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Abstract. The largest class of hyperstructures is the one which satisfies

the weak properties. We connect the theory of P-hopes, a large class

of hyperoperations, with the Lie-Santilli admissibility used in Hardonic

Mechanics. This can be achieved by a kind of Rees, sandwich hyperop-

eration.
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1. Introduction

1.1. Notice. The largest class of hyperstructures is the one which satisfies the

weak properties. These are called Hv−structures introduced in 1990 [13], and

they proved to have a lot of applications on several applied science such as

linguistic, biology, chemistry, physics, and so on. The Hv−structures satisfy

the weak axioms where the non-empty intersection replaces the equality. The

Hv−structures can be used in models as an organized devise. In this paper we

continuous our study on the Lie-Santilli,s admissibility needed in applications,
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70 R. Mahjoob, T. Vougiouklis

specially, in producin energy according to R.M. Santilli,s iso-theory.

Recall some basic definitions:

Definition 1.1. A set H equipped with at least one hyperoperation (we ab-

breviate by hope any hyperoperation) · : H × H −→ P (H), is called Hyper-

structure, where P (H) is the set of all subsets of H. We abbreviate by WASS

the weak associativity :(xy)z ∩ x(yz) 6= Ø, ∀x, y, z ∈ H and by COW the weak

commutativity : xy ∩ yx 6= Ø, ∀x, y ∈ H.

The hyperstructure (H, ·) is calledHv-semigroup if it is WASS and is called

Hv-group if it is reproductive Hv-semigroup, i.e. xH = Hx = H, ∀x ∈ H.

The hyperstructure (R,+, ·) is called Hv-ring if (+) and (·) are WASS, the

reproduction axiom is valid for (+) and (·) is weak distributive with respect to

(+), i.e.

x(y + z) ∩ (xy + xz) 6= Ø, (x+ y)z ∩ (xz + yz) 6= Ø, ∀x, y, z ∈ R.

For more definitions and results on Hv-structures one can see in books and

papers as [2],[4],[5],[6],[7],[14],[15],[18]. An extreme class of the Hv-structures is

the following: An Hv-structure is called very thin iff all hopes are operations

except one, which has all hyperproducts singletons except only one, which has

cardinality more than one.

The fundamental relations β∗,γ∗ and ε∗ are defined, in Hv-groups, Hv-rings

and Hv-vector spaces, respectively, as the smallest equivalences so that the

quotient would be group, ring and vector space, respectively [13],[14],[15]. The

way to find the fundamental classes is given by analogous theorems to the

following one:

Theorem 1.2. Let (H, ·) be an Hv-group and denote by U the set of all finite

products of elements of H. We define the relation β in H as follows: xβy

iff x, y ⊂ u where u ∈ U. Then the fundamental relation β∗ is the transitive

closure of the relation β.

Remark that the main point of the proof is that the β guaranties the validity

of the following: Take two elements x, y such that x, y ⊂ u ∈ U and any

hyperproduct where one of the elements x, y, is used. Then, if this element is

replaced by the other, the new hyperproduct is inside the same fundamental

class where the first hyperproduct is. Therefore, if the ’hyperproducts’ of the

above β-classes are ’products’, then, they are fundamental classes. Analogous

remarks for the relations γ and ε, are also applied.

An element is called single if its fundamental class is a singleton.
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Let (H, ·), (H,⊗) Hv-semigroups defined on the same set H. (·) is called

smaller than (⊗), and (⊗) greater than (·), iff there exists automorphism

f ∈ Aut(H,⊗) such that xy ⊂ f(x⊗ y), ∀x, y ∈ H.

Then we write · ≤ ⊗ and we say that (H,⊗) contains the (H, ·). If (H, ·) is a

structure then it is called basic structure and (H,⊗) is called Hb-structure.

The Little Theorem. Greater hopes of hopes which are WASS or COW,

are also WASS and COW, respectively.

The fundamental relations are used for general definitions of hyperstructures.

Thus, to define the general Hv-field one uses the fundamental relation γ∗: The

Hv-ring (R,+, ·) is called Hv-field if the quotient R/γ∗ is a field [13],[14].

The Hv-module is an Hv-group over an Hv-ring if the weak distributivity and

a mixed weak associativity on all hopes, is valid. In an analogous way the

Hv-vector spaces and the Hv-algebra can be defined [14].

The general definition of an Hv-Lie algebra was given in [16],[19] as follows:

Definition 1.3. Let (L,+) be Hv-vector space over the field (F,+, ), ϕ : F −→

F/γ∗, the canonical map and ωF = {x ∈ F : ϕ(x) = 0}, where 0 is the zero of

the fundamental field F/γ∗. Similarly, let ωL be the core of the canonical map

ϕ′ : L −→ L/ε∗ and denote by the same symbol 0 the zero of L/ε∗. Consider

the bracket (commutator) hope:

[ , ] : L× L −→ P(L) : (x, y) −→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.

[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= Ø

[x, λ1y1+λ2y2]∩(λ1[x, y1]+λ2[x, y2]) 6= Ø, ∀x, x1, x2, y, y1, y2 ∈ L and λ1, λ2 ∈

F

(L2) [x, x] ∩ ωL 6= Ø, ∀x ∈ L

(L3) ([x, [y, z] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= Ø, ∀x, y, z ∈ L

This is a general definition thus one can use special cases in order to face

problems in applied sciences. Moreover, we see how the weak properties can

be defined as the above weak linearity (L1), anti-commutativity (L2) and the

Jacobi identity (L3).

The uniting elements method was introduced by Corsini-Vougiouklis [14].

With this method one puts in the same class, two or more elements. This leads

to structures satisfying additional properties. The ’enlarged’ hyperstructures

were examined in the sense that an extra element, outside the set, appears in

one result. On the other direction one can obtain Hv-vector spaces, by taking

out some elements [16].
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Definition 1.4. Let (H, ·) be hypergroupoid. We say that we remove h ∈ H,

if we consider the restriction of the hope (·) on the H − {h}. We say that an

h ∈ H absorbs h ∈ H if we replace h, whenever it appears, by h. We say that

h ∈ H merges with h ∈ H, if we take as the product of any h ∈ H by h, the

union of the results of x with both h and h, and we consider h and h as one

class, with representative h.

The representation problem of Hv-structures by Hv-matrices is the following

[14]:

Hv-matrix is a matrix with entries of an Hv-ring or Hv-field. The hyper-

product of two Hv-matrices A = (aij) and B = (bij), of type m× n and n× r,

respectively, is defined in the usual manner but it is a set of m×r Hv-matrices:

A.B = (aij).(bij) = {C = (cij)|cij ∈ ⊕
∑

aikbkj},

where (⊕) denotes the n-ary circle hope on the hyperaddition, i.e. the sum of

products of elements of the Hv-ring is the union of the sets obtained with all

possible parentheses put on them. The hyperproduct is not WASS.

Definition 1.5. Let (H, ·) be Hv-group, consider an Hv-ring or Hv-field, (R,+, ·)

and a set

MR = {(aij)|aij ∈ R},

then is called Hv-matrix representation, any map

T : H −→ MR, h −→ T(h) such that T(h1h2)∩T(h1)T(h2) 6= Ø, ∀h1, h2 ∈ H,

If T(h1h2) ⊂ T(h1)T(h2), ∀h1, h2 ∈ H, then T is an inclusion representation,

if

T(h1h2) = T(h1)T(h2) = {T(h)|h ∈ h1h2}, ∀h1, h2 ∈ H,

then T is a good representation.

The main theorem of the theory of representations is:

Theorem 1.6. A necessary condition in order to have an inclusion represen-

tation T of the Hv-group (H, ·) by n×n Hv-matrices over the Hv-ring (R,+, ·)

is the following:

For all classes β∗(a), a ∈ H there must exist elements aij ∈ R, i, j ∈ {1, ..., n}

such that

T(β∗(a)) ⊂ {A = (a′ij)|a
′

ij ∈ γ∗(aij), i, j ∈ {1, ..., n}}.

2. Lie-Santilli Addmisibility

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic

Mechanics problems [9]. Santilli proposed a ’lifting’of the n-dimensional triv-

ial unit matrix of a normal theory into a nowhere singular, symmetric, real-

valued, positive-defined, n-dimensional new matrix. The original theory is
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reconstructed such as to admit the new matrix as left and right unit. The

isofields needed in this theory correspond to e-hyperfields which are the hyper-

structures introduced by Santilli and Vougiouklis 1996 [10]. The Hv-fields can

give e-hyperfields which can be used in the isotopy theory in applications as in

physics or in biology. The main definitions and constructions are presented on

the Hv-structures. They are based on the partial order in Hv-structures and

the Little Theorem [3],[4],[10],[19].

Definition 2.1. A hyperstructure (H, ·) which contain a unique scalar unit e,

is called e-hyperstructure. In an e-hyperstructure, we normally assume that for

every element x, there exists an inverse element, not necessarily unique, x−1,

i.e. e ∈ x.x−1 ∩ x−1.x.

A hyperstructure (F,+, ·), where (+) is operation and (·) is hope, is called

e-hyperfield if the following axioms are valid:

1. (F,+) is an abelian group with the additive unit 0,

2. (·) is WASS,

3. (·) is weak distributive with respect to (+),

4. 0 is absorbing: 0.x = x.0 = 0, ∀x ∈ F ,

5. there exists a multiplicative scalar unit 1, i.e. 1.x = x.1 = x, ∀x ∈ F ,

6. for every non zero x ∈ F there exists a unique inverse x−1, such that

1 ∈ x.x−1 ∩ x−1.x.

The elements of an e-hyperfield are called e-hypernumbers. In the case that

the relation: 1 = x.x−1 = x−1.x, is valid, then we say that we have a strong

e-hyperfield.

M ain e-Construction. Given a group (G, .), where e is the unit, then we

define in G, an extremelly large number of hopes (⊗) as follows:

x⊗ y = {xy, g1, g2, ...}, ∀x, y ∈ G− {e}, and g1, g2, ... ∈ G− {e},

g1, g2, ... are not the same for each (x, y). (G,⊗) becomes Hv-group, in fact an

Hb-group containing the (G, .). The (G,⊗) is an e-hypergroup. Moreover, if

for each x, y such that xy = e, so we have x⊗ y = xy, then (G,⊗) becomes a

strong e-hypergroup.

The proof is immediate. Moreover e is a unique scalar and for each x in G,

there exists a unique inverse x−1, such that 1 ∈ x.x−1 ∩ x−1.x and then we

have 1 = x.x−1 = x−1.x. So the (G,⊗) is a strong e-hypergroup.

The above main e-construction gives an extremely large class of e-hopes but

the most useful are the ones where only few products are enlarged.
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Example of an e-hypergroup. Consider the non-commutative quaternion

group

Q = {1,−1, i,−i, j,−j, k,−k}

One can obtain several hopes which define e-hypergroups. For example, denote

i = {i,−i}, j = {j,−j}, k = {k,−k}

then we may define the (∗) hope by the table:

* 1 -1 i -i j -j k -k

1 1 -1 i -i j -j k -k

-1 -1 1 -i i -j j k k

i i -i -1 1 k -k -j j

-i -i i 1 -1 -k k j -j

j j -j -k k -1 1 i -i

-j -j j k -k 1 -1 -i i

k k k i -j -i i -1 1

-k -k k -i j i -i 1 -1

(Q, ∗) is strong e-hypergroup since 1 is scalar and −1, i,−i, j,−j, k and −k

have unique inverses −1,−i, i,−j, j,−k and k, respectively, which are the in-

verses in the basic group.

A general way to define hopes, from given operations [12],[14] is the following:

Definition 2.2. Let (G, .) be a groupoid, then for every set P ⊂ G,P 6= Ø,

we define the following hopes called P -hopes :

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ), P l : xP ly = (Px)y ∪ P (xy), ∀x, y ∈ G

The (G,P ), (G,P r) and (G,P l) are called P -hyperstructures. If (G, .) is semi-

group, then (G,P ) is a semihypergroup but we do not know for (G,P r), (G,P l).

In some cases, mainly depending on the choice of P , the (G,P r), (G,P l) can

be associative or WASS. If in G, more operations are defined then for each

operation several P -hopes can be defined.

In [2],[3] a P -hope was introduced which is appropriate for e-hyperstructures:

Construction. Let (G, .) be abelian group and P ⊂ G, with more than one

elements. We define a hope (×P ) as follows:

x×P y =

{

x.P.y = {x.h.y|h ∈ P} x 6= e and y 6= e

x.y x = e or y = e

we call this Pe-hope. The hyperstructure (G,×P ) is an abelian Hv-group.

Now we define a hope on non square matrices [13],[14],[17]:
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Definition 2.3. Let M = Mm×n be a module of m× n matrices over R and

P = {Pi : i ∈ I} ⊆ M.

We define, a kind of, a P -hope, P on M as follows:

P : M×M −→ P(M) : (A,B) −→ APB = {AP t
iB : i ∈ I} ⊆ M

where P t denotes the transpose of the matrix P .

The hope P , which is a bilinear map, is a generalization of Rees’ operation

where, instead of one sandwich matrix, a set of sandwich matrices is used. P

is associative and the inclusion distributivity law with respect to addition of

matrices is valid:

AP (B + C) ⊆ APB +APC, ∀A,B,C ∈ M

Therefore, (M,+, P ) defines a multiplicative hyperring, i.e. only the multipli-

cation is a hope, on non-square matrices.

Definition 2.4. Let M = Mm×n be module of m × n matrices over a ring

R and let take sets S = {sk : k ∈ K} ⊆ R,Q = {Qi : j ∈ J} ⊆ M and

P = {Pi : i ∈ I} ⊆ M. Define three hopes as follows

S : R×M −→ P(M) : (r,A) −→ rSA = {(rsk)A : k ∈ K} ⊆ M

Q
+
: M×M −→ P(M) : (A,B) −→ AQ

+
B = {A+Qj +B : j ∈ J} ⊆ M

P : M×M −→ P(M) : (A,B) −→ APB = {AP t
iB : i ∈ I} ⊆ M

Then (M,S,Q+, P ) is the general matrix P-hyperalgebra over R.

In a similar way a generalization of this can be defined if one consider an Hv-

ring or an Hv-field instead of a ring and using Hv-matrices instead of matrices.

Let A = (aij), B = (bij) ∈ Mm×n, we call (A,B) a unitize pair of matrices

if AtB = In, where In denotes the n × n unit matrix. We prove the following

theorem which can be applied in the classical theory as well [19].

Theorem 2.5. Proof. If m < n, then there is no unitize pair. Suppose that

AtB = (cij), that is cij =
m
∑

k=1

aikbkj , and we denote by Am the block of the

matrix A such that Am = (aij) ∈ Mm×m, i.e. we consider the matrix of the

first m columns. Then we suppose that we have (Am)tBm = Im, thus we must

have det(Am) 6= 0.

Now, since n > m, we take the homogeneous system with respect to the

’unknowns’ b1n, b2n, ..., bmn :

cin =
m
∑

k=1

aikbkn = 0 for i = 1, 2, ...,m.
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From which, since det(Am) 6= 0, we obtain that b1n = b2n = ... = bmn = 0.

Using this fact on the last equation, on the same unknowns, cnn =
m
∑

k=1

ankbkn =

1 we have 0 = 1, absurd. �

Now we deal with the Lie-Santilli admissibility [8],[9],[11],[19] on the non-

square case. This problem can be faced in two ways:

(a) using ordinary numbers, as real or complex numbers, so using ordinary

matrices and hopes, instead of operations on non-square matrices,

(b) using hypernumbers (e-hypernumbers) as entries and the ordinary oper-

ations on non-square hypermatrices.

The general construction is the following:

Construction Let (L = Mm×n,+) be an Hv-vector space of m × n hyper-

matrices over the Hv-field (F,+, ·), ϕ : F −→ F/γ∗, the canonical map and

ωF = {x ∈ F : ϕ(x) = 0}, where 0 is the zero of the fundamental field F/γ∗.

Moreover, let ωL be the core of the canonical map ϕ′ : L −→ L/ε∗ and denote

by the same symbol 0 the zero of L/ε∗. Take two subsets R,S ⊆ L then a

Santilli’s Lie-admissible hyperalgebra is obtained by taking the Lie bracket,

which is a hope:

[ , ]RS : L× L −→ P(L) : [x, y]RS = xRty − yStx.

More precisely,

[x, y]RS = xRty − yStx = {xrty − ystx|r ∈ R, s ∈ S}

Special case, but not degenerate, is for R = {r1, r2} and S = {s1, s2}, even

more if R = S = P = {P1, P2} then we have

[x, y]P = xP ty−yP tx = {xP t
1y−yP t

1x, xP
t
1y−yP t

2x, xP
t
2y−yP t

1x, xP
t
2y−yP t

2x}

In the applications the most interesting cases are the ones which have results

with small number of elements. Therefore, we need new types of matrices, with

more properties especially for the matrices used in the set P of the P -hopes.

Thus we introduce the following:

Definition 2.6. An m × n matrix over an associative ring with identity 1, is

called monomial-like matrix , if in each row and column there are at least

one non-zero element. We assume that the number of the non-zero entries is

the minimum needed. If the non-zero entries of a monomial-like matrix are

equal to 1, then the matrix is called a permutation-like matrix .

Remark 2.7. In the following, we restrict ourselves on the type of permutation-

like matrices P ∈ Mm×n, with m < n, where the first part m × m block, is

the unit matrix Im. The rest cases are analogous. For example, in the case of
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P ∈ M2×3, we have only the case P = {P1, P2}, where

P1 =

(

1 0 1

0 1 0

)

, P2 =

(

1 0 0

0 1 1

)

Property Consider the permutation-like matrix P ∈ Mm×n, with m < n, then

we could have more than one 1́s only in some lines. Therefore, when we mul-

tiply with a matrix A = (aij) ∈ Mm×n, we have the following cases

1. The matrix PAt, has some rows the same as in At, but maybe in other

position, or some rows have as entries sums of elements of two or more corre-

sponding rows of the matrix At.

2. In the matrix P tA, there are repetitions of some rows of the matrix A

and maybe in different positions.

3. The matrix AP t, has some columns the same as in At, but maybe in

other position, or some columns have as entries sums of elements of two or

more corresponding columns of the matrix At.

4. In the matrix AtP , there are repetitions of some columns of the matrix

A and maybe in different positions.

An interesting problem is to find the set of matrices which are unitize pair with

a given matrix.

Example 2.8. The set of the matrices which are unitize pair with the transpose

of the permutation-like matrices P 1
t and P 2

t , given in the above Remark 2.7,

are, respectively,

X1 =

(

κ 0 1− κ

λ 1 −λ

)

, X2 =

(

1 κ −κ

0 λ 1− λ

)

since we can see that X1P
1
t = I2 and X2P

2
t = I2.

Example 2.9. In the set M2×3, we take as P = {P1, P2}, from above Remark

2.7 Consider the four dimensional matrices

X =

(

x1 0 x2

0 x3 x4

)

, Y =

(

y1 0 y2
0 y3 y4

)

Then we obtain, after calculations, that the P−Lie bracket of them is
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[X,Y ]P = XP tY−Y P tX = {

(

x2y1 − x1y2 0 x1y2 − x2y1
x4y1 − x1y4 0 x4y2 + x3y4 − x2y4 − x4y3

)

,

(

x2y1 −x3y2 x1y2 + x2y2 − x2y1 − x4y2
x4y1 −x3y4 x4y2 + x3y4 − x4y3 − x4y4

)

,

(

−x1y2 x2y3 x1y2 + x2y4 − x2y1 − x2y2
−x1y4 x4y3 x3y4 + x4y4 − x2y4 − x4y3

)

,

(

0 x2y3 − x3y2 x1y2 + x2y4 − x2y1 − x4y2
0 x4y3 − x3y4 x3y4 − x4y3

)

}

Notice that we always have 02×3 ∈ [X,X]P , for all X ∈ M2×3.

Open problem : Find closed sets of matrices with respect to the P -Lie brack-

ets.
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