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Abstract. In this paper, we investigate domination number as well as

signed domination numbers of Cay(G : S) for all cyclic groupG of order n,

where n ∈ {pm, pq} and S = {k < n : gcd(k, n) = 1}. We also introduce

some families of connected regular graphs Γ such that γ
S
(Γ) ∈ {2, 3, 4, 5}.
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1. Introduction

By a graph Γ we mean a simple graph with vertex set V (Γ) and edge set

E(Γ). A graph is said to be connected if each pair of vertices are joined by a

walk. The number of edges of the shortest walk joining vi and vj is called the

distance between vi and vj and denoted by d(vi, vj). A graph Γ is said to be

regular of degree k or, k-regular if every vertex has degree k. A subset P of

vertices of Γ is a k−packing if d(x, y) > k for all pairs of distinct vertices x and

y of P [9].
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36 E. Vatandoost, F. Ramezani

Let G be a non-trivial group, S be an inverse closed subset of G which does

not contain the identity element of G, i.e. S = S−1 = {s−1 : s ∈ S}. The

Cayley graph of G denoted by Cay(G : S), is a graph with vertex set G and

two vertices a and b are adjacent if and only if ab−1 ∈ S. The Cayley graph

Cay(G : S) is connected if and only if S generates G.

A set D ⊆ V of vertices in a graph Γ is a dominating set if every vertex v ∈ V

is an element of D or adjacent to an element of D. The domination number

γ(Γ) of a graph Γ is the minimum cardinality of a dominating set of Γ.

For a vertex v ∈ V (Γ), the closed neighborhood N [v] of v is the set con-

sisting v and all of its neighbors. For a function f : V (Γ) → {−1, 1} and a

subset W of V we define f(W ) =
∑

u∈W

f(u). A signed dominating function of

Γ is a function f : V (Γ) → {−1, 1} such that f(N [v]) > 0 for all v ∈ V (Γ).

The weight of a function f is ω(f) =
∑

v∈V

f(v). The signed domination number

γ
S
(Γ) is the minimum weight of a signed dominating function of Γ. A signed

dominating function of weight γ
S
(Γ) is called a γ

S
(Γ)−function. We denote

f(N [v]) by f [v]. Also for A ⊆ V (Γ) and signed dominating function f , set

{v ∈ A : f(v) = −1} is denoted by A−
f .

Finding some kinds of domination numbers of graphs is certainly one of the

most important properties in any graph. (See for instance [2, 3, 5, 6, 11, 13])

These motivated us to consider on domination and signed domination num-

ber of Cayley graphs of cyclic group of orders pn, pq, where p and q are prime

numbers.

2. Cayley Graphs of Order pn

In this section p is a prime number and B(1, n) = {k < n : gcd(k, n) = 1}.

Lemma 2.1. Let G be a group and H be a proper subgroup of G such that

[G : H] = t. If S = G \H, then Cay(G : S) is a complete t-partite graph.

Proof. One can see G = 〈S〉 and e /∈ S = S−1. Let a ∈ G. If x, y ∈ Ha,

then x = h1a, y = h2a. Since xy−1 ∈ H, xy /∈ E(Cay(G : S)). So induced

subgraph on every coset of H is empty. Let Ha and Hb two disjoint cosets of

H and x ∈ Ha, y ∈ Hb. Hence, xy−1 ∈ S. So xy ∈ E(Cay(G : S)). Therefore,

Cay(G : S) = K|H|,|H|,··· ,|H|. �

Lemma 2.2. Let G be a group of order n and G = 〈S〉, where S = S−1 and

0 /∈ S. Then γ(Cay(G : S)) = 1 if and only if S = G \ {0}.

Proof. The proof is straightforward.

�
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Theorem 2.3. [13] Let Ka,b be a complete bipartite graph with b ≤ a. Then

γ
S
(Ka,b) =



































a+ 1 if b = 1,

b if 2 ≤ b ≤ 3 and a is even,

b+ 1 if 2 ≤ b ≤ 3 and a is odd ,

4 if b ≥ 4 and a, b are both even,

6 if b ≥ 4 and a, b are both odd,

5 if b ≥ 4 and a, b have different parity.

Theorem 2.4. Let Z2n = 〈S〉 and S = B(1, 2n). Then

i. Cay(Z2n : S) = K2n−1,2n−1

ii. γ(Cay(Z2n : S)) = 2.

iii.

γS(Cay(Z2n : S)) =

{

2 if n = 1, 2,

4 if n ≥ 3.

Proof. i. Let H = Z2n \ S. Then H = {i : 2 | i}. It is not hard to see

that H is a subgroup of Z2n and [Z2n : H] = 2. Hence, by Lemma 2.1,

Cay(Z2n : S) = K2n−1,2n−1 .

ii. By part i. Cay(Z2n : S) is a complete bipartite graph. So

γ(Cay(Z2n : S)) = 2.

iii. The proof is straightforward by Theorem 2.3.

�

Corollary 2.5. For any integer n > 2, there is a 2n−1−regular graph Γ with

2n vertices such that γ
S
(Γ) = 4.

Theorem 2.6. Let Zpn = 〈S〉 (p odd prime) and S = B(1, pn). Then following

statments hold:

i. Cay(Zpn : S) is a complete p-partite graph.

ii. γ(Cay(Zpn : S)) = 2.

iii. γ
S
(Cay(Zpn : S)) = 3.

Proof. i. Let H = Zpn \S. Then H = {i : p | i}. H is a subgroup of Zpn

and |H| = pn − Φ(pn) = pn−1. So [Zpn : H] = p. Hence, by Lemma

2.1, Cay(Zpn : S) is a complete p-partite graph of size pn−1.

ii. Since Cay(Zpn : S) is a complete p-partite graph, D = {a, b} is a

minimal dominating set where a, b are not in the same partition.

iii. Let Γ = Cay(Zpn : S). Let V (Γ) =

p
⋃

i=1

Ai where Ai = {vij : 1 ≤ j ≤

pn−1}. Define f : V (Γ) → {−1, 1}

f(vij) =











−1 if 1 ≤ i ≤ ⌊p
2⌋ − 1 and 1 ≤ j ≤ ⌈pn−1

2 ⌉,

−1 if ⌊p
2⌋ ≤ i ≤ p and 1 ≤ j ≤ ⌊pn−1

2 ⌋,

1 otherwise.
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Let v ∈

⌊ p

2
⌋−1
⋃

i=1

Ai. So |N(v) ∩ V −
f | = 1

2 (p
n − pn−1 − 4). So f [v] =

f(v) + 4 ≥ 3. If v ∈

p
⋃

i=⌊ p

2
⌋

Ai, then |N(v) ∩ V −
f | = 1

2 (p
n − pn−1 − 2).

So f [v] = f(v) + 2 ≥ 1. Hence, f is a signed dominating function.

Since |V −
f | = 1

2 (p
n − 3), ω(f) = 3. So γS(Γ) ≤ 3. On the contrary,

suppose γS(Γ) < 3. So there is a γ
S
-function g such that ω(g) < 3.

So |V −
g | > 1

2 (p
n − 3). Let |V −

g | = 1
2 (p

n − 1). If Ai ∩ V −
g = ∅ for

some 1 ≤ i ≤ p, then g[v] = 1 − pn−1 for every v ∈ Ai. Hence,

Ai ∩ V −
g 6= ∅ for every 1 ≤ i ≤ p. If |Ai ∩ V −

g | ≥ ⌈pn−1

2 ⌉ for every

1 ≤ i ≤ p, then |V −
g | ≥ 1

2 (p
n + p). This is impossible. So there is

j ∈ {1, 2, . . . , p} such that |Aj ∩ V −
g | ≤ ⌊pn−1

2 ⌋. Let u ∈ Aj ∩ V −
g . So

g[u] = deg(u)+1− 2|N(u)∩V −
g | < 0. This is contradiction. Therefore

γ
S
(Γ) = 3.

�

Corollary 2.7. For every integer n, there is a (pn − pn−1)−regular graph Γ

with pn vertices such that γ
S
(Γ) = 3.

3. Cayley Graphs of Order pq

In this section p and q are distinct prime numbers where p < q. Let B(1, pq)

be a generator of Zpq. For 1 ≤ i ≤ p and 1 ≤ j ≤ q, set

Ai = {i+ kp : 0 ≤ k ≤ q − 1}

and

Bj = {j + k′q : 0 ≤ k′ ≤ p− 1}.

With these notations in mind we will prove the following results.

Lemma 3.1. Let Zpq = 〈S〉 and S = B(1, pq). Then following statments hold.

i. V (Cay(Zpq : S)) =

p
⋃

i=1

Ai and Cay(Zpq : S) is a p-partite graph.

ii. V (Cay(Zpq : S)) =

q
⋃

j=1

Bj and Cay(Zpq : S) is a q-partite graph.

iii. Let 1 ≤ i ≤ p. For any x ∈ Ai there is some 1 ≤ j ≤ q such that

x ∈ Bj .

iv. |Ai ∩Bj | = 1 for every i, j.

Proof. i. Let s ∈ V (Cay(Zpq : S)). If p | s, then s ∈ Ap. Otherwise,

s ∈ Ai where s = kp+ i for some 1 ≤ k ≤ (p − 1). Thus V (Cay(Zpq :

S)) =

p
⋃

i=1

Ai. Since 1 ≤ i 6= j ≤ p, Ai ∩ Aj = ∅. We show that the
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induced subgraph on Ai is empty. Let l + t ∈ E(Cay(Zpq : S)). If

l, t ∈ As for some 1 ≤ s ≤ p, then l = s+ kp, t = s+ k′p. So p | (l− t).

This is impossible.

ii. The proof is likewise part i.

iii. Let 1 ≤ i ≤ p and let x ∈ Ai. If x ≤ q, then x ∈ Bx. If not,

x = i + kp > q such that 1 ≤ k ≤ q − 1. Hence, x ≡ t (mod q) where

1 ≤ t ≤ q, and so x ∈ Bt .

iv. By Case iii and since |Ai| = q and also for every j 6= j′, Bj ∩ Bj′ = ∅,

the result reaches.

�

Theorem 3.2. [6] For any graph Γ,
⌈

n
1+∆(Γ)

⌉

≤ γ(Γ) ≤ n−∆(Γ) where ∆(Γ)

is the maximum degree of Γ.

Theorem 3.3. Let Zpq = 〈S〉 and S = B(1, pq). Then the following is hold.

γ(Cay(Zpq : S)) =

{

2 p = 2;

3 p > 2.

Proof. Let p = 2. By Lemma 3.1, D = {i, i + q} is a dominating set. Since

Cay(Zpq : S) is a (q − 1)-regular graph, by Theorem 3.2, γ(Cay(Zpq : S)) ≥ 2.

Thus γ(Cay(Zpq : S)) = 2.

Let p > 2. We define D = {1, 2, s} where s ∈ A1 \ N(2). Since 1, 2 are

adjacent , N(1) ∪ N(2) = V (Cay(Zpq : S)) \ D. Thus D is a dominating

set. As a consequence, γ(Cay(Zpq : S)) ≤ 2. It is enough to show that

γ(Cay(Zpq : S)) 6= 2. Let D′ = {x, y}. We show that D′ is not a dominating

set. If x, y ∈ Ai for some 1 ≤ i ≤ p, then for every z ∈ Ai \ D′, z 6∈ N(D′).

If not, x ∈ Ai and y ∈ Aj for some 1 ≤ i 6= j ≤ p. If x, y are adjacent, then

there is x′ ∈ Ai \ {x} such that x′ 6∈ N(y). Thus D′ is not dominating set. If

x and y are not adjacent, then there is z ∈ Al, l 6= i, j, such that the induced

subgraph on {x, y, z} is empty. Hence, D′ is not a dominating set and the proof

is completed.

�

Theorem 3.4. Let Zpq = 〈S〉 where p ∈ {2, 3, 5} and S = B(1, pq). Then

γ
S
(Cay(Zpq : S)) = p.

Proof. Let A = {1, 1 + p, . . . , 1 + (
⌊

q
2

⌋

− 1)p} and B = {i+ tq : i ∈ A and 1 ≤

t ≤ p− 1}. We define f : V (Cay(Zpq : S)) → {−1, 1} such that

f(x) =

{

−1 x ∈ A ∪B,

1 otherwise.

Let v ∈ V (Cay(Zpq : S)). If f(v) = −1, then

f [v] = −1 + (p− 1)(q − 1)− 2
((

⌊
q

2
⌋ − 1

)

(p− 1)
)

= 2p− 3.
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Otherwise,

f [v] = 1 + (p− 1)(q − 1)− 2
⌊q

2

⌋

(p− 1) = 1.

Hence, f is a dominating function. Also

ω(f) = pq − 2 (|A|+ |B|) = pq − 2
(⌊q

2

⌋

+ (p− 1)
⌊q

2

⌋)

= p.

It is enough to show that f has the minimal wait. Let, to the contrary, g be

a dominating function and ω(g) < ω(f). So |V −
g | > |V −

f |. Without lose of

generality, suppose that |V −
g | = p⌊ q

2⌋ + 1. Let A−
i = Ai ∩ V −

g , A+
i = Ai \ A

−
i

and B−
j = Bj ∩ V −

g . We will reach the contradiction by three steps.

Step 1. For every 1 ≤ i ≤ p, A−
i 6= ∅.

On the contrary, let A−
s = ∅ for some 1 ≤ s ≤ p. Let u ∈ As. Then by

Lemma 3.1, u ∈ As ∩Bt for some 1 ≤ t ≤ q. So

g[u] = (p− 1)(q − 1) + 1− 2(|V −
g | − |B−

t |) ≥ 1.

Thus |B−
t | ≥ ⌈ q

2⌉. Hence, |V
−
g | ≥ |As|⌈

q
2⌉. This imolies q+(q−p)⌊ q

2⌋ <

1. This is a contradiction. Hence, A−
s 6= ∅.

Similar argument applies for Bj . Therefore, B
−
j 6= ∅ for every 1 ≤ j ≤

q.

Step 2. For every 1 ≤ i ≤ p, |A−
i | ≥ ⌊ q

2⌋.

On the contrary, Let |A−
l | < ⌊ q

2⌋ for some 1 ≤ l ≤ p. Without lose

of generality suppose that |A−
l | = ⌊ q

2⌋ − 1. Let v ∈ Al. By Lemma

3.1, v ∈ Al ∩ Bk for some 1 ≤ k ≤ q. If g(v) = −1, then g[v] =

(p−1)(q−1)−1−2(|V −
g |− |A−

l |− |B−
k |+2) ≥ 1. Then |B−

k \{v}| ≥ 4.

If g(v) = 1, then |B−
k \ {v}| ≥ 2. Hence, |V −

g | ≥ 4|A−
l |+ |A−

l |+ 2|A+
l |.

As a consequence p > 8. This is impossible.

Therefore, for every 1 ≤ i ≤ p, |A−
i | ≥ ⌊ q

2⌋ and since |V −
g | = p⌊ q

2⌋+ 1,

we may suppose that |A−
1 | = ⌈ q

2⌉ and |A−
i | = ⌊ q

2⌋for 2 ≤ i ≤ p.

Step 3. For every 1 ≤ j ≤ q, |B−
j | ≥ ⌈p

2⌉.

On the contrary, let |B−
h | < ⌈p

2⌉ for some 1 ≤ h ≤ q. Suppose that

|B−
h | = ⌊p

2⌋. By Lemma 3.1, Bh ∩ Ai 6= ∅ for any 1 ≤ i ≤ p. Let

z ∈ B−
h ∩Ai. Thus

g[z] =− 1 + (p− 1)(q − 1)− 2
(

|V −
g | − |A−

i | − |B−
h |+ 2

)

≤− 1 + (p− 1)(q − 1)− 2
(

p
⌊q

2

⌋

+ 1−
⌈q

2

⌉

− ⌊
p

2
⌋+ 2

)

≤p− 6

Since p ∈ {2, 3, 5}, g[z] ≤ −1. This is a contradiction.

By Step 3, |V −
g | ≥ q⌈p

2⌉. Hence, p⌊ q
2⌋ + 1 ≥ q⌈p

2⌉. So p + q ≤ 2. This is

impossible. Therefore γ
S
(Cay(G : S)) = ω(f) = p. �

Theorem 3.5. Let Zpq = 〈S〉 where p ≥ 7 and S = B(1, pq). Then

γ
S
(Cay(Zpq : S)) = 5.
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Proof. We define f : V (Cay(Zpq : S)) → {−1, 1} such that f(i) = −1 if and

only if i ∈ {1, 2, . . . , pq−5
2 }. It is easily seen that ⌊ q

2⌋ ≤ |A−
i | ≤ ⌈ q

2⌉ for every

1 ≤ i ≤ p. Also ⌊p
2⌋ ≤ |B−

j | ≤ ⌈p
2⌉ for any 1 ≤ j ≤ q . Let v ∈ At∩Bs such that

1 ≤ t ≤ p and 1 ≤ s ≤ q. In the worst situation, |A−
t | = ⌊ q

2⌋ and |B−
s | = ⌊p

2⌋.

In this case 1 ≤ f [v] ≤ 5. Hence, f is a signed dominating function. Also

ω(f) = pq − 2|V −
f | = 5. Thus γ

S
(Cay(Zpq : S)) ≤ 5. What is left is to show

that if g is a γ
S
−function, then ω(g) ≥ 5. On the contrary, suppose that g

be a γ
S
−function and ω(g) < ω(f). Hence, |V −

g | < |V −
f |. There is no loss of

generality in assuming |V −
g | = pq−3

2 . Let A−
i = Ai ∩ V −

g and B−
j = Bj ∩ V −

g .

In order to reach the contradiction we use two following steps:

Step 1. A−
i 6= ∅ for every 1 ≤ i ≤ p.

On the contrary, suppose that for some 1 ≤ m ≤ p, A−
m = ∅. Let

w ∈ Am. So there is 1 ≤ ℓ ≤ q such that w ∈ Am ∩Bℓ. Hence, g[w] =

(p−1)(q−1)+1−2(|V −
g |−|B−

ℓ |) ≥ 1. Thus |B−
ℓ | ≥ p+q−4

2 . So |V −
g | ≥

q(p+q−4
2 ). Hence, pq − 3 ≥ q(pq − 4). This makes a contradiction.

By similar argument we have B−
j 6= ∅ for every 1 ≤ j ≤ q.

Step 2. For every 1 ≤ i ≤ p, |A−
i | ≥ ⌊ q

2⌋.

On the contrary, let |A−
l | = ⌊ q

2⌋ − 1. Let v ∈ Al. There is 1 ≤ l′ ≤ q

such that v ∈ Al ∩ Bl′ . If g(v) = −1, then g[v] = (p− 1)(q − 1) + 1−

2(|V −
g | − |A−

l | − |B−
l′ |+ 2) ≥ 1. Hence, |B−

l′ \ {v}| ≥ ⌈p
2⌉. If g(v) = 1,

then |B−
l′ | ≥ ⌊p

2⌋. Therefore, |V −
g | ≥ |A−

l |(⌈
p
2⌉ + 1) + |A+

l |⌊
p
2⌋. This

implies that q ≤ 3. This is a contradiction.

Likewise Step 2, |B−
j | ≥ ⌊p

2⌋ for every 1 ≤ j ≤ q. Since |V −
g | = pq−3

2 , there

is 1 ≤ k ≤ p such that |A−
k | = ⌊ q

2⌋. On the other hand, suppose that for

1 ≤ t ≤ q, |B−
lr
| = ⌊p

2⌋. Let u ∈ A−
k ∩B−

s . If s ∈ {l1, · · · , lt}, then

g[u] =− 1 + (p− 1)(q − 1)− 2
(

|V −
g | − |A−

k | − |B−
s |+ 2

)

=− 1 + (p− 1)(q − 1)− 2

(

pq − 3

2
−

⌊q

2

⌋

−
⌊p

2

⌋

+ 2

)

=− 3.

This is a contradiction by g is a signed dominating function. Hence, s is not in

{l1, · · · , lt}. Since |A−
k | = ⌊ q

2⌋, q − t ≥ ⌊ q
2⌋ and so t ≤

⌈

q
2

⌉

. As a consequence,

|V −
g | ≥ t⌊

p

2
⌋+ (q − t)⌈

p

2
⌉ ≥ ⌈

q

2
⌉⌊

p

2
⌋+ ⌊

q

2
⌋⌈

p

2
⌉.

Since |V −
g | = pq−3

2 , this makes a contradiction. Therefore,

γ
S
(Cay(Zpq : S)) = 5.

�

Corollary 3.6. For any k−regular graph Γ on n vertices γ
S
(Γ) ≥ n

k+1 . Hence,

γ
S
(Γ) ≥ 1. It is easy to check that γ

S
(Γ) = 1 if and only if Γ is a complete
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42 E. Vatandoost, F. Ramezani

graph and n is odd. Furthermore, for any prime numbers p < q, there is a

(p− 1)(q − 1)−regular graph Γ with pq vertices such that γ
S
(Γ) ∈ {2, 3, 5}.
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8. S. Klavžar, G. Košmrlj, S. Schmidt, On the Computational Complexity of the Domina-

tion Game, Iranian Journal of Mathematical Sciences and Informatics, 10( 2), (2015),

115–122.

9. A. Meir, J. Moon, Relations Between Packing and Covering Numbers of a Tree, Pacific

Journal of Mathematics. 61(1), (1975) , 225–233.
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