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Abstract. Let D be the diameter and dG(vi, vj) be the distance be-

tween the vertices vi and vj of a connected graph G. The complementary

distance matrix of a graph G is CD(G) = [cdij ] in which cdij = 1+D−

dG(vi, vj) if i 6= j and cdij = 0 if i = j. The complementary transmission

CTG(v) of a vertex v is defined as CTG(v) =
∑

u∈V (G)[1+D−dG(u, v)].

Let CT (G) = diag[CTG(v1), CTG(v2), . . . , CTG(vn)]. The complemen-

tary distance signless Laplacian matrix of G is CDL+(G) = CT (G) +

CD(G). In this paper, we obtain the bounds for the largest eigenvalue of

CDL+(G). Further we determine Nordhaus-Gaddum type results for the

largest eigenvalue. We also establish some bounds for the complementary

distance signless Laplacian energy.
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1. Introduction

In this work we concern only simple graphs, that is graphs without loops,

multiple and directed edges. Let G be such a graph with vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G), where |V (G)| = n and |E(G)| = m. Let

A = A(G) be its (0, 1)-adjacency matrix. Suppose Ni be the neighbor set of

vertex vi ∈ V (G). Then |Ni| = dG(vi), where dG(vi) is the degree of a vertex

vi, for i = 1, 2, . . . , n. The maximum and minimum vertex degrees are denoted

by △ and δ, respectively. The distance between two vertices u and v, which

is the smallest length of any u − v path in G, is denoted by dG(u, v). The

greatest distance between any two vertices of a connected graph G is called the

diameter of G and is denoted by diam(G) = D.

For developing structure property models in drug design, virtual synthe-

sis, chemical database searching, similarity and diversity assessments, there is

a significant interest in deriving additional structural descriptors for quantita-

tive structure property relationship (QSPR) and quantitative structure activity

relationship (QSAR) models. So that Ivanciuc [26] introduced the complemen-

tary distance matrix for molecular graphs, and discussed by Balaban et al. [4]

and Ivanciuc et al. [27], which has been successfully applied in the structure

property modeling of the molar heat capacity, standard Gibbs energy of for-

mation and vaporization enthalpy of 134 alkanes C6 − C10 [27].

The complementary distance matrix of a graph G is defined as CD(G) =

[cdij ], where

cdij =







1 +D − dij if i 6= j

0 otherwise,

where D is the diameter of G and dij is the distance between the vertices vi

and vj in G. The complementary Wiener index of a graph G is defined as

CW (G) =
1

2

n
∑

i=1

n
∑

j=1

(1 +D − dij) =
∑

1≤i<j≤n

(1 +D − dij). (1.1)

We define the complementary transmission CTG(v) of a vertex v as CTG(v) =
∑

u∈V (G)[1 +D − dG(u, v)] and CT (G) is the diagonal matrix

diag[CTG(v1), CTG(v2), . . . , CTG(vn)].

For 1 ≤ i ≤ n, one can easily see that CTG(vi) is just the i-th row sum

of CD(G). Clearly CW (G) = 1
2

∑

v∈V (G) CTG(v). A graph G is said to be

complementary transmission regular if CTG(v) is a constant for each v ∈ V (G).
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On complementary distance signless Laplacian spectral radius and energy of graphs 107

Since A is a real and symmetric adjacency matrix of order n, its eigenvalues

λ1, λ2, . . . , λn are real numbers. These eigenvalues form the spectrum of G

[9, 12]. The energy of a graph G is defined as the sum of absolute values of its

eigenvalues [22], that is,

EA = EA(G) =

n
∑

i=1

|λi|.

The mathematical properties of this spectrum-based graph invariant has

been extensively studied, see the book [30], the recent articles [16, 17, 18, 19,

21, 23, 34, 33] and the references cited therein.

The complementary distance energy of a graph G, denoted by ECD(G) and

is defined as,

ECD(G) =

n
∑

i=1

|µi|, (1.2)

where µ1, µ2, . . . , µn are the eigenvalues of the complementary distance matrix

CD(G) of G. B. Zhou, and N. Trinajstić [37], gave bounds for the largest

eigenvalues of the complementary distance matrix. Recent results related to

the complementary distance energy can be found in [31, 32, 35].

The eigenvalues of the complementary distance matrix of a graph G satisfies

the relations
n
∑

i=1

µi = 0 and

n
∑

i=1

µ2
i = 2

∑

1≤i<j≤n

(1 +D − dij)
2
. (1.3)

Let Deg(G) = diag[dG(v1), dG(v2), . . . , dG(vn)] be the diagonal degree ma-

trix of G. The Laplacian matrix of G is defined as L(G) = Deg(G) − A(G)

and signless Laplacian matrix of G is defined as L+(G) = Deg(G)+A(G). Let

µ−
1 , µ

−
2 , . . . µ

−
n and µ+

1 , µ
+
2 , . . . , µ

+
n be the eigenvalues of the matrices L(G) and

L+(G), respectively. Then the Laplacian energy of G is defined in [24] as,

EL(G) =

∣

∣

∣

∣

µ−
i − 2m

n

∣

∣

∣

∣

and, in analogy to EL(G), the signless Laplacian energy is defined as

E+
L (G) =

∣

∣

∣

∣

µ+
i − 2m

n

∣

∣

∣

∣

.

For studies of the signless Laplacian spectrum and energy see [1, 3, 11, 13,

14, 15, 16, 17, 29, 36].

The complementary distance Laplacian matrix of a connected graph G is

defined as

CDL−(G) = CT (G)− CD(G).
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The complementary distance Laplacian energy of a graph G is denoted by

ECDL−(G) and is defined as

ECDL−(G) =
n
∑

i=1

∣

∣

∣

∣

∣

∣

δi −
1

n

n
∑

j=1

CTG(vj)

∣

∣

∣

∣

∣

∣

, (1.4)

where δ1, δ2, . . . , δn are the eigenvalues of the complementary distance Lapla-

cian matrix of G.

The complementary distance signless Laplacian matrix of a connected graph

G is an n× n matrix CDL+(G) = [cij ], where

cij =







1 +D − dij if i 6= j

∑n
j=1,j 6=i(1 +D − dij) if i = j,

where dij is the distance between the vertices vi and vj .

In other words, complementary distance signless Laplacian matrix is

CDL+(G) = CT (G) + CD(G). (1.5)

The investigation of matrices related to various graphical structures is a very

large and growing area of research. The matrix CDL+(G) is irreducible, non-

negative, symmetric and positive semidefinite. Let ρi = ρi(G), i = 1, 2, . . . , n

be the eigenvalues of the complementary distance signless Laplacain matrix

CDL+(G) and they can be labeled in the non-increasing order as ρ1 ≥ ρ2 ≥
· · · ≥ ρn. The largest eigenvalue ρ1 of CDL+(G) is called the complemen-

tary distance signless Laplacian spectral radius of G. By the Perron-Frobenius

theorem, there is a unique normalized positive eigenvector of CDL+(G) corre-

sponding to ρ1(G), which is called the (complementary distance signless Lapla-

cian) principal eigenvector of G.

A column vector x = (x1, x2, . . . , xn)
T ∈ R

n can be considered as a function

defined on V (G) which maps vertex vi to xi, that is, x(vi) = xi for i =

1, 2, . . . , n. Then,

xTCDL+(G)x =
∑

{u,v}⊆V (G)

(1 +D − duv)(x(u) + x(v))2,

and ρ is an eigenvalue of CDL+(G) corresponding to the eigenvector x if and

only if x 6= 0 and for each v ∈ V (G),

ρx(v) =
∑

u∈V (G)

(1 +D − duv)(x(u) + x(v)).

These equations are called the (ρ, x)-eigenequations of G. For a normal-

ized column vector x ∈ R
n with at least one non-negative component, by the
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On complementary distance signless Laplacian spectral radius and energy of graphs 109

Rayleigh,s principle, we have

ρ(G) ≥ xTCDL+(G)x,

with equality if and only if x is the principal eigenvector of G (see [10]). For

other undefined notations and terminology from graph theory, one can refer

the books [5, 7, 8].

The paper is organized as follows. In Sections 2 and 3 we determine the

bounds and Nordhaus-Gaddum type results for ρ1(G). In Section 4, we de-

termine the upper bounds for ρ1(G) of bipartite graphs. In Section 5, we

get the eigenvalues of the complementary distance signless Laplacian matrix

of graphs obtained by some graph operations. Finally, in the Section 6, we

obtain the bounds for the complementary distance signless Laplacian energy

of graphs. The results of this paper are analogous to the results obtained in [2].

2. Bounds for ρ1(G)

In this section, we get upper and lower bounds for the maximum eigenvalue

of the complementary distance signless Laplacian matrix of a graph G. We

start with the following lemma.

Lemma 2.1. Let G be a connected graph on n vertices. Then

ρ1(G) ≥ 4CW (G)

n
,

with equality if and only if G is complementary transmission regular.

Proof. Since 1 = 1√
n
(1, 1, . . . , 1)T ∈ R

n is normalized, we have

ρ1(G) ≥ 1TCDL+(G)1

=
∑

1≤i<j≤n

(1 +D − dij)

(

1√
n
+

1√
n

)2

=
4CW (G)

n
.

Equality holds if and only if the graph G has the principal eigenvector 1,

that is, CTG(v) is a constant for each vertex v ∈ V (G), i.e., G is complementary

transmission regular.

�

Corollary 2.2. Let G be a connected graph with n ≥ 2 vertices, m edges and

D = diam(G). Then

ρ1(G) ≥ 4m

n
(D − 1) + 2(n− 1). (2.1)

Equality holds if and only if G is a regular graph of diameter D ≤ 2.
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Proof. Suppose G = Kn or G is a regular graph of diameter D = 2, then it

is easy to see that (2.1) is an equality. Conversely, since there are m pairs of

vertices at distance 1 and
[(

n
2

)

−m
]

pairs of vertices at distance at most D,

we have,

CW (G) ≥ Dm+

[(

n

2

)

−m

]

= (D − 1)m+
n(n− 1)

2
.

Therefore by Lemma 2.1, we get the required result. �

Corollary 2.3. Let G be a triangle and quadrangle free connected graph with

n ≥ 2 vertices, m edges and diameter D. Then

ρ1(G) ≥ 2

[

n− 1 +
1

n
[(D − 2)M1(G) + 2m]

]

,

where M1(G) =
∑

u∈V (G)[dG(u)]
2.

Equality holds if and only if G is a complementary transmission regular and

D ≤ 3.

Proof. Here m pairs of vertices are at distance 1,
[

1
2M1(G)−m

]

pairs of ver-

tices are at distance 2 and
[(

n
2

)

− 1
2M1(G)

]

pairs of vertices are at distance at

most D ≥ 3, then from Lemma 2.1 we have the following

ρ1(G) ≥ 4

n

[

Dm+ (D − 1)

[

1

2
M1(G)−m

]

+
n(n− 1)

2
− 1

2
M1(G)

]

= 2

[

n− 1 +
1

n
[(D − 2)M1(G) + 2m]

]

.

�

Lemma 2.4. [6] Let B be a non-negative irreducible matrix with row sums

B1, B2, . . . , Bn. If ρ1(B) is the largest eigenvalue of B, then min1≤i≤nBi ≤
ρ1(B) ≤ max1≤i≤nBi, with either equality if and only if B1 = B2 = · · · = Bn.

Lemma 2.5. Let G be a connected graph with n ≥ 2 vertices and diameter D.

Let ∆ and δ be the maximum and minimum vertex degrees of G respectively.

Then

2[n− 1 + (D − 1)δ] ≤ ρ1(G) ≤ 2[(n− 1)(D − 1) + ∆],

with equality on both sides if and only if G is a regular graph of diameter D ≤ 2.
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Proof. We can easily see that the sum of the elements of i-th row in a matrix

CDL+(G) is

CDL+
i =

n
∑

j=1

cij

= 2
n
∑

j=1, j 6=i

(1 +D − dij)

≤ 2[(1 +D − 1)dG(vi) + (1 +D − 2)(n− 1− dG(vi))]

= 2[(n− 1)(D − 1) + dG(vi)]

and

CDL+
i =

n
∑

j=1

cij

= 2

n
∑

j=1, j 6=i

(1 +D − dij)

≥ 2[(1 +D − 1)dG(vi) + (1 +D −D)(n− 1− dG(vi))]

= 2[n− 1 + (D − 1)dG(vi)].

Equality holds in both cases if and only if D ≤ 2 for all i. Clearly CDL+
1 =

CDL+
2 = · · · = CDL+

n if and only if dG(v1) = dG(v2) = · · · = dG(vn) and

D ≤ 2. By Lemma 2.4, the maximum eigenvalue of an irreducible non-negative

matrix is at most the maximum row sum of the matrix and is at least the

minimum row sum of the matrix, which is attained if and only if all the row

sums are equal. Further δ ≤ dG(vi) ≤ ∆ for all i = 1, 2, . . . , n. Hence the result

follows from Lemma 2.4.

�

We obtain another upper bound for ρ1(G) in terms of order, size and maximum

vertex degree, which is as follows.

Theorem 2.6. Let G be a connected graph with n ≥ 2 vertices, m edges and

△ is the maximum vertex degree. Then

ρ1(G) ≤
√

[n− 1][4(n− 1)(D − 1)2] + 2[2D − 1][2m+ (n− 2)△], (2.2)

with equality if and only if G = Kn.

Proof. LetX = (x1, x2, . . . , xn)
T be an unit eigenvector corresponding to ρ1(G)

of CDL+(G). We have

CDL+(G)X = ρ1(G)X.

From the ith equation of the above expression and applying the Cauchy-Schwarz

inequality, we have
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ρ1(G)xi =
∑

k:k 6=i

(1 +D − dik)(xk + xi)

≤
√

∑

k:k 6=i

(1 +D − dik)2
∑

k:k 6=i

(xk + xi)2. (2.3)

Let CT ∗
i =

∑

k:k 6=i(1+D−dik)
2, for i = 1, 2, . . . , n and CT ∗

p = maxi∈V CT ∗
i .

Squaring both sides in (2.3) and taking sum for i = 1 to n, we get

ρ21(G) ≤
n
∑

i=1

CT ∗
i

(

1− x2
i + (n− 1)x2

i + 1− x2
i + (n− 1)x2

i

)

(2.4)

=
n
∑

i=1

CT ∗
i

(

2 + (2n− 4)x2
i

)

≤ 2

n
∑

i=1

CT ∗
i + (2n− 4)CT ∗

p as

n
∑

i=1

x2
i = 1. (2.5)

Since,

CT ∗
i =

∑

k:k 6=i

(1 +D − dik)
2

≤ (n− 1)(D − 1)2 + (2D − 1)dG(vi)

and also, CT ∗
p = (D − 1)2(n − 1) + (2D − 1)△, that is,

∑n
i=1 CT ∗

i = n(n −
1)(D − 1)2 + 2m(2D − 1). Therefore we get

ρ21(G) ≤ [n− 1][4(n− 1)(D − 1)2] + 2[2D − 1][2m+ (n− 2)△]. (2.6)

For the equality, suppose that equality holds in (2.2). Then all inequalities in

the above argument must be equalities. From equality in (2.6), G has D ≤ 2

and CT ∗
i = (D−1)2(n−1)+(2D−1)dG(vi), for i = 1, 2, . . . , n. From equality

in (2.4), G is a regular graph because we get CT ∗
1 = CT ∗

2 = · · · = CT ∗
n .

Then dG(v1) = dG(v2) = · · · = dG(vn). If D = 1, then G ∼= Kn. Otherwise

D = 2 and hence we have dij = 1 or dij = 2, for all i, j. Without loss of

generality we can assume that the shortest distance between vertex v1 and

vn is 2. From equality in (2.3) and (2.4), we get di,1x1 = di,2x2 = · · · =

di,i−1xi−1 = di,i+1xi+1 = · · · = di,nxn, i = 1, 2, . . . , n and for i = 1 we get

xk = 2xn, k ∈ N(1) and xk = x1, k 6∈ N(1), k 6= 1. Similarly, for i = n

we get xk = 2x1, k ∈ N(n) and xk = x1,k 6∈ N(n), k 6= n. Thus we have

x1 = xn and two type of eigencomponents x1 and 2x1 in eigenvector X, which

is a contradiction as G is regular graph of diameter 2. Hence G is complete

graph Kn. Conversely, one can easily see that the equality holds in (2.2) for

complete graph Kn. Hence the proof.

�
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3. Nordhaus-Gaddum Type Results for ρ1(G)

Theorem 3.1. Let G be a connected graph on n ≥ 4 vertices with a connected

complement graph Ḡ. Let D and D̄ be the diameters of graphs G and Ḡ,

respectively. Then

2(n− 1)(k + 1) ≤ ρ1(G) + ρ1(Ḡ) ≤ 2[(2k′ − 1)(n− 1) + (∆− δ)], (3.1)

where k = min{D, D̄} and k′ = max{D, D̄}. The equality holds if and only if

both G and Ḡ are regular graphs of diameter 2.

Proof. Let m and m̄ be the number of edges of G and Ḡ. Therefore m+ m̄ =
(

n
2

)

.

Lower bound: From the Corollary 2.2, we have

ρ1(G) + ρ1(Ḡ) ≥ 4m

n
(D − 1) + 2(n− 1) +

4m̄

n
(D̄ − 1) + 2(n− 1)

=
4

n
[mD + m̄D̄ − (m+ m̄)] + 4(n− 1)

≥ 4

n
[k(m+ m̄)− (m+ m̄)] + 4(n− 1)

=
4

n

[

k
n(n− 1)

2
− n(n− 1)

2

]

+ 4(n− 1)

= 2(n− 1)(k + 1). (3.2)

Now suppose that equality holds in the left hand side of Eq. (3.1). Then

the equality holds in Eq. (3.2) if k = D = D̄ = 2. Therefore by Corollary 2.2

we get both G and Ḡ are regular graph of diameter 2.

Conversely, let both G and Ḡ be regular graph of diameter 2, that is D =

D̄ = k = 2. Then by Corollary 2.2, ρ1(G) = 4m
n (k − 1) + 2(n − 1) and

ρ1(Ḡ) = 4m̄
n (k − 1) + 2(n− 1). Hence

ρ1(G) + ρ1(Ḡ) = 2(k + 1)(n− 1).

Upper bound: From the Lemma 2.5, we have

ρ1(G) + ρ1(Ḡ) ≤ 2[(n− 1)(D − 1) + ∆] + 2[(n− 1)(D̄ − 1) + n− 1− δ]

= 2[(n− 1)(D + D̄)− (n− 1) + (∆− δ)]

≤ 2[(2k′ − 1)(n− 1) + (∆− δ)]. (3.3)

Now suppose that equality holds in the right hand side of Eq. (3.1). Then

the equality holds in Eq. (3.3) if k′ = D = D̄ = 2. Therefore by Lemma 2.5

we get both G and Ḡ are regular graphs of diameter 2.

Conversely, let both G and Ḡ be regular graph of diameter 2, that is D =

D̄ = k′ = 2. Then by Lemma 2.5, ρ1(G) = 2[n−1−∆] and ρ1(Ḡ) = 2[n−1−δ].
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Hence

ρ1(G) + ρ1(Ḡ) = 2[3(n− 1) + ∆− δ].

�

The following theorem gives an upper bound for ρ1(G) + ρ1(Ḡ) in terms of

graph parameters like order n, maximum degree △ and minimum degree δ.

Theorem 3.2. Let G be a connected graph on n ≥ 4 vertices with a connected

Ḡ. Then

ρ1(G) + ρ1(Ḡ)

≤

√

√

√

√

√

√

√

√

8(n− 1)2(D − 1)2(2D̄ − 1)(2D − 1)(D + D̄ − 1)

+ 2(2D − 1)
[

2(n− 1)2[D̄2(2D − 1)2 − (D − 1)2(2D̄ − 1)2]

+ (n− 2)(2D − 1)2(2D̄ − 1)(△− δ)
]

2(2D − 1)(2D̄ − 1)(D + D̄ − 1)

+

√

√

√

√

√

√

√

√

8(n− 1)2D̄2(2D̄ − 1)(2D − 1)(D + D̄ − 1)

− 2(2D̄ − 1)
{

2(n− 1)2[D̄2(2D − 1)2 − (D − 1)2(2D̄ − 1)2]

+ (n− 2)(2D − 1)(2D̄ − 1)2(δ −△)
}

2(2D − 1)(2D̄ − 1)(D + D̄ − 1)
.

Proof. By the inequality (2.2) from Theorem 2.6, we get

ρ1(G) + ρ1(Ḡ) ≤
√

(n− 1) [4(n− 1)(D − 1)2] + 2(2D − 1) [2m+ (n− 2)△]

+
√

(n− 1)[4(n− 1)(D̄ − 1)2] + 2(2D̄ − 1)[2m̄+ (n− 2)△̄].

Then we get

ρ1(G) + ρ1(Ḡ)

≤
√

(n− 1) [4(n− 1)(D − 1)2] + 2(2D − 1) [2m+ (n− 2)△]

+
√

(n− 1)[4(n− 1)(D̄ − 1)2] + 2(2D̄ − 1)[2(n− 1)2 − 2m− (n− 2)δ], (3.4)

as m̄ =
(

n
2

)

−m, and △̄ = n− 1− δ, where m̄, D̄ are the number of edges and

diameter of Ḡ. Consider the function

f(m)

=
√

(n− 1) [4(n− 1)(D − 1)2] + 2(2D − 1) [2m+ (n− 2)△]

+
√

(n− 1)[4(n− 1)(D̄ − 1)2] + 2(2D̄ − 1)[2(n− 1)2 − 2m− (n− 2)δ]. (3.5)

One can easily get that

f(m) ≤ f











(n− 1)2
[

D̄2(2D − 1)2 − (D − 1)2(2D̄ − 1)2
]

−(n− 2)(2D − 1)(2D̄ − 1)
[

(2D̄ − 1)△+ (2D − 1)δ
]

(2D − 1)(2D̄ − 1)4(D + D̄ − 1)











.
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On complementary distance signless Laplacian spectral radius and energy of graphs 115

Now, from the equations (3.4) and (3.5), we get the required result. �

Corollary 3.3. Let G be a connected graph on n ≥ 4 vertices and Ḡ be its

complement graph. If D = D̄, then

ρ1(G) + ρ1(Ḡ) ≤ 2
√

4(n− 1)2(D − 1)2 + (2D − 1)(n− 2)[2(n− 1) + (△− δ)],

where D and D̄ are the diameters of G and Ḡ, respectively.

4. On ρ1(G) of Bipartite Graphs

In this section we present upper bounds for the complementary distance

signless Laplacian spectral radius of bipartite graphs in terms of diameter and

number of vertices and characterize the extremal graphs.

Theorem 4.1. Let G be a connected bipartite graph on n vertices with bipar-

tition of vertices as V (G) = V1 ∪ V2 where |V1| = p, |V2| = q. Then

ρ1(G) ≤ 1

2
(D(3n− 4)− 2(n− 2)) (4.1)

+
1

2

√

[D(3n− 4)− 2(n− 2)]
2

−4
[

2D(Dn2 − 3Dn+ 2D − n2 + 5n− 2pq − 4) + 4(pq − n+ 1)
] ,

with equality if and only if G is Kp,q.

Proof. Let V1 = {v1, v2, . . . , vp} and V2 = {vp+1, vp+2, . . . , vp+q}, where p+q =

n. Let X = (x1, x2, . . . , xn)
T be an eigenvector of CDL+(G) corresponding to

the spectral radius ρ1(G) of a graph G. Let us assume that xi = maxvk∈V1
xk

and xj = maxvk∈V2
xk.

For vi ∈ V1,

ρ1(G)xi =

p
∑

k=1,k 6=i

(1 +D − dik)(xk + xi) +

p+q
∑

k=p+1

(1 +D − dik)(xk + xi)

≤ [D(2p+ q − 2)− 2(p− 1)]xi +Dqxj . (4.2)

For vi ∈ V2,

ρ1(G)xj =

p
∑

k=1

(1 +D − dik)(xk + xj) +

p+q
∑

k=p+1,k 6=j

(1 +D − dik)(xk + xj)

≤ Dpxi + [D(2q + p− 2)− 2(q − 1)]xj . (4.3)

Since G is connected, hence xk > 0, for all vk ∈ V (G). From (4.2) and (4.3),

we get

[ρ1(G)− (D(2p+ q − 2)− 2(p− 1))] [ρ1(G)− (D(2q + p− 2)− 2(q − 1))] ≤ D2pq,

as xi, xj > 0.
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That is,

ρ21(G)− ρ1(G) [D(2(n− 1) + (n− 2))− 2(n− 2)] +D2(2n2 − 6n+ 4)

−2D(n2 − 5n+ 2pq + 4) + 4(p− 1)(q − 1) ≤ 0.

From the above inequality we get the required result (4.1).

Now suppose that equality holds in (4.1), then all inequalities in the above

argument must be equal.

From the equality in (4.2), we get

xk = xj , and vivk ∈ E(G), ∀vk ∈ V2.

From the equality in (4.3), we get

xk = xi and vjvk ∈ E(G), ∀vk ∈ V1.

Thus each vertex in each set is adjacent to all the vertices on the other set and

vice versa. Hence G is complete bipartite graph Kp,q.

Conversely, it is easy to see that (4.1) holds for complete bipartite graph

Kp,q. �

Theorem 4.2. Let G be a connected bipartite graph of order n and size m with

bipartition of the vertex set as V (G) = V1 ∪ V2, where |V1| = p and |V2| = q,

p+ q = n. Then

ρ1(G) (4.4)

≤ 1

2

[

A∗ +

√

A∗2 − 4{2(D − 1) [2(pq − n+ 1 + (p− 1)△2 + (q − 1)△1)

+ (D − 2)(n(n− 1)− 2pq)]}

]

,

where A∗ = 2(D − 1)(n − 2) + n(D − 2) + 2(△1 + △2), △1 and △2 are the

maximum degree among vertices from V1 and V2, respectively.

Proof. Let V1 = {v1, v2, . . . , vp} and V2 = {vp+1, vp+2, . . . , vp+q}. Let X =

(x1, x2, . . . , xn)
T be a Perron eigenvector of CDL+(G) corresponding to the

maximum eigenvalue ρ1(G) such that xi = maxvk∈V1
xk and xj = maxvk∈V2

xk.

Then we have, for vi ∈ V1,

ρ1(G)xi =

p
∑

k=1,k 6=i

(1 +D − dik)(xk + xi) +

p+q
∑

k=p+1

(1 +D − dik)(xk + xi)

≤ [2(D − 1)(p− 1) + q(D − 2) + 2△1]xi + [q(D − 2) + 2△1]xj . (4.5)

For vi ∈ V2,

ρ1(G)xj =

p
∑

k=1

(1 +D − djk)(xk + xj) +

p+q
∑

k=p+1,k 6=j

(1 +D − djk)(xk + xj)

≤ [p(D − 2) + 2△2]xi + [2(D − 1)(q − 1) + p(D − 2) + 2△2]xj . (4.6)
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On complementary distance signless Laplacian spectral radius and energy of graphs 117

Combining the inequalities (4.5) and (4.6), we arrive at

[ρ1(G)− (2(D − 1)(p− 1) + q(D − 2) + 2△1)]

× [ρ1(G)− (2(D − 1)(q − 1) + p(D − 2) + 2△2)] .

Since xk > 0 for 1 ≤ k ≤ p+ q,

ρ21(G)− ρ1(G) [2(D − 1)(n− 2) + n(D − 2) + 2(△1 +△2)] + 2(D − 1)

×
[

2(pq − n+ 1 + (p− 1)△2 + (q − 1)△1) + (D − 2)(p2 + q2 − 1)
]

≤ 0. (4.7)

From the inequality (4.7) we get the desired result.

For the equality, we have xi = xk for k = 1, 2, . . . , p and xj = xk for

k = p + 1, p + 2, . . . , p + q. This means that the eigenvector x has at most

two different coordinates, the degrees of vertices in V1 and V2 are equal to △1

and △2, respectively, implying that G is a semi-regular graph. If G is not a

complete bipartite graph, it follows from p△1 = q△2 that △1 < q and △2 < p

and the eccentricity of every vertex must be equal to 3. �

Corollary 4.3. Let G be a connected bipartite graph of order n and size m with

bipartition of the vertex set as V (G) = V1 ∪ V2, where |V1| = p and |V2| = q,

p+ q = n. Let △1 and △2 be the maximum degree among vertices from V1 and

V2, respectively. If △1 = △2 = △, then

ρ1(G) ≤ 1

2

[

Â+

√

Â2 − 4{2(D − 1) [2(pq − n+ 1 +△(n− 2)

+(D − 2)(n(n− 1)− 2pq)]}

]

, (4.8)

where Â = 2(D − 1)(n− 2) + n(D − 2) + 4△.

5. Eigenvalues of CDL+(G) of Graphs Obtained by Some Graph

Operations

In this section we compute eigenvalues of the complementary distance sign-

less Laplacian matrix with respect to some graph operations. The following

lemma will be helpful in the sequel.

Lemma 5.1. [20] Let A =

[

A0 A1

A1 A0

]

be a symmetric 2 × 2 block matrix.

Then the spectrum of A is the union of the spectra of A0 +A1 and A0 −A1.

The graph G▽ G is obtained by joining every vertex of G to every vertex

of another copy of G.

Theorem 5.2. Let G be a connected r-regular graph on n-vertices with diame-

ter D ≤ 2. If r, λ2, λ3, . . . , λn are the eigenvalues of the adjacency matrix of G,

then the eigenvalues of the complementary distance signless Laplacian matrix

of G▽G are
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4Dn− 2D − 2n+ 2 + 2r,

2Dn− 2D − 2n+ 2 + 2r and

2Dn− 2D − n+ 2 + r + λi, 2 times, i = 2, 3, . . . , n.

Proof. As G is an r-regular graph of diameter D ≤ 2, the complementary

distance signless Laplacian matrix of G▽G can be written as















(2Dn−D − n+ r + 1) I

+DA+ (D − 1)Ā
DJ

DJ
(2Dn−D − n+ r + 1) I

+DA+ (D − 1)Ā















,

where A is the adjacency matrix of G, Ā is the adjacency matrix of Ḡ, J is

a matrix of order n × n whose all entries are equal to 1 and I is an identity

matrix of order n. Since Ā = J − I − A, then by applying Lemma 5.1, we get

the result. �

Definition 5.3. [25] Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}.
Take another copy of G with the vertices labeled by {u1, u2, . . . , un} where ui

corresponds to vi for each i. Make ui adjacent to all the vertices in N(vi) in

G, for each i. The resulting graph, denoted by D2G is called the double graph

of G.

Theorem 5.4. Let G be a connected r-regular graph on n vertices with diam-

eter 2 and let r, λ2, λ2, . . . , λn be the eigenvalues of the adjacency matrix of G.

Then the eigenvalues of the complementary distance signless Laplacian matrix

of D2G are

2r(D − 1) + 2n+D(n+ r − 1),

D(n+ r − 1), n times, and

2λi(D − 1) +D(n+ r − 1), i = 2, 3, . . . , n.

Proof. By definition of D2G, the complementary distance signless Laplacian

matrix of D2G is of the form





DA+ Ā+ (D(n+ r)− (D − 1)) I DA+ Ā+ I

DA+ Ā+ I DA+ Ā+ (D(n+ r)− (D − 1)) I



 ,

where D is the diameter of graph G, A is the adjacency matrix of G, Ā is the

adjacency matrix of Ḡ and I is an identity matrix. Since Ā = J − I −A, then

by applying Lemma 5.1, the result follows. �
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On complementary distance signless Laplacian spectral radius and energy of graphs 119

6. Bounds for the Complementary Distance Signless Laplacian

Energy

In this section we obtain some bounds for the complementary distance sign-

less Laplacian energy of a graph. To preserve the main features of the com-

plementary distance energy and complementary distance Laplacian energy and

bearing in mind the Eq. (1.3), we define here

ξi = ρi −
1

n

n
∑

j=1

CTG(vj), i = 1, 2, . . . , n, (6.1)

where ρi, i = 1, 2, . . . n are the eigenvalues of CDL+(G).

Definition: Let G be a connected graph of order n. Then the complementary

distance signless Laplacian energy of G, denoted by ECDL+(G) is defined as

ECDL+(G) =

n
∑

i=1

|ξi| =
n
∑

i=1

∣

∣

∣

∣

∣

∣

ρi −
1

n

n
∑

j=1

CTG(vj)

∣

∣

∣

∣

∣

∣

. (6.2)

Lemma 6.1. Let G be a connected graph of order n. Then

n
∑

i=1

ξi = 0 and

n
∑

i=1

ξ2i = 2S,

where

S = s+
1

2

n
∑

i=1



CTG(vi)−
1

n

n
∑

j=1

CTG(vj)





2

and s =
∑

1≤i<j≤n

(1 +D − dij)
2.
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Proof.

n
∑

i=1

ρi = trace[CDL+(G)] =

n
∑

i=1

CTG(vi) and

n
∑

i=1

ρ2i = trace[CDL+(G)]2

= 2
∑

1≤i<j≤n

(1 +D − dij)
2 +

n
∑

i=1

(CTG(vi))
2

= 2s+

n
∑

i=1

(CTG(vi))
2

Now,

n
∑

i=1

ξi =

n
∑

i=1



ρi −
1

n

n
∑

j=1

CTG(vj)





=

n
∑

i=1

ρi −
n
∑

j=1

CTG(vj) = 0,

and

n
∑

i=1

ξ2i =

n
∑

i=1



ρi −
1

n

n
∑

j=1

CTG(vj)





2

=
n
∑

i=1

ρ2i −
2

n

n
∑

j=1

CTG(vj)
n
∑

i=1

ρi +
1

n





n
∑

j=1

CTG(vj)





2

= 2
∑

1≤i<j≤n

(1 +D − dij)
2 +

n
∑

j=1

(CTG(vj))
2

− 2

n

n
∑

j=1

CTG(vj)

n
∑

i=1

CTG(vi) +
1

n





n
∑

j=1

CTG(vj)





2

= 2s+

n
∑

i=1



CTG(vi)−
1

n

n
∑

j=1

CTG(vj)





2

= 2S.

�

Corollary 6.2. Let G be a connected graph of order n and size m with diameter

D ≤ 2. Then
n
∑

i=1

ξ2i = 6m+ n(n− 1) +M1(G)− 4m2

n
,
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On complementary distance signless Laplacian spectral radius and energy of graphs 121

where M1(G) =
n
∑

i=1

(dG(vi))
2.

Proof. If G is having diameter less than or equal to two, then G has m pairs

of vertices at distance 1 and
(

n
2

)

−m pairs of vertices at distance 2.

Therefore

∑

1≤i<j≤n

(1 +D − dij)
2 =

6m+ n(n− 1)

2
,

and

CT (vi) =

n
∑

i=1

(1 +D − dij) = (n− 1 + dG(vi)).

Therefore,

n
∑

i=1

ξ2i = 2
∑

1≤i<j≤n

(1 +D − dij)
2 +

n
∑

i=1



CT (vi)−
1

n

n
∑

j=1

(CT (vj))





2

= 6m+ n(n− 1) +

n
∑

i=1

[

dG(vi)−
2m

n

]2

= 6m+ n(n− 1) +M1(G)− 4m2

n
.

�

Theorem 6.3. Let G be a connected graph of order n. Then

2
√
S ≤ ECDL+(G) ≤

√
2nS.

Proof. By direct computation, we get

T =
n
∑

i=1

n
∑

j=1

(|ξi| − |ξj |)2

= 2n

n
∑

i=1

|ξi|2 − 2

(

n
∑

i=1

|ξi|
)





n
∑

j=1

|ξj |





= 4nS − 2(ECDL+(G))2.

Since T ≥ 0, hence ECDL+(G) ≤
√
2nS.

Now,

(

n
∑

i=1

ξi

)2

= 0. This implies
n
∑

i=1

ξ2i + 2
∑

1≤i<j≤n

(ξi)(ξj) = 0.
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Therefore,

2S = −2
∑

1≤i<j≤n

(ξiξj)

≤ 2

∣

∣

∣

∣

∣

∣

∑

1≤i<j≤n

(ξiξj)

∣

∣

∣

∣

∣

∣

≤ 2
∑

1≤i<j≤n

|ξi||ξj |.

Thus,

(ECDL+(G))2 =

(

n
∑

i=1

|ξi|)
)2

=

n
∑

i=1

|ξi|2 + 2
∑

1≤i<j≤n

|ξi||ξj |

≥ 2S + 2S

= 4S.

Hence we get the desired. �

Corollary 6.4. If G is a connected graph on n vertices, then

ECDL+(G) ≥
√

2n(n− 1).

Proof. Since dij ≤ D, for i, j = 1, 2, . . . , n, hence by Theorem 6.3 we have

ECDL+(G) ≥ 2

√

√

√

√

√

∑

1≤i<j≤n

(1 +D − dij)2 +
1

2

n
∑

i=1



CTG(vi)−
1

n

n
∑

j=1

CTG(vj)





2

≥ 2

√

∑

1≤i<j≤n

(1 +D − dij)2

≥ 2

√

∑

1≤i<j≤n

1

= 2

√

n(n− 1)

2

=
√

2n(n− 1).

�

By Corollary 6.2 and Theorem 6.3, we get the following immediate corollary.

Corollary 6.5. Let G be a connected graph with n vertices, m edges and D ≤ 2.

Then
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ECDL+(G) ≥
√

12m+ 2n(n− 1) + 2M1(G)− 8m2

n
and

ECDL+(G) ≤
√

6mn+ n2(n− 1) + nM1(G)− 4m2,

where M1(G) =
n
∑

i=1

(dG(vi))
2.

Lemma 6.6. [28] Let a1, a2, . . . , an be non-negative numbers. Then

n





1

n

n
∑

i=1

ai −
(

n
∏

i=1

ai

)1/n


 ≤ n

n
∑

i=1

ai −
(

n
∑

i=1

√
ai

)2

≤ n(n− 1)





1

n

n
∑

i=1

ai −
(

n
∏

i=1

ai

)1/n


 .

Lemma 6.7. Let G be a connected graph with n vertices, I is the unit matrix

of order n and Γ =

∣

∣

∣

∣

det

(

CDL+(G)− 1
n

n
∑

i=1

CT (vi)I

)∣

∣

∣

∣

. Then

√

2S + n(n− 1)Γ(2/n) ≤ ECDL+(G) ≤
√

2(n− 1)S + nΓ(2/n).

Proof. Let ai = |ξi|2, i = 1, 2, . . . , n and

K = n





1

n

n
∑

i=1

|ξi|2 −
(

n
∏

i=1

|ξi|2
)1/n





= n





2S

n
−
(

n
∏

i=1

|ξi|
)2/n





= 2S − nΓ2/n.

By Lemma 6.6, we get

K ≤ n

n
∑

i=1

|ξi|2 −
(

n
∑

i=1

|ξi|2
)2

≤ (n− 1)K.

That is,

2S − nΓ2/n ≤ 2nS − (ECDL+(G))2 ≤ (n− 1)[2S − nΓ2/n].

By simplification of above inequality we get the required result.

�
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