic Deformation Theory of Lie Algebras 29

which vanishes if and only if py can be extended to a deformation with coeffi-
cients A;. Therefore, vanishing results on second cohomology are important.

Theorem 5.9. Suppose Grk ;Gal(K/K) is a free Lie algebra over Zy, then the
Galois cohomology HQ(GTSUGal(I_(/K), Ad o p) vanishes.

Proof. The free Lie algebra G = Gr;(7lGal(K/K) is rigid, and therefore has
trivial infinitesimal deformations. Thus, we get vanishing of its second coho-
mology:

H?(Grk ,Gal(K /K), Gr Gal(K /K)) = 0.

The injection of G inside L = Gr}OA/ut(wl1 (X)) as Lie-algebras over Z; implies
that, the cohomology group H Q(Gr}_’lGal(K’ /K), Ad o p) vanishes again by
freeness of G. Let G denote the reduction modulo [ of G which is a free Lie
algebra over ;. The cohomology H?(G, G) is the mod-I reduction of H2(G, G),
hence it also vanishes. So does the cohomology H?(Gr Gal(K/K), Ado p) by
similar reasoning. (|

We have obtained conceptual conditions implying Hy of [11]. What we have
proved can be summarized as follows.

Main Theorem 5.10. Suppose that Grk Gal(K/K) is a free Lie algebra
over Zy. There exists a universal deformation ring Runiv = R(X, K,l) and a
universal deformation of the representation p

p™Y : Gry Gal(K /K) — GryOut () (X)) ® Runiv

which is unique in the usual sense. If Grk ,Gal(K/K) is not free, then a
miniversal deformation exists which is universal among infinitesimal deforma-
tions of p.

Remark 5.1. Note that, freeness of Gr ;Gal(K/K) in the special case of K =
Q where filtration comes from punctured projective curve X = P — {0,1, 00}
or a punctured elliptic curve X = E — {0} is implied by Deligne’s conjecture.

As in the classical case, the Lie algebra structure on Ado p induces a graded
Lie algebra structure on the cohomology H*(Gr;(,lGal(I_(/K), Ad o p) via cup-
product, and in particular, a symmetric bilinear pairing

H'(Grk Gal(K /K), Ad o p) x H'(Gr% ,Gal(K/K), Ad o p)

— H?*(Gr¥ ,Gal(K/K), Adop)

which gives the quadratic relations satisfied by the minimal set of formal pa-
rameters of Rypniv/lRuniv for characteristic { different from 2.
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6. FUNCTORS ON NILPOTENT GRADED LIE ALGEBRAS

In this section, we review Pridham’s nilpotent Lie algebra version of Sch-
lessinger criteria [7]. The only change we impose is to consider finitely generated
graded nilpotent Lie algebras with finite dimensional graded pieces, instead of
finite dimensional nilpotent Lie algebras.

Fix a field k and let NV} denote the category of finitely generated NGLAs
(nilpotent graded Lie algebras) with finite dimensional graded pieces, and J\//?€
denote the category of pro-NGLAs with finite dimensional graded pieces which
are finite dimensional in the sense that dim L/[L, L] < co. Given L € Ni define
N¢ i to be the category of pairs {N € N, ¢ : L — N} and m to be the
category of pairs {N € J\/f\k, ¢:L— N}

All functors on Ny ;, should take the 0 object to a one point set. for a functor
F: Nz — Set, define F': Nz — Set by

F(L) =1im F(L/T(L)),

where I',, (L) is the n-th term in the central series of L. Then for hy : N¢j —
Set defined by N — Hom(L, N) we have an isomorphism

F(L) — Hom(hy, F)

which can be used to define the notion of a pro-representable functor.

A morphism p € N — M in Ny is called a small section if it is surjective
with a principal ideal kernel (¢) such that [N, (t)] = (0).

Given F : Nz — Set, and morphisms N’ — N and N’ — N in N,
consider the map

F(N' xy N") — F(N') X p(y F(N").

Then, by the Lie algebra analogue of the Schlessinger theorem F' has a hull if
and only if it satisfies the following properties
(H1) The above map is surjective whenever N” — N is a small section.
(H2) The above map is bijective when N = 0 and N” = L(e).
<H3) din’lk(tF < 00.
F is pro-representable if and only if it satisfies the following additional property
(H4) The above map is an isomorphism for any small extension N” — N.
Note that, in case we are considering graded deformations of graded Lie al-
gebras, only the zero grade piece of the cohomology representing the tangent
space shall be checked to be finite dimensional.

7. DEFORMATION OF NILPOTENT GRADED LIE ALGEBRAS
Let us concentrate on deforming the graded Lie algebra representation

Gal(Ks/K) — Out(m (X)®).
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We could fix the mod-I representation, or fix restriction of this representation
to decomposition Lie algebra D, at prime p, which is induced by the same
filtration as Gal(Ks/K) on the decomposition group. For each prime p of K
we get a map

D, — Gal(Ks/K) — Out(m, (X)D).

Theorem 7.1. For a graded Z;-Lie algebra L, let D(L) be the set of represen-
tations of Gal(Kg/K) to L which reduce to

p:Gal(Ks/K) — Out(my (X)) /10ut(n1 (X))

after reduction modulo 1. Assume that Gal(Kg/K) is a free Z;-Lie algebra.
Then, there exists a universal deformation graded Z;-Lie algebra L., and a
universal representation

gal(Ks/K) — Luniv

representing the functor D. In case Gal(Kg/K) is not free, then one can find
a hull for the functor D.

Proof. For free Gal(Kg/K) by theorem 4.9, we have
H?(Gal(Ks/K), Ad o p) =0

which implies that D is pro-representable. In case Gal(Kg/K) is not free, we
have constructed a miniversal deformation Lie algebra for another functor ,
which implies that the first three Schlessinger criteria hold. By a similar argu-
ment one could prove that there exists a hull for D. Note that Qut(r;(X)®)
is pronilpotent, and for deformation of such an object one should deform the
truncated object and then take a limit to obtain a universal object in pro-
NGLAs. O

Note that, by a conjecture of Deligne, there exists a graded Lie algebra over
Z which gives rise to all Gal(Kg/K) for different primes I, after tensoring with
Z;. For deformation of the representations of this Z-Lie algebra, one can not
use representability for functors on Artinian local rings, and the nilpotent Lie
algebra deformations become crucial.
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